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SUMMARY

Transmission control protocol (TCP) is the most widely used transport protocol on the Internet today.
Over the years, especially recently, due to requirements of high bandwidth transmission, various
approaches have been proposed to improve TCP performance. The Linux 2.6 kernel is now preemptible. It
can be interrupted mid-task, making the system more responsive and interactive. However, we have noticed
that Linux kernel preemption can interact badly with the performance of the networking subsystem. In this
paper, we investigate the performance bottleneck in Linux TCP. We systematically describe the trip of a
TCP packet from its ingress into a Linux network end system to its final delivery to the application; we
study the performance bottleneck in Linux TCP through mathematical modelling and practical
experiments; finally, we propose and test one possible solution to resolve this performance bottleneck in
Linux TCP. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The transmission control protocol (TCP) is the most widely used transport protocol on the
Internet today. It carries the vast majority of all traffic over the Internet for various network
applications, including end-user applications (such as web browsing, remote login, and e-mail),
bandwidth-intensive applications (such as GridFTP for bulk data transmission [1]) and high-
performance distributed computing [2, 3]. TCP has been and will continue to be an evolving
protocol. Over the years, various TCP flavours have been implemented. Early TCP
implementations used a go-back-N model and required the expiration of a retransmission
timer to recover any loss. TCP Tahoe added the slow start, congestion avoidance, and fast
retransmit algorithms to TCP [4]. Based on TCP Tahoe, TCP Reno added fast recovery
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algorithm, first implemented in 1990 [5]. TCP SACK allows receivers to selective ACK out of
sequence data and it aimed at eliminating the timeouts that arise in TCP Reno due to multiple
losses from the same window [6, 7]. TCP Vegas [8] is another implementation of TCP, which
adjusts transmission rate according to anticipated congestion. It employs a new retransmission
mechanism and slow start mechanism from Reno. TCP Westwood [9, 10] is proposed to handle
random or sporadic losses. It continuously measures at the TCP source the rate of the
connection by monitoring the rate of returning ACKs. The estimate is then used to compute
congestion window and slow start threshold after a congestion episode. Recently, due to
requirements for high bandwidth transmission, TCP variants, such as FAST TCP [11], BIC TCP
[12], HTCP [13], and HSTCP [14], are also proposed and implemented.

To improve TCP performance, researchers have been primarily working in the fields of TCP
flow control [15], TCP congestion control [4–14, 16–18], and TCP offloading [19, 20].

Linux-based network end systems have been widely deployed in the high-energy
physics (HEP) community, at laboratories and universities. At Fermilab, thousands of network
end systems are running Linux operating systems; these include computational farms,
trigger processing farms, servers, and desktop workstations. From a network performance
perspective, Linux represents an opportunity since it is amenable to optimization due to its
open source support and projects such as web100 and net100 that enable tuning of network
stack parameters [21, 22].

In all previous versions of Linux, the kernel itself cannot be interrupted while it is processing.
Linux 2.6 is preemptible [23, 24]. The 2.6 kernel can be interrupted mid-task, so that the system
is more responsive and interactive. However, we note that preemption in certain sections incurs
some serious negative effects on networking performance. In this paper, we investigate these
problems. Our analysis is based on Linux kernel 2.6.14. The contribution of the paper is as
follows: (1) we systematically describe the trip of a TCP packet from its ingress into a Linux end
system to its final delivery to the application; (2) we point out the performance bottleneck in
Linux TCP from both mathematical analysis and practical experiments; and (3) we propose and
test one possible solution to resolve the performance bottleneck in Linux TCP.

The remainder of the paper is organized as follows: in Section 2, the Linux packet receiving
process is presented. Section 3 analyses the performance bottleneck in Linux TCP. In Section 4,
we show the experiment results to further study the Linux TCP performance issues, verifying
our conclusions in Section 3. In Section 5, we propose a potential solution to resolve the
performance bottleneck in Linux TCP. And finally in Section 6, we conclude the paper.

2. TCP PACKET RECEIVING PROCESS

The Layer 2 technology is assumed Ethernet network media, since it is the most widespread and
representative LAN technology. Also, it is assumed that the Ethernet device driver makes use of
Linux’s ‘New API,’ or NAPI [25, 26], which reduces the interrupt load on the central processing
units (CPUs).

Figure 1 demonstrates generally the trip of a TCP packet from its ingress into a Linux end
system to its final delivery to the application [25, 27, 28]. We will not generally observe the
distinctions among datalink frames, IP packets, and TCP segments, as the data structures
moved along protocol stack in the Linux kernel represent any of these things at different times,
and the data remain at the same memory location. For simplicity, we use the single term ‘packet’
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wherever it will not cause confusion. In general, the packet’s trip can be classified into three
stages:

* Packet is transferred from network interface card (NIC) to ring buffer. The NIC and device
driver manage and controls this process.

* Packet is transferred from ring buffer to a socket receive buffer, driven by a software
interrupt request (softirq) [23, 27]. The kernel protocol stack handles this stage.

* Packet data are copied from the socket receive buffer to the application, which we will term
the data receiving process.

The following subsections detail these three stages.

2.1. NIC and device driver processing

The NIC and its device driver perform the layer 1 and 2 functions of the OSI 7-layer network
model: packets (datalink frames) are received and transformed from raw physical signals, and
placed into system memory, ready for higher layer processing. The Linux kernel uses a structure
sk buff [25, 27] to hold any single packet up to the MTU (maximum transfer unit) of the
network. The device driver maintains a ‘ring’ of these packet buffers, known as a ‘ring buffer,’
for packet reception (and a separate ring for transmission). A ring buffer consists of a device-
and driver-dependent number of packet descriptors. To be able to receive a packet, a packet
descriptor should be in ‘ready’ state, which means it has been initialized and preallocated with
an empty sk buff that has been memory mapped into address space accessible by the NIC over
the system I/O bus. When a packet comes, one of the ready packet descriptors in the reception
ring will be used, the packet will be transferred by direct memory access (DMA) [29] into the
preallocated sk buff, and the descriptor will be marked as used. A used packet descriptor should
be reinitialized and refilled with an empty sk buff as soon as possible for further incoming
packets. If a packet arrives and there is no ready packet descriptor in the reception ring, it will
be discarded. Once a packet is transferred into the main memory, during subsequent processing
in the network stack, the packet remains at the same kernel memory location.

Figure 2 shows a general packet receiving process at NIC and device driver level. When a
packet is received, it is transferred into main memory and an interrupt is raised only after the
packet is accessible to the kernel. When CPU responds to the interrupt, the driver’s interrupt
handler is called, within which the softirq is scheduled by calling netif rx schedule(). It puts a
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Figure 1. Linux networking subsystem: TCP packets receiving process.

POTENTIAL PERFORMANCE BOTTLENECK IN LINUX TCP

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

DOI: 10.1002/dac



Ferm
ila

b
reference to the device into the poll queue of the interrupted CPU. The interrupt handler also
disables the NIC’s receive interrupt until all packets in its ring buffer are processed.

The softirq is serviced shortly afterward. The CPU polls each device in its poll queue to get the
received packets from the ring buffer by calling the poll method dev->poll() of the device driver.
In dev->poll(), each received packet is passed upwards for further processing by
net receive skb(). After a received packet is dequeued from its receiving ring buffer for further
processing, its corresponding packet descriptor in the reception ring buffer needs to be
reinitialized and refilled.

2.2. Kernel protocol stack

2.2.1. IP processing. The IP protocol receive function ip rcv() gets called from within
net receive skb() during the processing of a softirq, whenever an IP packet is dequeued from its
receiving ring buffer. This function performs all the initial checks on the IP packet, which mainly
involve verifying its integrity (IP checksum, IP header fields, and minimum packet length). If the
packet looks correct and passes the netfilter hook, ip rcv finish() is called. ip rcv finish() deals
with the routing functionality of IP. It checks whether the packet should be forwarded to
another machine or if it is destined to the local host. In the latter case, the packet is given to
ip local deliver(). In case the packet is fragmented, IP fragment reassembly is performed here.
Then, the packet passes another netfilter hook, and finally goes to the ip local deliver finish()
function. There, an IP packet undergoes the last stage of IP-level processing: IP header data are
trimmed and the higher layer protocol is determined so that the packet is ready for transport
(‘layer 4’) processing. For each transport layer protocol, a corresponding entry handler function
is defined: tcp v4 rcv() and udp rcv() are two examples. When a packet is passed upwards, the
corresponding protocol entry handler function is called.
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Figure 2. NIC and device driver packet receiving.
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2.2.2. TCP processing. When a packet (TCP segment) is handed upwards for TCP processing,
the function tcp v4 rcv() first performs the TCP header processing. Then tcp v4 lookup() is
called to find the corresponding socket that is associated with the packet. A packet without a
corresponding socket will be dropped. A socket has a lock structure to protect it from
un-synchronized access. If the socket is locked, the packet waits on the backlog queue before
being processed further. If the socket is not locked, and its data receiving process is sleeping for
data, the packet is added to the socket’s prequeue and will be processed in batch in the process
context, instead of the interrupt context [23]. Placing the first packet in the prequeue will wake up
the sleeping data receiving process. If the prequeue mechanism does not accept the packet,
which means that the socket is not locked and no process is waiting for input on it, the packet
must be processed immediately by a call to tcp v4 do rcv(). The same function also is called to
drain the backlog queue and prequeue. Except in the case of prequeue overflow, those queues
are drained in the process context, not the interrupt context of the softirq. In the case of prequeue
overflow, which means that packets within the prequeue reach or exceed the socket’s receive
buffer quota, those packets should be processed as soon as possible, even in the interrupt
context.

tcp v4 do rcv() in turn calls other functions for actual TCP processing, depending on
the TCP state of the connection. If the connection is in the tcp established state,
tcp rcv established() is called; otherwise, tcp rcv state process() is called to handle state
transitions and connection management, if there are no header or checksum errors.
tcp rcv established() performs key TCP actions such as sequence number checking, RTT
estimation, acknowledging, and data packet processing. Here, we focus on the data packet
processing.

When a data packet is handled on the fast path, tcp rcv established() checks whether it can
be delivered to the user space directly, instead of being added to the receive queue. The data’s
destination in user space is indicated by an iovec structure provided to the kernel by the data
receiving process through a system call such as recvmsg(). The conditions for checking whether
to deliver the data packet to the user space are as follows:

* the socket belongs to the currently active process; AND
* the current packet is the next in sequence for the socket; AND
* the packet will entirely fit into the application-supplied memory location.

When a data packet is handled on the slow path it will be checked whether the data are in
sequence (packet is the next one to be delivered to the user). Similar to the fast path, an
in-sequence packet will be copied to user space if possible; otherwise, it is added to the receive
queue. Out of sequence packets are added to the socket’s out-of-sequence queue and an
appropriate TCP response is scheduled. Unlike the backlog queue, prequeue and out-of-sequence
queue, packets in the receive queue are guaranteed to be in order, already acknowledged, and
contain no holes. Packets in out-of-sequence queue would be moved to receive queue when
incoming packets fill the preceding holes in the data stream. Figure 3 shows the TCP processing
flow chart within the interrupt context. In the figure, ‘A’ and ‘B’ stand for measurement points
that will be referred to in later sections.

As previously mentioned, the backlog and prequeue are generally drained in the process
context. The socket’s data receiving process obtains data from the socket through socket-related
receive system calls. For TCP, all such system calls eventually lead to tcp recvmsg(), which is
the top end of the TCP transport receive mechanism. As shown in Figure 4, tcp recvmsg() first
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locks the socket, then checks the receive queue. Since packets in the receive queue are guaranteed
in order, acknowledged, and without holes, data in receive queue are copied to user space
directly. After that, tcp recvmsg() will process the prequeue and backlog queue, respectively, if
they are not empty. Both result in the calling of tcp v4 do rcv(). Afterward, processing similar
to that in the interrupt context is performed. tcp recvmsg() does not return to user space until
the prequeue and backlog queue are drained. tcp recvmsg() may need to fetch a certain amount
of data before it returns to user code; if the required amount is not present, sk wait data() will
be called to put the data receiving process to sleep, waiting for new data to come. The amount of
data is set by the data receiving process. Before tcp recvmsg() returns to user space or the data
receiving process is put to sleep, the lock on the socket will be released. As shown in Figure 4,
when the data receiving process wakes up from the sleep state, it needs to relock the socket
again.

2.3. Data receiving process

Packet data are finally copied from the socket’s receive buffer to user space by data receiving
process through socket-related receive system calls. The receiving process supplies a memory
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address and number of bytes to be transferred, either in a struct iovec, or as two parameters
gathered into such a struct by the kernel. As mentioned in Section 2.2.2, all the TCP socket-
related receive system calls result in a call to tcp recvmsg(), which will copy packet data from
socket’s buffers (receive queue, prequeue, backlog queue) through iovec.

3. POTENTIAL PERFORMANCE BOTTLENECK FOR TCP

As described above, TCP processing can be performed in interrupt or process context,
depending on the status of the TCP receive socket and the data receiving process. To
summarize, the different TCP packet processing scenarios are as shown in Figure 5. Since Linux
is an interrupt-driven operating system, interrupt processing has higher priority than user-lever
processes. TCP packets handled in the interrupt context are usually processed immediately by
TCP protocol engine, independent of system load. However, when incoming TCP packets are
on the prequeue or backlog queue, those packets will be handled in the process context. In that
case, TCP processing is strongly related to system load and the Linux process-scheduling
scheme. This leads to a potential performance bottleneck for TCP applications when the system
is under load.

Linux 2.6 is a preemptive multi-processing operating system. Processes (tasks) are scheduled to
run in a prioritized round robin manner [23, 24, 30], to achieve the objectives of fairness,
interactivity, and efficiency. For the sake of scheduling, a Linux process has a dynamic priority
and a static priority. A process’ static priority is equivalent to its nice value, which is specified by
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the user in the range �20 to þ19 with a default of zero, and not changed by the kernel [23, 24].
Higher values correspond to lower priorities. The dynamic priority is used by the scheduler to
rate the process with respect to the other processes in the system. An eligible process with a
better (smaller-valued) dynamic priority is scheduled to run before a process with a worse
(higher-valued) dynamic priority. The dynamic priority varies during a process’ life. It depends
on a dynamic priority bonus, from �5 to þ5; and its static priority. The dynamic priority bonus
depends on the process’ interactivity status. Linux credits interactive processes and penalizes
non-interactive processes by adjusting this bonus. There are 140 possible priority levels in Linux.
The top 100 levels (0–99) are used only for real-time processes, which we do not address in this
paper. The last 40 levels (100–139) are used for conventional processes.

As shown in Figure 6, process scheduling employs a data structure called runqueue.
Essentially, a runqueue keeps track of all runnable tasks assigned to a particular CPU. One
runqueue is created and maintained for each CPU in a system. Each runqueue contains two
priority arrays: active priority array and expired priority array. Each priority array contains a
queue of runnable processes per priority level. Higher (dynamic) priority processes are
scheduled to run first. Within a given priority, processes are scheduled round robin. All tasks on
a CPU begin in the active priority array. Each process’ time slice is calculated based on its nice
value. Table I shows the time slices for various nice values. When a process in the active priority
array runs out of its time slice, it is considered expired and moved to the expired priority array if
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Figure 5. TCP packets processing scenarios.
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it is not interactive, or reinserted back into the active array if it is interactive. During the move, a
new time slice and dynamic priority are calculated. When there are no more runnable tasks in
the active priority array, it is simply swapped with the expired priority array. A running process
might be put into a wait queue to sleep, waiting for expected events (e.g. I/O). When a sleeping
process wakes up, its time slice and priority are recalculated and it is moved to the active priority
array. As for preemption, whenever a scheduler clock tick or interrupt occurs, if a higher-
priority task has become runnable, it will preempt the running task if the latter holds no kernel
locks.

Furthermore, when a process is termed interactive, its time slice is divided into smaller pieces.
When it finishes a piece, the task will round robin with other tasks at the same priority level.
This way execution will rotate more frequently among interactive tasks of the same priority,
preventing interactive processes from blocking other interactive processes of the same priority.

Under the simplifying assumption that processes other than the data receiving process of
interest do not sleep for long times, and hence use their entire time slices before the active
priority array is empty, let us first consider the backlog scenario. The data receiving process is
calling tcp recvmsg() to fetch packet data from socket receive buffer to user space. The socket
will be locked until the process returns to the user space. If the data receiving process’ time slice
ends before the lock is released, the data receiving process will be moved to the expired priority
array with the socket locked. The socket will remain locked until the lock is released after the
data receiving process resumes its execution in the next round of running. The time until the
process resumes its execution is strongly dependent on the system load. Let us assume that
when the expired data receiving process is moved to the expired priority array, there are, in all,
N1 running processes (P1; . . . ;PN1

) left in the active array, and N2 expired processes
(PN1þ1; . . . ;PN1þN2

) in the expired array with priorities higher than that of the expired data
receiving process. Considering that some of the N1 processes, when expired, might move to the
expired array with recalculated priorities higher than that of the expired data receiving process,
the minimum time before the data receiving process could resume its execution would be

XN1þN2

j¼1

TimesliceðPjÞ ð1Þ

Here, TimesliceðPjÞ denotes the time slice of process Pj :
As we have seen, during this period all the new incoming TCP packets for the data receiving

process will wait on the socket’s backlog queue without being TCP processed. No acknowl-
edgements will be fed back to the TCP sender.

As for the prequeue scenario, the data receiving process might sleep within tcp recvmsg()
waiting for data. Before the process wakes up, all the incoming segments for the data receiving

Table I. Nice value vs time slice.

Nice value Time slice (ms)

þ19 5
0 100

�10 600
�15 700
�20 800
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process will wait on the prequeue without being TCP-processed. Let us assume that when the
woken-up data receiving process is moved to the active priority array, there are N3 other
processes in the active array whose priorities are higher. Assuming still that each process will use
its full time slice, the minimum time before the data receiving process could resume its execution
would be

XN3

j¼1

TimesliceðPjÞ ð2Þ

Similarly, during this period no acknowledgements will be returned to the TCP sender.
Note that the data receiving process might be preempted within tcp recvmsg() by other

higher priority processes. In this case, packet might wait on the backlog queue. The analysis of
how long packets would wait on the backlog queue is similar to the above.

Let us denote by Twait the time a packet waits in the backlog queue or prequeue. In the worst
case, we have

Twait >
XN1þN2

j¼1

TimesliceðPjÞ for backlog queue ð3aÞ

Twait >
XN3

j¼1

TimesliceðPjÞ for prequeue ð3bÞ

The time that packets wait on the backlog queue or prequeue adds to the sender’s estimate of the
round-trip time (RTT), since ACKs have not been sent for segments on those queues.

Usually it is the case that

RTT ¼ Tt þ Tpd þ Tq þ Tpp ð4Þ

where Tt is the time the interface takes to send the packet. This will likely have a linear
dependence on packet size. Tpd is the time taken for a signal to propagate through the network
medium. In a single simple network link, this is equal to the distance between sender and
receiver divided by propagation speed. Tq is the time spent in routing queues along the path.
This will fluctuate over time depending on congestion in the path. And Tpp is the amount of time
spent by sender and receiver and routers doing processing necessary for packet delivery. On
current hardware, this is usually in the sub-microsecond range. For a given packet size, network
path, sender, and receiver, it can be assumed that Tt; Tpd; and Tpp are constants. For packet
switched data networks, Tq is usually a random variable, following some distribution. Hence,
RTT is treated as a random variable.

Since TCP packets might wait on the backlog queue or prequeue in the receiver, we will have

RTT ¼ Tt þ Tpd þ Tq þ Tpp þ Twait ð5Þ

Clearly, if TCP packets are processed in interrupt context, Twait � 0: In the receiver, since the
system load is uncertain, whether, when, and how long TCP packets might wait on the backlog
queue or prequeue is uncertain, and Twait is also a random variable, following some distribution.
We can see that Twait and Tq are independent or effectively so.
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Hence, it will be the case that

EðTt þ Tpd þ Tq þ Tpp þ TwaitÞ > EðTt þ Tpd þ Tq þ TppÞ ð6Þ

VarðTt þ Tpd þ Tq þ Tpp þ TwaitÞ > VarðTt þ Tpd þ Tq þ TppÞ ð7Þ

Here, Eð*Þ and Varð*Þ are the expected value and variance of a random variable, respectively.
From (6) and (7), it can be derived that when packets wait on backlog queue or prequeue, both
RTT and its variance will increase.

In [31], Mathis et al., derive

BW ¼
MSS

RTT

C
ffiffiffi
p
p ð8Þ

where BW is the achievable bandwidth from sender to receiver, MSS is the maximum segment
size, C is a constant of order unity, and p is the packet drop probability along the path. Note: (8)
is based on Reno TCP.

It follows from (6) and (8) that with increased RTT, the average achievable bandwidth from
sender to receiver will decrease. Also, as we know, when competing TCP network traffic exists,
increased RTT will put a TCP data stream in a disadvantaged position [32].

The TCP sender does not measure RTT precisely, but rather maintains ‘smoothed’ estimates
of SRTT and RTTVAR of RTT and its variation, and uses the estimates in determining the
RTO, or retransmit timeout period [33, 34], after which an unacknowledged packet is assumed
lost and will be retransmitted. Estimates are updated as follows whenever a new measurement R
of RTT is available from the acknowledgement of a timed data segment:

RTTVAR :¼ 3
4
RTTVARþ 1

4
jSRRT� Rj ð9Þ

SRTT :¼ 7
8
SRTTþ 1

8
R ð10Þ

RTO :¼ maxfTCP RTO MIN;minfSRTTþ 4�RTTVAR;TCP RTO MAXgg ð11Þ

The variation defined by (9) is not variance in the strict statistical sense, but is more easily
calculated in the kernel and is commonly referred to as variance. Here, both TCP RTO MIN
and TCP RTO MAX are constants, which are 200ms and 120 s respectively. Experience has
shown that clock granularity affects RTO calculation. Finer granularity (4100 ms) performs
somewhat better than coarser granularities [34]. In Linux 2.6, the clock granularity is not a big
concern, since it has reached the 1ms level.

Also, from (6), (7), and (11), it can be seen that when the RTT’s variance rises, the RTO in the
sender will correspondingly increase. In that case, the TCP sender may be less responsive to
packet losses, resulting in degraded performance.

When packets wait on the receiver’s backlog queue or prequeue too long, it triggers the
retransmission timeout in the sender. Assuming that when packets start to wait on the queue,
the current RTO value in the sender is TRTO: The sender will time out when

Twait > TRTO � Tt � Tpd � Tq � Tpp ð12Þ

If the system load is medium or high, condition (12) can be easily met. For example, if
N1 þN2510; and all the running processes have the default nice value of 0, from Equations (1)
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and (3a) and Table I, we can easily have Twait > 1 s; large enough to outrigger the retransmission
timer. Once RTO times out, the sender incorrectly assumes packet loss in the network. Such
spurious timeouts affect TCP performance in two ways: (1) the sender unnecessarily reduces its
offered load by setting its congestion window size to 1 segment and (2) the sender is forced into a
go-back-N retransmission model. Spurious timeouts are usually due to sudden delay spike in the
path, e.g. route changes. The Eifel algorithm [35] and F-RTO algorithm [36] have been proposed
to solve the spurious timeout problem in the sender. However, since the spurious timeout in the
case at hand is caused by Linux TCP implementation in the receiver, we seek a solution in the
receiver.

4. EXPERIMENTS AND ANALYSIS

To verify our claims in Section 3, we ran data transmission experiments upon Fermilab’s sub-
networks. In the experiments, we run iperf [37] to send data in one direction between two
computer systems. iperf in the receiver is the data receiving process. As shown in Figure 7, the
sender and the receiver are connected to two Cisco 6509 switches connected to each other by an
uncongested 10-Gbit/s link. During the experiments, the background traffic in the network is
low, and there is no packet loss, or packet reordering in the network. The sender and receiver’s
features are as shown in Table II.

In order to study the detailed packet receiving process, we have added instrumentation within
Linux packet receiving path. Specifically, to collect statistics and provide insights for Twait; we
have added measurement points A and B in Linux packet receiving path as shown in Figure 3.
For each packet, the times that it passes over point A (tA) and point B (tB) are recorded; we
collect the statistics for the time difference tdiff ¼ tB � tA: It can be assumed that Twait � tdiff ; to
within a few CPU cycles. Since it is difficult to keep track of every packet, we classify tdiff into six
different groups: 04tdiff41 ms; 1 ms4tdiff410 ms; 10 ms4tdiff40:1 s; 0:1 s4tdiff40:2 s;
0:2 s4tdiff41 s; and tdiff > 1 s: We collect the histogram for each category.

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G
1G

Figure 7. Experiment network and topology.

Table II. Sender’s and receiver’s features.

Sender Receivern

CPU Two Intel Xeon CPUs (3.0GHz) One Intel Pentium III CPU (1GHz)
System memory
(MB)

3829 512

NIC Tigon, 64 bit-PCI bus slot at 66MHz,
1Gbps twisted pair

Syskonnect, 32 bit-PCI bus slot at 33MHz,
1Gbps twisted pair

nWe ran experiments on different types of Linux receivers in Fermilab, and similar results were obtained.
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To create a variable system load in the receiver, we compiled the Linux Kernel with n parallel
tasks by running make �nj [23]. The different values of n corresponds to different levels of
background system load, e.g. make �10j: For simplicity, they are termed as ‘BLn’. The
background system load implies load on both CPU and system memory. In the TCP
experiments, sender transmits one TCP stream to receiver for 20 s. All the processes are running
with a nice value of 0, and iperf’s receive buffer is set to 40MB. In the sender, we use tcpdump to
record TCP streams, and later use tcptrace [38] to analyse the recorded packets. Consistent
results were obtained across repeated runs. In the following sections, we present two groups of
experiments, with background loads of BL0 and BL10, respectively. The experimental data are
from both sender and receiver side. Table III shows the iperf output results in the sender.

Plate 1 shows the time-sequence diagrams for the recorded TCP traces from the sender side.
Plate 1(a) shows that with a background load of BL0, the sender sends packets smoothly and
continuously. Packets are acknowledged in time and no RTO happens. However, the time-
sequence diagram in Plate 1(b) shows another story. With BL10 in receiver, sender sends
packets intermittently. In the diagram, the small red ‘R’ represents retransmission. There are
quite a few retransmissions. Since there are no packet losses or reordering in the network, those
unnecessary retransmissions are due to spurious timeouts in the sender. As we have analysed in
Section 3, when packets wait on backlog queue and prequeue too long, no ACKs are returned to
the TCP sender in time, leading to RTOs in the sender.

Now let us study the issues from the receiver side, to further verify the conclusions of
Section 3.

Figures 8 and 9 show various TCP queues at BL0 and BL10, respectively.

* Normally, prequeue and out-of-sequence queue are empty. The backlog queue is usually
not empty, even during the periods that the data receiving process is not running. Packets
are not dropped or reordered in the test network. However, packets might be dropped by
the NIC in the reception ring buffer [39], causing subsequent packets to go to the out-of-
sequence queue.

* With BL0, the receive queue is approaching full. In our experiment, since the sender is
more powerful than the receiver, this scenario is as expected. The experiment results have
confirmed this point. With BL10, since RTOs in the sender seriously degrade the TCP
performance, the receive queue is not approaching full, even with a background load of
BL10.

* In contrast to Figure 8, the backlog and receive queues in Figure 9 show some kind of
periodicity. The periodicity matches the data receiving process’ running cycle [39]. In
Figure 8, with BL0, the data receiving process runs almost continuously, but at BL10, it
runs only intermittently.

Though Figures 8 and 9 provide information about status of various TCP queues, they provide
no clue about how long packet will wait on backlog queue or prequeue. Table IV gives the
statistics about tdiff with BL0 and BL10. As we have known that there is Twait � tdiff ; the

Table III. iperf output results.

System load in receiver Time (s) Data transmitted End-to-end throughput (Mbits/s)

BL0 20 1.17Gbytes 504
BL10 20 174Mbytes 72.1
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Figure 8. Various TCP receive buffer queues}BL0 (receiver side).

Figure 9. Various TCP receive buffer queues}BL10 (receiver side).
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statistics about tdiffwill provide us further information about Twait: When the load is light in
the receiver, packets would go to prequeue or backlog queue (as shown in backlog queue of
Figure 8). Since the data receiving process runs continuously, packets within backlog queue or
prequeue are processed soon, Twait will not be large. However, when the system load increases,
as it has been analysed in formula (3a) and (3b), Twait might be large, which has been confirmed
by Table IV. As shown in Table IV, with BL0, there are no packets with tdiff510 ms: However,
with BL10, some packets even have tdiff51 s; waiting on the backlog queue or prequeue for
quite a long period of time, without being TCP-processed. This is why we have seen in
Plate 1(b) that RTO occurs.

5. A POSSIBLE SOLUTION

As described above, the TCP performance bottleneck is due to the fact that TCP packets might
wait on the backlog queue or prequeue in the receiver without being TCP-processed. To resolve
the performance bottleneck issue, there might be two basic approaches. Naturally, the first
approach is to always do TCP processing in the interrupt context, not in the process
context at all. However, this would require the overhaul of the whole Linux TCP
protocol engine, which might be complex and time consuming. The second approach is to
reduce Twait for packets waiting on prequeue or backlog queue. As implied by formulas (1)–(3),
the underlying idea here is that when there are packets waiting on the prequeue or
backlog queue, do not allow the data receiving process to release the CPU for long.
Relatively, the second approach is easier to implement. We have modified the Linux
process scheduling policy and tcp recvmsg() to implement a solution of the second sort.
The pseudo-code for scheduling is as shown in Listing 1. The code changes for tcp recvmsg() is
as shown in Listing 2, highlighted with a lighter shade. To summarize, the solution
works as follows: an expired data receiving process with packets waiting on backlog
queue or prequeue is moved to the active array, instead of expired array as usual. More
often than not, the expired data receiving process will continue to run. Even if it does
not run, the wait time before it resumes its execution will be greatly reduced. However,
this gives the process extra runs compared to other processes in the runqueue. For the
sake of fairness, the process would be labelled with the extra run flag. Also considering
the facts that: (1) the resumed process will continue its execution within tcp recvmsg()
and (2) tcp recvmsg() does not return to user space until the prequeue and backlog
queue are drained. For the sake of fairness, we modified tcp recvmsg() as such: after
prequeue and backlog queue are drained and before tcp recvmsg() returns to user space, any
process labelled with the extra run flag will call yield() to explicitly yield the CPU to
other processes in the runqueue. yield() works by removing the process from the active array
(where it currently is, because it is running), and inserting it into the expired array [23]. Also, to

Table IV. tdiff statistics (receiver side).

System load 51ms 1–10ms 10–100ms 100–200ms 200ms–1 s > 1 s

BL0 862 429 636 0 0 0 0
BL10 122 657 744 896 40 300 75
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prevent processes in the expired array from starving, a special rule has been provided for Linux
process scheduling (the same rule used for interactive processes [24]): an expired process is
moved to the expired array without respect to its status if processes in the expired array are
starved.

We repeated the TCP experiments as described in Section 4 on Linux updated with the new
scheduling policy described as above. We compare the new experiment data with those obtained
in Section 4. The old experiment data will be prefixed with ‘O-’; whereas, the new data are
prefixed with ‘N-’.

Listing 1. Pseudo-code for scheduling policy.

If (process->timeslice - - == 0) {
recalculate timeslice and priority;
if (packets are waiting on backlog queue or prequeue) {

if (processes in expired array are starved)
move the process to expired array;

else {
move process to active array;
if (process is non-interactive)
set process->extra run flag:¼TRUE;

}
}
else {

. . . as usual . . .
}

}
else {

. . . as usual . . .
}

Listing 2. Code changes for tcp recvmsg().

tcp recvmsg{
. . . as usual . . .

TCP CHECK TIMER(sk);
release sock(sk);

if (process->extra run flag == TRUE){
set process->extra run flag:¼FALSE;
yield();

}

return copied;

. . . as usual . . .
}

W. WU AND M. CRAWFORD
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Table V shows the iperf output results in the sender. It can be seen that the TCP performance

of N-BL10 is much better than that of O-BL10. The TCP end-to-end throughput of N-BL10
reaches as high as 88.8Mbits/s; however, with O-BL10, the corresponding TCP end-to-end
throughput is only 72.1Mbits/s. This implies that our proposed solution is effective in resolving
the TCP performance bottleneck issue. This point is verified by experiment data from both
sender and receiver sides. Plate 2 shows the time-sequence diagrams for the recorded TCP traces
from the sender side. For comparison, Plate 2(a) shows old kernel’s time-sequence diagram with
a background load of BL10. And Plate 2(b) shows the time-sequence diagram with N-BL10. In
Plate 2(b), there are no retransmissions due to packets waiting on backlog queue or prequeue
too long; packets are acknowledged in time and no RTO happens. Nevertheless, the sender still
transmits intermittently. This is caused by zero window advertisements from receiver. In our
experiments, sender is a more powerful machine than the receiver; in addition, the receiver runs
with a high background load. When packets cannot be consumed by the data receiving process
in time, the data receive buffer in receiver is approaching full. Then receiver will advertise zero
windows to stop sender transmitting. The small ‘Z’ in Plate 2(b) represents a window
advertisement of 0 bytes received from the receiver. Later, from Figure 10 we can see that the
receive buffer is approaching full.

Figure 10 shows various TCP queues with N-BL10. It can be seen that the receive queue is
approaching full. Compared with Figure 9, it can be concluded that TCP performance is really
enhanced. Table VI gives observations of tdiff for N-BL10. There are now no packets with
tdiff5200 ms; which implies that no packets waited long on the prequeue or backlog queue. It
further verifies that our proposed solution is effective in resolving the TCP performance
bottleneck issue.

Now, let us study the fairness issues of our proposed solution. Readers might suspect that our
proposed solution might cause fairness issues. The following experiments and analysis will show
that it does not significantly do so.

As described above, Linux scheduler moves an expired process to the expired priority array if
the process is not interactive, or reinserts it back into the active array if the process is interactive.
To better evaluate the fairness performance of our proposed solution, we try to eliminate the
influence of interactive processes in the following experiments: non-interactive processes run as
background loads. To create non-interactive processes in the receiver, we develop a CPU-
intensive application that executes a number of operations in a loop: In all the following
experiments, the sender transmits one TCP stream to the receiver for 20 s. In the receiver, iperf is
run as ‘time iperf -s -w 20M’. All the processes are running with a nice value of 0. Further, since
the transmission lasts 20 s, in the receiver we calculate iperf’s experiment CPU share as: ðstimeþ
utimeÞ=20 s:We compare the iperf’s experiment CPU shares with its fair CPU share. If there are
M background processes, iperf’s fair CPU share is: 1=ðM þ 1Þ: Consistent results were obtained
across repeated runs. In the following sections, we present a group of experiment results in
Table VII.

Table V. iperf output results.

System load in receiver Time (s) Data transmitted End-to-end throughput (Mbits/s)

O-BL0 20 1.17Gbytes 504
O-BL10 20 174Mbytes 72.1
N-BL10 20 220Mbytes 88.8
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As shown in Table VII, in the worst case, iperf gains the extra CPU shares of 3.86%.
Considering the possibilities that iperf itself might sometimes be termed interactive and gain
extra runs, the experiment results show that our proposed solution will not cause fairness issues.
The proposed solution tradeoffs a small amount of fairness performance to resolve the TCP

Table VI. tdiff statistics (receiver side).

System load 51 ms 1–10ms 10–100ms 100–200ms 200ms–1 s > 1 s

O-BL0 862 429 636 0 0 0 0
O-BL10 122 657 744 896 40 300 75
N-BL10 156 300 851 618 29 0 0

Table VII. Fairness experiments.

Background processes
Iperf experiment results

in receiver End-to-end Iperf experiment Iperf fair
(No. of processes) throughput (Mbps) Utime (s) Stime (s) CPU share (%) CPU share (%)

1 265 0.048 10.47 52.58 50
3 143 0.028 5.644 28.38 25
4 117 0.032 4.728 23.8 20
9 70 0.028 2.744 13.86 10

Figure 10. Various TCP receive buffer queues}BL10 (new kernel, receiver).
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performance bottleneck. The reason that our proposed solution will not cause serious fairness
issues is due to the facts that:

(1) Each time when an expired data receiving process with packets waiting on backlog queue
or prequeue is moved to the active array, it gains at most the tcp recvmsg() amount of
extra time compared to other processes in the runqueue.

(2) Each calling of tcp recvmsg() will not take long. When Linux kernel processes packets
within backlog queue or prequeue, the processed data will be fed to the socket out of
sequence queue or receive queue, then TCP flow control will take effect to slow down or
throttle sender.

(3) The possibility that a data receiving process runs out of its timeslice and is moved to the
expired array with packets waiting on backlog queue or prequeue does not occur often,
compared to the Linux scheduling time scale. This has been shown in Plate 1(b). As iperf
does pure data transmission, the received data will not be further processed in the user
space. Therefore, for a real network application, this possibility is even lower.

Another justification for our proposed solution is that ‘Fairness is often a hard attribute to
justify maintaining because it is often a tradeoff between over global performance and localized
performance. For example, in an effort to provide maximum disk throughput, the Linux 2.4
block I/O scheduler may starve older requests, in order to continue processing newer requests at
the current disk head position. This minimizes seeks and thus provides maximum overall disk
throughput}at the expense of fairness to all requests’ [40].

6. CONCLUSIONS

Suspension of TCP processing for incoming packets induces both an increase and a greater
variability of the round-trip time measured by the sender. A moderate or high system load on
the receiver can delay TCP processing so long as to cause a timeout in the sender, which will
then resume sending at the minimum possible rate. Current storage implementations in the high-
energy physics community and elsewhere exploit the disk space of compute-farm worker nodes
[41], making this a very topical concern.

So far, we have been discussing how the proposed solution behaves in improving TCP
performance, and resolving the bottleneck. Also, we evaluate the fairness performance of our
proposed solution. The proposed solution trades a small amount of fairness performance to
resolve the TCP performance bottleneck. Our experiments and analysis have shown that our
proposed solution will not cause serious fairness issues. The criteria for a good scheduling
algorithm also include efficiency, response time, turnaround, and throughput [42]. How our first
cut at a throughput-enhancing process scheduling policy affects other processes and overall
system performance needs further study. We will cover this topic in other papers.

REFERENCES

1. Allcock W et al. The globus striped GridFTP framework and server. Proceedings of the ACM/IEEE Supercomputing
2005 Conference, Seattle, U.S.A., 2005.

2. Foster I et al. The Grid: Blueprint for a New Computing Infrastructure (2nd edn). Wiley: New York, 2004.

POTENTIAL PERFORMANCE BOTTLENECK IN LINUX TCP

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

DOI: 10.1002/dac



Ferm
ila

b

3. Berman F et al. Grid Computing: Making the Global Infrastructure a Reality. Wiley: New York, 2003.
4. Jacobson V. Congestion avoidance and control. Proceedings of the ACM SIGCOMM, Stanford, CA, August 1988;

314–329.
5. Fall K et al. Simulation-based comparison of Tahoe, Reno and SACK TCP. ACM Computer Communications

Review 1996; 5(3):5–21.
6. Braden R et al. TCP Extensions for Long Delay Paths. RFC 1072, 1988.
7. Braden R et al. TCP Extensions for High-Speed Paths. RFC 1185, October 1990.
8. Brakmo LS et al. TCP Vegas: end to end congestion avoidance on a global Internet. IEEE Journal on Selected Areas

in Communications 1995; 13(8):1465–1480.
9. Casetti C et al. TCP Westwood: bandwidth estimation for enhanced transport over wireless links. Proceedings of

ACM Mobicom 2001, Rome, Italy, 2001; 287–297.
10. Gerla M et al. TCP Westwood: congestion window control using bandwidth estimation. Proceedings of IEEE

Globecom 2001, vol. 3, San Antonio, U.S.A., 2001; 1698–1702.
11. Jin C et al. FAST TCP: from theory to experiments. IEEE Network 2005; 19(1):4–11.
12. Xu L et al. Binary increase congestion control for fast long-distance networks. Proceedings of IEEE INFOCOM

2004, Hong Kong, 2004.
13. Leith DJ et al. H-TCP: a framework for congestion control in high-speed and long-distance networks. Hamilton

Institute Technical Report, August 2005.
14. Floyd S. HighSpeed TCP for Large Congestion Windows. RFC 3649, December 2003.
15. Gardner MK et al. User-space auto-tuning for TCP flow control in computational grids. Computer Communications

2004; 27(14):1364–1374.
16. Widmer J et al. A survey on TCP-friendly congestion control. IEEE Network Magazine, Special Issue on Control of

Best Effort Traffic 2001; 15(3):28–37.
17. Martin J et al. Delay-based congestion avoidance for TCP. IEEE/ACM Transactions on Networking 2003; 11(3).
18. Mathis M et al. Forward acknowledgment: refining TCP congestion control. Proceedings of SIGCOMM’96,

Stanford, CA, August 1996.
19. Freimuth D et al. Server network scalability and TCP offload. Proceedings of the 2005 USENIX Annual Technical

Conference, Anaheim, CA, April 2005; 209–222.
20. Clark DD et al. An analysis of TCP processing overheads. IEEE Communication Magazine 1989; 27(2):23–29.
21. Mathis M et al. Web100: extended TCP instrumentation for research, education and diagnosis. ACM Computer

Communications Review 2003; 33(3).
22. Dunigan T et al. A TCP tuning Daemon. Proceedings of the ACM/IEEE Supercomputing 2002 Conference,

Baltimore, U.S.A., 2002.
23. Love R. Linux Kernel Development (2nd edn). Novell Press: Indianapolis, IN, U.S.A., 2005. ISBN: 0672327201.
24. Bovet DP et al. Understanding the Linux Kernel (3rd edn). O’Reilly Press: Sebastopol, CA, 2005. ISBN: 0-596-00565-2.
25. Rio M et al. A Map of the Networking Code in Linux Kernel 2.4.20. March 2004.
26. Mogul JC et al. Eliminating receive livelock in an interrupt-driven kernel. ACM Transactions on Computer Systems

1997; 15(3):217–252.
27. Wehrle K et al. The Linux Networking Architecture}Design and Implementation of Network Protocols in the Linux

Kernel. Prentice-Hall: Englewood Cliffs, NJ, 2005. ISBN 0-13-177720-3.
28. www.kernel.org.
29. Corbet J et al. Linux Device Drivers (3rd edn). O’Reilly Press: Sebastopol, CA, 2005. ISBN: 0-596-00590-3.
30. Rodriguez CS et al. The Linux(R) Kernel Primer: A Top-Down Approach for x86 and PowerPC Architectures.

Prentice-Hall, PTR: Englewood Cliffs, NJ, 2005. ISBN: 0131181637.
31. Mathis M et al. The macroscopic behavior of the congestion avoidance algorithm. Computer Communications

Review 1997; 27(3).
32. Henderson TH et al. On improving the fairness of TCP congestion avoidance. IEEE Globecomm Conference,

Sydney, 1998; 539–544.
33. Sarolahti P et al. Congestion control in Linux TCP. Proceedings of 2002 USENIX Annual Technical Conference,

Freenix Track, Monterey, CA, June 2002; 49–62.
34. Paxson V et al. Computing TCP’s Retransmission Timer. Internet RFC 2988, November 2000.
35. Ludwig R et al. The Eifel algorithm: making TCP robust against spurious retransmissions. ACM Computer

Communications Review 2000; 30(1).
36. Sarolahti P et al. F-RTO: an enhanced recovery algorithm for TCP retransmission timeouts. Computer

Communication Review 2003; 33(2):51–63.
37. http://dast.nlanr.net/Projects/Iperf/
38. http://www.tcptrace.org/
39. Wu W et al. The performance analysis of Linux networking–packet receiving. Computer Communications, in press.

DOI: 10.1016/j.comcom.2006.11.001.
40. Love R. Interactive kernel performance}kernel performance in desktop and real-time applications. Proceedings of

the Linux Symposium, Ottawa, Ont., Canada, July 2003.

W. WU AND M. CRAWFORD

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

DOI: 10.1002/dac



Ferm
ila

b

41. Kulyavtsev A et al. Resilient dCache: replicating files for integrity and availability. Proceedings of Computing in High
Energy Physics (CHEP), Mumbai, India, 2006.

42. Silberschatc A et al. Operating System Concepts (7th edn). Wiley: New York, 2004. ISBN: 0471694665.

AUTHORS’ BIOGRAPHIES

Wenji Wu holds a BA degree in Electrical Engineering (1994) from Zhejiang
University (Hangzhou, China), and doctorate in computer engineering (2003) from
the University of Arizona, Tucson, U.S.A. Dr Wu is currently a Network Researcher
in Fermi National Accelerator Laboratory. His research interests include high
performance networking, optical networking, and network modeling & simulation.

Matt Crawford is head of the Data Movement and Storage department in Fermilab’s
Computing Division. He holds a bachelor’s degree in Applied Mathematics and
Physics from Caltech and a doctorate in Physics from the University of Chicago. He
currently manages the Lambda Station project, and his professional interests lie in
the areas of scalable data movement and access.

POTENTIAL PERFORMANCE BOTTLENECK IN LINUX TCP

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

DOI: 10.1002/dac



Ferm
ila

b

Plate 1. Sender time-sequence diagram (sender side): (a) with BL0 in receiver and (b) with BL10 in receiver.
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Plate 2. Sender time-sequence diagram (sender side): (a) with BL10 in receiver (old kernel)
and (b) with BL10 in receiver (new kernel).
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