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Abstract. The computing models for HEP experiments are globally distributed and grid-based. 
Obstacles to good network performance arise from many causes and can be a major 
impediment to the success of the computing models for HEP experiments. Factors that affect 
overall network/application performance exist on the hosts themselves (application software, 
operating system, hardware), in the local area networks that support the end systems, and 
within the wide area networks. Since the computer and network systems are globally 
distributed, it can be very difficult to locate and identify the factors that are hurting application 
performance. In this paper, we present an end-to-end network/application performance 
troubleshooting methodology developed and in use at Fermilab. The core of our approach is to 
narrow down the problem scope with a divide and conquer strategy. The overall complex 
problem is split into two distinct sub-problems: host diagnosis and tuning, and network path 
analysis. After satisfactorily evaluating, and if necessary resolving, each sub-problem, we 
conduct end-to-end performance analysis and diagnosis. The paper will discuss tools we use as 
part of the methodology. The long term objective of the effort is to enable site administrators 
and end users to conduct much of the troubleshooting themselves, before (or instead of) calling 
upon network and operating system “wizards,” who are always in short supply. 

1.  Introduction 
 
High-energy physics (HEP) is a very data-intensive science. The computing models for HEP 
experiments are globally distributed and grid-based, with analysis most effectively carried out in 
widely dispersed computing facilities. Site and long-haul networks serving large HEP institutions are 
provisioned for, and carry, large scientific traffic loads. But with the upcoming Large Hadron Collider 
(LHC) experiments at CERN each expecting several petabytes of raw data annually, and sites like 
Fermilab already moving multiple petabytes monthly, the need for efficient exploitation of available 
network resources by commodity computers and operating systems has never been greater. 

 
As LHC experiments commission their data handling and computing infrastructures and the 

Tevatron experiments at Fermilab do more analysis “on the grid,” they sometimes encounter network 
throughputs that disappoint their expectations. Obstacles to good network performance arise from 
many causes and can be a major impediment to the success of the grid-based computing models for 
HEP experiments. Factors that affect overall network/application performance exist on the host 
themselves (application software, operating system, hardware), in the local area networks that support 



 
 
 
 
 
 

the end systems, and within the wide area networks. Since the computer and network systems are 
globally distributed, it can be very difficult to locate and identify the factors that are hurting 
application performance. Fermilab’s Computing Division has an ongoing program of boosting data 
throughput across the wide area, and has developed a methodology for systematic identification and 
resolution of obstacles to high performance, whether they are in the host, the site network, or in the 
wide area. The core of our approach is to narrow down the problem scope with a divide and conquer 
strategy. The overall complex problem is split into two distinct sub-problems: host diagnosis and 
tuning, and network path analysis. After satisfactorily evaluating, and if necessary resolving, each sub-
problem, we conduct end-to-end performance analysis and diagnosis. The methodology proposed in 
the paper can also be applied to other grid-based large-scale scientific collaborations. 

 
The remainder of the paper is organized as follows: Section 2 gives the network performance 

analysis methodology. In Section 3, we give a case study to show how to apply the network 
performance analysis methodology. And finally in Section 4, we conclude the paper. 

2.  Network Performance Analysis Methodology 
 
The factors that affect the overall network/application performance could exist in hosts themselves 
(application software, operating system, and hardware), in the local area networks that support the 
hosts, or within wide area networks. Since the hosts and network devices are globally distributed, 
usually across organizational and management boundaries, it can be very difficult to locate and 
identify the exact factors hurting distributed application performance. Fermilab has been developing a 
network/application performance troubleshooting methodology in order to analyze these types of 
performance problems in a structured manner. The core of our approach is to narrow down the 
problem space with a divide and conquer strategy. An end-to-end performance problem is viewed as 
potentially three distinct sub-problems: 

 Application-related problems 
 Host diagnosis and tuning 
 Network path analysis 

 
Application-specific problems are beyond the scope of any standardized problem analysis. 

Instead, the methodology first seeks to analyze and appropriately tune the hosts. Next, the network 
path analysis is conducted, with remediation of detected problems where feasible. If host and network 
path analysis do not uncover significant problems or concerns, packet trace analysis of individual data 
flows will be done to compare expected versus actual packet trace patterns. An absence of problem 
indications or other anomalies in all of the above areas strongly points to application-related issues as 
being the source of the lower-than-expected performance. 

2.1.  Performance Analysis Network Architecture 
 
When conducting performance analysis, we need to collect host information and measure network 
path characteristics. We deploy diagnostic tools to facilitate the analysis. Our performance analysis 
network architecture is as shown in Figure 1. The network architecture consists of:  
 Host diagnostic server. Currently, we use the Network Diagnostic Tool (NDT) [1] to identify 

performance and configuration problems in hosts. NDT can collect the various TCP network 
parameters on the hosts and identify their configuration problems. Since NDT is deployed in our 
own local area networks, it also helps to identify local network infrastructure problems such as 
faulty Ethernet connections, malfunctioning NICs, and Ethernet duplex mismatch.  

 Network path diagnostic server. We use OWAMP (One-Way Active Measurement Protocol) [2] 
to collect and diagnose one-way network path statistics, rather than round trip metrics. Since 
OWAMP applications consist of owampd daemon and owping client, the network path diagnosis 



 
 
 
 
 
 

server means the owampd daemon here. The owping client needs to run on the other end to 
measure the network path statistics. To diagnose the network path characteristics, other tools like 
traceroute, pathneck [3], and iperf [4] could be deployed. Traceroute obtains the sequence of 
routers along the path. Pathneck detects the path’s bandwidth bottleneck location. Iperf is a tool to 
measure maximum TCP throughput. Iperf reports bandwidth, delay jitter, datagram loss. Finally, 
other network monitoring services like MRTG [5], Nagios [6], PerfSONAR [7], and MonALISA 
[8], if available, could also be referenced to diagnose the network path characteristics.  

 Packet trace diagnostic server. If host and network path analysis do not uncover significant 
problems or concerns, packet trace analysis of individual data flows will be done to compare 
expected versus actual packet trace patterns. Any performance bottleneck will manifest itself in 
the recorded packet traces. The packet trace diagnosis server is connected to the border router, 
which can mirror any other interface in the border router. As such, it has the capability to record 
any traffic flow passing in or out of the Fermilab site network. In the server, tcpdump [9] and 
tcptrace [10] are employed to record and analyze the traffic flows. Furthermore, xplot [10] is used 
to examine the recorded traces visually.  

 
These servers are logical entities, and physically could be deployed on the same node. Since the 

end-to-end performance analysis requires cooperation from both sides, we encourage our data 
movement partner sites to deploy similar tools to facilitate the performance analysis. We also use 
other tools like vmstat, ps, ifconfig, ethtool, and netstat, but some of them are OS-dependent we do not 
discuss them all here. 
 

 

Figure 1 Performance Analysis Network Architecture 

2.2.  Performance Analysis 
 
In general, five steps are used to conduct the network/application performance analysis: 
 
Step 1: Definition of the problem space.  
 
End user collects and provides the basic information on the scope and characteristics of the problem, 
as well as specific information on the system & application involved.  
 
Step 2: Collection of host information & network path characteristics.  
 
The host information sought is shown in Table 1. The information could be obtained and collected by 
examining the hosts, observing with a monitoring system like Nagios, or diagnosing with NDT. 



 
 
 
 
 
 

 
The end-to-end path characteristics we are interested in are: packet drop rate & loss pattern (loss 

distance, loss period); packet delay & delay variation (min, max, average, percentiles); and packet 
reordering. OWAMP can provide detailed path characteristics on both directions. We are also 
interested in the sequence of routers along the path, and the possible bottleneck location. That 
information could be obtained by traceroute and pathneck respectively.  

 
 

CPU CPU speed; CPU model; 
Memory Memory size; 
Bus, Disk Maximum bus bandwidth; Maximum disk I/O bandwidth; 
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NIC Maximum bandwidth; Interrupt coalescing supported? 
TCP offloading supported? Jumbo frame supported? 

Operating 
System 

Operating system type, versions; 32bit/64 bit? 
For Linux, identify the kernel version; 

System Loads Network applications running context; 
Maximum system background loads; 

Network 
Applications 

Network application traffic generation pattern; 
Storage system involved? 

TCP 
Parameters 

Send/Receive buffer size; Timestamp option enabled?  
Window scaling option enabled? Window scaling parameter; 

TCP reordering threshold; Congestion control algorithm; 
Total TCP memory size; Maximum Segment Size; 
SACK enabled? D-SACK enabled? ECN enabled? 
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NIC Driver 
Parameter 

Device driver send/recv queue size; TCP offloading enabled? 
Interrupt coalescing enabled? Jumbo Frames enabled? 

 
Table 1 Network End Systems Information 

 
Step 3: Host system diagnosis 
 
When diagnosing the hosts, we first need to make sure: (1) the system performance is not limited by 
hardware such as CPU, disk, memory, NIC, and bus; (2) the network applications have enough CPU 
share. An overloaded system may not give enough CPU time to network applications, and can drop 
packets inside the kernel itself. 
 

We then diagnose the host with NDT. NDT can collect the various TCP network parameters on 
the hosts and identify their configuration problems. If NDT is also available at the remote site, far-end 
problems can sometimes be identified quickly. If not, local NDT diagnosis can still help narrow down 
the problem scope. We need to make sure that TCP features for high performance transfer, such as 
window-scaling, BDP send/recv socket buffer size, time-stamp, and SACK, are enabled. Especially in 
long distance and high bandwidth networks, we must make sure that the OS supports a congestion 
control algorithm suitable for high-speed TCP, and that it is correctly configured. NIC features like 
interrupt coalescing, TCP offloading, and jumbo frames, should also be enabled. And the NIC driver 
parameters such as layer 2 send/recv queue sizes must be correctly configured. Interested readers may 
refer to [11] for details.   

 
If any system settings are changed, we repeat the performance tests to see if there is any 

performance improvement.  If not, we proceed to Step 4. 



 
 
 
 
 
 

 
Step 4: Network path performance analysis 
 
TCP performs poorly in networks with packet losses or severe packet reordering. Long round-trip 
times are well known to exacerbate such problems. With one-way metrics for these path 
characteristics, it is much easier to isolate the network problems in the forward path or the reverse 
path. In [12], V. Paxson has pointed out that “conducting an Internet measurement study in a sound 
fashion can be more difficult than it might first appear.” We need to follow the strategies in [12] for 
sound Internet measurement.   
 

In this step, we first need to identify the end-to-end paths with the tools such as traceroute, in both 
directions. We examine the paths, and check whether they are stable. As discussed in [13], routing 
changes can cause severe packet drops. Also, check if the paths traverse any “known” congested 
networks or hot spots. Some networks, like Internet2, publish their network status [14], or provide 
network monitoring services like MRTG, Nagios, perfSONAR or MonALISA to monitor the live 
network conditions. Usually, the provided network performance data of interest are 1-minite or 5-
minute averages (or even longer). These averages may hide the instantaneous network status [15]. In 
that case, cumulative network performance data (total packets dropped, for example) might also need 
to be referenced.  

 
Then, we check whether the one-way path is lossy (≥ 0.5% considered very lossy). Since network 

congestion usually causes packet queuing delay in routers and leads to large one-way delay variance, 
we could examine the one-way delay variance to determine the possible network congestions. If the 
one-way delay variance is large, investigation of possible congestion along the path with available 
tools and services (MRTG, Nagios, perfSONAR, MonALISA, and pathneck) is indicated. If the path 
is congested, we could inform the cognizant NOC of the congestion bottlenecks along the path, and 
consider alternate less congested paths if available, or consider upgrading the network capacity. If 
delay variance is not large and packet drop is severe, we need to investigate for network infrastructure 
failures such as dirty fibers and malfunctioning line cards. This sort of system debugging might 
require coordination among different administrative domains, and the related system performance 
counters along the paths might need to be examined one by one.  

 
We also need to examine if the packet reordering is severe (≥ 3 is considered severe). If it is, we 

need to increase the “TCP reordering threshold” parameter in the protocol stack. 
 
Rerun performance tests if significant congestion or system packet loss is corrected. 

 
Step 5: Evaluate packet trace pattern 
 
Due to the limitations of current measurement methods [12], sometimes the network path 
characteristics might not be measured accurately. For example, OWAMP might miss the detection of 
the path packet drops, or packet reordering due to the coarse measurement resolution. Since any 
performance bottleneck will manifest itself in the recorded packet traces, we resort to the packet traces 
analysis as the final tool, and it also helps to debug the network application design. 
 

We record the application packet traces with TCPDUMP, and then run TCPTrace to analyze and 
generate the graphic outputs. TCPTrace will generate summary TCP statistics such as RTT, 
retransmission count, maximum advertised windows, and more. Those statistics help us to identify the 
performance bottleneck. Furthermore, xplot can be used to examine the recorded traces visually. The 
most valuable graphic output generated by TCPTrace is the Time Sequence Diagram, in which we can 
see window size changes, packet loss and retransmission, and other events. 



 
 
 
 
 
 

 
If many packets are retransmitted or RTO happens frequently, it means that the packet drop rate is 

high. If RTT variance is also high, there is high probability that somewhere along the path there is 
high congestion. If the packet drop rate is high, and the RTT variance is low, network faults are more 
likely. 

3.  A Case Study 
 
We apply the network performance analysis methodology to optimize the data transmission 
performance between Fermilab (FNAL) and the Rio de Janeiro State University (UERJ). In the 
computing model of the upcoming CMS experiment at the Large Hadron Collider nearing completion 
at CERN, Fermilab is the Tier-1 center for data distribution and analysis in the western hemisphere; 
and UERJ is a Tier-2 regional center in Brazil. We ran iperf data transmission experiments to verify 
the effectiveness of our proposed methodology and verified results with the experiment’s own data 
handing software. During the experiments, data are transmitted in one direction between two computer 
systems from FNAL to UERJ. Each experiment lasted for 100 seconds. The data transmission results 
before and after the optimizations are compared.  
 

Some of the sender and receiver’s characteristics are shown in Table 2. At their full transmission 
capacities, both systems can saturate the Gigabit Ethernets. Please note that we show here only a 
subset of all the information called for in Table 1. 

 

 FNAL Sender UERJ Receiver 
CPU Two Intel Xeon CPUs (3.0 GHz) Two Intel Xeon CPUs (3.0 GHz) 

Memory 4G 4G 
NIC Intel 82563EB, 1Gbps Intel 82563EB, 1Gbps 
OS Linux 2.6.22, 32bit Linux 2.6.9, 32bit 

 
Table 2 Sender & Receiver Characteristics 

 
Following the methodology, the first problem we found is that the sizes of TCP send buffer and 

receive buffer in the receiver were configured too small. The maximum send/receive buffer size was 
131071 bytes. The round trip time between FNAL and UERJ is around 250ms. With such 
configuration and according to (1), the maximum throughput that could be achieved would be 4.2 
Mbps (131071*8/0.25). The iperf data was consistent with this estimate. We varied the congestion 
control algorithms in the sender, and the best throughput we could achieve was 3.9 Mbps (with high 
performance TCP variants). Pathneck showed the available bandwidth at the time from FNAL to 
UERJ was around 300Mbps.  
 

We increased the maximum send/receive buffer size to 6000000 bytes in the receiver, and reran 
the experiments. We varied the congestion control algorithms with results shown in Table 3.  
 
Experiment No. RENO/NewRENO CUBIC BIC SCALABLE 

1 22.6 Mbps 94.7 Mbps 98.1 Mbps 116 Mbps 
2 22.6 Mbps 110 Mbps 101 Mbps 98.2 Mbps 
3 22.7 Mbps 110 Mbps 85.9 Mbps 70.6 Mbps 

 
Table 3 Iperf experiments with various congestion control algorithms, large receiver buffer size 

 



 
 
 
 
 
 

The experiment results clearly demonstrate that (1) with buffer tuning in the receiver, the 
performance is greatly improved; (2) high performance TCP variants like CUBIC and BIC perform 
much better than Reno/NewReno. We suggest high performance TCP variants be used in the sender.  

 
Following the methodology, we perform the network path analysis. For simplicity, the path from 

FNAL to UERJ is called the forward path, and the path in the other direction is called the reverse path. 
The round trip time (RTT) between FNAL and UERJ is around 250 ms. Traceroute shows that the 
forward and reverse paths are not symmetric. The forward path has 14 hops, whereas the reverse path 
has 12 hops. This conclusion is further verified by the OWAMP tests. Table 4 gives two OWAMP 
tests of the paths. In our OWMAP tests, we try to mimic the behaviors of TCP burstiness with packet 
trains. A packet train consists of 10 packets. Each packet within a train is sent out back to back. The 
intervals between consecutive trains are exponentially distributed with an average of 1.0 second.  

 

T
es

t 1
 

 
./owping -L 20 –c 10000 -i 1.0e,0f,0f,0f,0f,0f,0f,0f,0f,0f was.fnal.gov 
 
--- owping statistics from [200.143.197.197]:35820 to [was.fnal.gov]:32778 --- 
 
10000 sent, 10 lost (0.100%), 0 duplicates  
one-way delay min/median/max = 93/152/197 ms, (err=29.5 ms)  
one-way jitter = 30.8 ms (P95-P50)  
Hops = 12 (consistently)  
1-reordering = 0.010011% ; 2-reordering = 0.010012% ; 3-reordering = 0.010013%  
4-reordering = 0.010014% ; 5-reordering = 0.010015% ; 6-reordering = 0.010016%  
no 7-reordering 
 
--- owping statistics from [was.fnal.gov]:32779 to [200.143.197.197]:35821 --- 
10000 sent, 20 lost (0.200%), 0 duplicates  
one-way delay min/median/max = 42.2/80.6/141 ms, (err=29.5 ms)  
one-way jitter = 55.7 ms (P95-P50)  
Hops takes 2 values; Min Hops = 14, Max Hops = 18 no reordering 

T
es

t 2
 

 
[root@prod-frontend owping]# ./owping -L 30 -c 10000 -i 1.0e,0f,0f,0f,0f,0f,0f,0 f,0f,0f 
was.fnal.gov Approximately 1031.8 seconds until results available 
 
--- owping statistics from [200.143.197.197]:36146 to [was.fnal.gov]:32769 --- 
10000 sent, 0 lost (0.000%), 0 duplicates  
one-way delay min/median/max = 76.8/91.8/117 ms, (err=27.6 ms)  
one-way jitter = 21.1 ms (P95-P50)  
Hops = 12 (consistently) no reordering 
 
--- owping statistics from [was.fnal.gov]:32770 to [200.143.197.197]:36147 --- 
10000 sent, 0 lost (0.000%), 0 duplicates  
one-way delay min/median/max = 116/141/161 ms, (err=27.6 ms)  
one-way jitter = 12.5 ms (P95-P50) Hops = 14 (consistently) no reordering 
 

 
Table 4 Path Analysis Experiment Results 

 
Test one was performed without synchronized clocks on the OWAMP client and server. 

Nevertheless, test one still gives interesting measurements for the paths. From test one, it can be seen 



 
 
 
 
 
 

                                                     

that the packet drops & reordering conditions for both the forward and reverse paths are not severe. 
Since the difference between the one-way delay min and max is so large, the packet drops might be 
caused by network congestions. The pathneck results also report large fluctuations of available 
bandwidth along the paths, which confirms our conclusions from another perspective. No evidence 
points to packet drops due to network infrastructure failures. We also tried to examine the network 
status along the paths but were frustrated by the large number of administrative domains involved, 
some of which do not publish their network status information. The packet reordering of the reverse 
path in Test one suggests the TCP packet reordering threshold in the sender should be raised. Another 
interesting result about Test one is that it detected route changes in the forward path. Normally, the 
forward path has 14 hops, but it was observed as high as 18 hops. As discussed previously, route 
changes might cause transient loss of connectivity and lead to packet drops. We notified NOCs of this 
situation for possible solutions.   
 

The time clocks for Test two are synchronized. The one-way delay for the forward path and the 
reverse path are reliable. It can be seen from Test two that the one way delay of the forward path is 
almost 50ms larger than that of the reverse path. Since the forward and reverse paths are not 
symmetric, and also there is such a large difference of one-way delay between them, we might have 
the potential to shorten the forward path to further optimize the performance. 
 

Upon the conclusion of this diagnosis and remediation, the physics data transfer application, 
which was built upon SRM and GridFTP, showed a fivefold improvement in throughput from FNAL 
to UERJ. 

4.  Conclusion 
 
Factors that affect overall network/application performance exist on the hosts themselves (application 
software, operating system, hardware), in the local area networks that support the end systems, and 
within the wide area networks. Since the computers and network systems are globally distributed, it 
can be very difficult to locate and identify the causes of poor application performance. In this paper, 
we first systematically analyze factors that degrade performance. Then we present an end-to-end 
network/application performance troubleshooting methodology developed and used at Fermilab. The 
core of our approach is to narrow down the problem scope with a divide and conquer strategy. The 
overall complex problem is split into two distinct sub-problems: host diagnosis and tuning, and 
network path analysis. After satisfactorily evaluating and, if necessary, resolving each sub-problem, 
we conduct end-to-end performance analysis and diagnosis. The long term objective of the effort is to 
enable end users to conduct much of the troubleshooting themselves, before (or instead of) calling 
upon network and end system “wizards,” who are always in short supply. 
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