
To appear in Computer Networks, Elsevier, 2007

Interactivity vs. Fairness in Networked Linux Systems

Wenji Wu, Matt Crawford
Fermilab, MS-368, Batavia, IL, 60510

Email: wenji@fnal.gov, crawdad@fnal.gov

Abstract

In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive per-
formance at the same time. However, our experiments and mathematical analysis have shown
that the current Linux interactivity mechanism tends to incorrectly categorize non-interactive
network applications as interactive, which can lead to serious fairness or starvation issues. In
the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is
due to the facts that: (1) network packets arrive at the receiver independently and discretely,
and the “relatively fast” non-interactive network process might frequently sleep to wait for
packet arrival. Though each sleep lasts for a very short period of time, the wait-for-packet
sleeps occur so frequently that they lead to interactive status for the process. (2) The current
Linux interactivity mechanism provides the possibility that a non-interactive network process
could receive a high CPU share, and at the same time be incorrectly categorized as interactive.
In this paper, we propose and test a possible solution to address the interactivity vs. fairness
problems. Experiment results have proved the effectiveness of the proposed solution.

Keywords: Linux, Process Scheduling, Interactivity, Fairness, Networking

1. Introduction

Over the last several years, the Linux operating system has gained wide acceptance and is
deployed in many scientific and commercial environments. Compared to previous ver-
sions, Linux 2.6 has made significant performance improvements in terms of interactivity,
fairness, and scalability. Linux 2.6 is now preemptible, and has an O(1) CPU scheduler.

The Linux 2.6 scheduler is prioritized and epoch-based [1][2][3][4]. The whole process
scheduling is based on a data structure called runqueue. A runqueue is created and main-
tained for each CPU in the system. The per-CPU runqueue keeps track of all runnable
tasks assigned to a particular CPU. Each runqueue consists of an active priority array and
an expired priority array. All runnable processes begin in the active array, and are sched-
uled in priority order. In general, when a process expires it is moved to the expired array
so that all runnable processes get an opportunity to execute. When the active array be-
comes empty, the expired and active arrays are switched. This unique active-expired
array design is credited with much of the overall system performance improvements.

One design goal of Linux 2.6 is to improve interactivity [5]. Processes such as text edi-
tors and command shells interact constantly with their users, and spend a lot of time
waiting for keystrokes and mouse events. When inputs are received the process must be
woken up quickly; otherwise, the user will find the system to be unresponsive and annoy-
ing. Typically, the delay must not exceed 150ms [1]. Linux 2.6 provides excellent
interactive performance by employing the following measures [1][2][4]: (1) Its scheduler

 1

mailto:wenji@fnal.gov
mailto:crawdad@fnal.gov

is a typical decay usage priority scheduler. Processes are scheduled in priority order,
where effective priority has two components: static priority and dynamic priority bonus.
The static priority reflects inherent relative importance of processes, which is expressed
by processes’ nice values. The dynamic priority bonus depends on CPU usage patterns;
the scheduler favors interactive processes and penalizes non-interactive processes by ad-
justing the dynamic priority bonus. (2) To reduce scheduling latency, expired interactive
processes are reinserted back into the active array, instead of the expired array. In addi-
tion, an interactive process’ timeslice is divided into smaller pieces, preventing
interactive processes from blocking each other. (3) Linux 2.6 is kernel-preemptible.
Whenever a scheduler clock tick or interrupt occurs, if a higher-priority task has become
runnable, it will preempt the running task as long as the latter holds no kernel locks. (4)
Linux 2.6’s clock granularity has reached 1ms level.

Fairness is another design goal of Linux 2.6 [5]. Fairness is the ability of all tasks not
only to make forward progress, but to do so relatively evenly. The opposite of fairness is
starvation, which occurs if some tasks make no forward progress at all [6][7]. Linux 2.6
scheduler’s active-expired-array design is supposed to ensure fairness [1][2]. However, as
described above, an expired interactive process is reinserted back into the active array
instead of the expired array. This leads to the possibility of starvation for the processes in
the expired array if the active array continues to hold runnable processes. To circumvent
the starvation issue, when the first expired process is older than some limit, expired proc-
esses are moved to the expired array without regard to their interactive status. Usually, an
interactive process does not consume much CPU time because most of time it sleeps
waiting for user inputs. In general, the Linux 2.6 scheduler can ensure fairness among
processes, and provide excellent interactive performance at the same time. However, our
experiments and analysis have shown that the current Linux interactivity mechanism
tends to incorrectly categorize non-interactive network applications as interactive, which
can lead to serious fairness or starvation issues. The interactivity mechanism allows the
possibility that a non-interactive network process could consume a large CPU share, and
at the same time be incorrectly categorized as interactive. Further, incorrectly labeled “in-
teractive network applications” might block true interactive applications, resulting in
degraded interactive performance.

Linux-based network end systems have been widely deployed in the High-Energy Phys-
ics (HEP) community at labs like CERN, DESY, Fermilab, and SLAC, and at many
universities. At Fermilab, thousands of networked systems run Linux; these include com-
putational farms, trigger processing farms, hierarchical storage servers, and desktop
workstations. From a network performance perspective, Linux represents an opportunity
since it is amenable to optimization and tuning due to its open source support and pro-
jects such as web100 and net100 that enable examination of internal states [8][9]. The
performance of Linux-based network end systems is of great interest to HEP and other
scientific and commercial communities. In this paper, we analyze the interactivity vs.
fairness issues in networked Linux systems. Our analysis is based on Linux kernel 2.6.14.
Also, it is assumed that the NIC (Network Interface Card) driver makes use of Linux’s
“New API,” or NAPI [10][11], which reduces the interrupt load on the CPUs. The con-
tributions of the paper are as follows: (1) We systematically study and analyze the Linux

 2

2.6 scheduling and interactivity mechanism; (2) Our researches have pointed out that the
current Linux interactivity mechanism is not effective in distinguishing non-interactive
network processes from interactive network processes, and might result in serious fair-
ness/starvation problems. Mathematical analysis and experiments results have verified
our conclusions. (3) Further, we propose and test a possible solution to address the inter-
activity vs. fairness problems. Experiment results have proved the effectiveness of our
proposed solution.

The remainder of the paper is organized as follows: In Section 2 the related researches on
interactivity and fairness are presented. Section 3 analyzes Linux scheduling and interac-
tivity mechanisms. In Section 4, we investigate the interactivity vs. fairness problems in
networked Linux systems through mathematical analysis. In section 5, we show experi-
ment results to further study the problems, verifying our conclusions in Section 4. In
Section 6, we propose and test a possible solution to address the interactivity vs. fairness
problems in network Linux systems. And finally in section 7, we conclude the paper.

2. Related Work

The schedulers of Unix variants such as BSD4.3, FreeBSD, Solaris, and SVR4
[12][13][14][15] are typical decay usage priority schedulers: processes are scheduled in
priority order; higher priority processes are scheduled to run first. The priorities of I/O
bound (interactive) processes grow with time, so that when they are awakened, they have
higher priority than CPU-bound (non-interactive) processes, and are therefore scheduled
to run immediately. In general, those schedulers provide excellent interactive response on
general-purpose time-sharing systems for traditional interactive applications that have
low CPU consumption. However, those schedulers are not effective in support of interac-
tive multimedia applications (e.g., audio player, video player) that have high CPU usages.
To address this problem, Y. Etsion et al. [16] proposed the human-centered scheduling of
interactive and multimedia applications on a loaded desktop. In their approach, the
scheduler first estimates the “volume of user-interaction” associated with each process by
monitoring relevant I/O device activity, and then the scheduler uses those estimates to
prioritize interactive processes, without respect to their CPU usages. However, this
method might not be appropriate for some network applications.

To ensure fairness, proportional-share schedulers [17][18][19][20] are usually employed
to control the relative rates at which different processes can use the processor. Over the
years, different proportional-share schedulers have been proposed. In [17], C. A. Wald-
spurger et al. proposed the lottery scheduling to enable flexible control over the relative
rates at which CPU-bound workloads consume processor time. In [18], P. Goyal et al.
proposed a hierarchical CPU scheduler for multimedia operating systems, which provides
protection between various classes of applications.

In [21], D. Petrou et al. proposed a hybrid lottery scheduler, which aims to achieve re-
sponsiveness comparable to the FreeBSD scheduler while maintaining lottery
scheduling’s flexible control over relative execution rates and load insulation. So far, no
research has been found to relate interactivity and fairness to network applications.

 3

3. Linux Scheduling and Interactivity

Linux 2.6 is a preemptive multi-processing operating system. Processes (tasks) are sched-
uled to run in a prioritized round robin manner [1][2][3][4], to achieve the objectives of
fairness, interactivity and efficiency. For the sake of scheduling, a Linux process has a
dynamic priority and a static priority. A process’ static priority is equivalent to its nice
value, which is specified by the user and not changed by the kernel. The dynamic priority
is used by the scheduler to rate the process with respect to the other processes in the sys-
tem. An eligible process with better (smaller-valued) dynamic priority is scheduled to run
before a process with a worse (higher-valued) dynamic priority. The dynamic priority
varies during a process’ life. It depends on the process’ scheduling history and its speci-
fied static priority, which we will elaborate in the following sections. There are 140
possible priority levels for processes (both dynamic priority and static priority) in Linux.
The top 100 levels are used only for real-time processes, which we do not address in this
paper. The last 40 levels are used for conventional processes.

3.1 Linux Scheduler
As shown in Figure 1, the whole process schedul-
ing is based on a data structure called runqueue.
Essentially, a runqueue keeps track of all runnable
tasks assigned to a particular CPU. One runqueue
is created and maintained for each CPU in a sys-
tem. Each runqueue contains two priority arrays:
active priority array and expired priority array.
Each priority array contains a queue of runnable
processes per priority level. Processes with higher
dynamic priority are scheduled to run first. Within
a given priority, processes are scheduled round
robin. All tasks on a CPU begin in the active pri-
ority array. Each process’ timeslice is calculated based on its static priority; when a proc-
ess in the active priority array uses up its timeslice, it is considered expired. An expired
process is moved to the expired priority array if it is not interactive. An expired interac-
tive process is reinserted into the active array if possible. In either case, a new timeslice
and priority are calculated. When there are no more runnable tasks in the active priority
array, it is simply swapped with the expired priority array. An unexpired process might
be put into a wait queue to sleep, waiting for expected events such as completion of I/O.
When a sleeping process wakes up, its timeslice and priority are recalculated and it is
moved to the active priority array. As for preemption, whenever a scheduler clock tick or
interrupt occurs, if a higher-priority task has become runnable, it will preempt the run-
ning task as long as the latter holds no kernel locks.

Figure 1 Linux Process Scheduling

3.2 Interactive Scheduling
As we have said above, an interactive process needs to be responsive. The Linux kernel
must provide the capabilities of interactive scheduling. To this end, it needs to:

 4

 Perform process classification: differentiate interactive processes from non-
interactive processes.

 Try to minimize the scheduling latency [7] for interactive processes.
o Prevent non-interactive processes from blocking interactive processes.
o Prevent interactive processes from blocking other interactive processes.

The interactivity estimator is designed to find which processes are interactive and which
are not. It is based on the premise that non-interactive processes tend to use up all the
CPU time offered to them, whereas interactive processes often sleep [1]. A sleep_avg is
stored for each process: a process is credited for its sleep time and penalized for its run-
time. A process with high sleep_avg is considered interactive, and low sleep_avg is non-
interactive. The interactive estimator framework embedded into Linux operates automati-
cally and transparently.

A process’ dynamic priority varies during the process’ life span. It depends on the proc-
ess’ interactivity status and its specified static priority. Linux assigns a dynamic priority
to process P at time t as follows:

}}139),,(5)(_min{,100max{),(_ tPbonusPprioritystatictPprioritydynamic −+= (1)

AVGSLEEPMAXBONUSMAXtavgsleepPtPbonus __/_*)(_),(>−= (2)

The constant MAX_BONUS is 10 and MAX_SLEEP_AVG is 1000ms. is
the sleep_avg (in ms) for process P at time t, and it is limited to the range

. Therefore, ranges from 0 to 10. The
quantity is also called the dynamic priority bonus. The more time a process
spends sleeping, the higher the sleep_avg is, and the higher the priority boost.

t)sleep_avg(P- >

AVGMAX_SLEEP_t)sleep_avg(P- ≤>≤0),(tPbonus
),(5 tPbonus−

From (1) and (2), it can be seen that Linux credits interactive processes and penalizes
non-interactive processes by adjusting dynamic priority bonus. In this way, Linux allows
interactive processes to preempt non-interactive processes when they have same, or
nearly the same, static priorities.

When a process runs out its timeslice, the Linux kernel needs to determine its interactiv-
ity status. An expired interactive process is reinserted back into the active array, instead
of the expired array. The interactivity threshold condition for process P is

23/4ority(P)static_pri)tP,bonus(E −≥ (3)
where tE is the moment that process P expires. For a process P with a default nice value
of 0, the static priority is 120 [1][4] and the interactivity threshold is equivalent to
P− > sleep_ avg(tE) ≥ 700ms.

If and only if the condition in (3) holds, P is deemed interactive. Reinserting an interac-
tive process into the active array helps to increase responsiveness. If it was not done in
this way, an interactive process in the expired array would have to wait for all the run-

 5

nable processes in the active array to finish before regaining the CPU. However, keeping
an expired interactive process in the active array might lead to starvation for the proc-
esses in the expired array as long as the active array continues to hold runnable processes.
To circumvent starvation, special interactivity rules have been made:
 Rule 1: If the time since the first process in the active array expired is greater than or

equal to 1_ +× runningNRLIMITSTARVATION , any expired processes are moved to the
expired array without regard to their interactive status. Here, the constant
STARVATION_LIMIT is 1000ms, and runningNR is the number of processes in the run-
queue.

 Rule 2: The interactivity is also ignored if a process in the expired array has a better
static priority.

Furthermore, an interactive process P’s timeslice is divided into smaller pieces. Each
piece has the size of TIMESLICE_GRANULARITY(P), which is actually a macro that
yields the product of the number of CPUs in the system and a constant proportional to

 [),(tPbonus 1][4]. An interactive process does not receive any less timeslice, instead a
task of equal priority may preempt the running process every
TIMESLICE_GRANULARITY(P). The process is then requeued to the end of the list for
its priority level. Processes at the same priority level run in round-robin fashion, so exe-
cution will rotate more frequently among interactive processes of the same priority,
preventing them from blocking each other.

3.3 Sleep_avg Scoring
The basic idea of sleep_avg is to credit sleep time and penalize run time. However, the
calculation of sleep_avg is not a simple counter up and down. The current interactive
status of the process is used to weight both sleep time and run time to introduce some
auto-regulation into the calculation [22]. The updating of sleep_avg occurs at the mo-
ments that: (a) a process wakes up from sleep or blocking state, or (b) a process yields the
CPU.

Figure 2 Updating of sleep_avg

In the example of Figure 2, at process P starts to run for a duration of . At , P goes
to sleep and yields the CPU to process Q. Then at , P wakes up and preempts Q. In
general, the updating of sleep_avg follows (4) and (5):

0t rt 1t

2t

}*)(_,0{)(_ 01 αrttavgsleepPmaxtavgsleepP −>−=>− (4)

where α is a weighting factor for run time,)},(,1max{/1 0tPbonus=α .

 6

}*)(_{)(_ 12 βsttavgsleepP AVG,MAX_SLEEP_mintavgsleepP +>−=>− (5)
where β is a weighting factor for sleep time,)},(10,1max{ 1tPbonus−=β .

However, when updating
sleep_avg for waking proc-
esses, special measures are
taken to treat the following
scenarios [1][4]: (a) Processes that sleep a long time are categorized as idle and will get
minimally interactive status to prevent them suddenly becoming CPU intensive and starv-
ing other processes. (b) Processes waking from an uninterruptible sleep are limited in
their sleep_avg rise as they are likely to have been waiting on disk I/O, which is not a
strong indicator of interactivity. (Most local disk I/O is associated with uninterruptible
sleep.) (c) When an awakened process is put into a runqueue, there might be scheduling
latency, which could be of a non-negligible duration. In this case, the time spent on the
runqueue might or might not be credited as sleep time, depending on the state of the
process when it was awakened. The state of the process is encoded within the process’
activated field [1]. Let’s assume that process P waits on runqueue for a period of t be-
fore it is scheduled to run. The credited sleep time is as shown in Table 1. For example, a
process might sleep to wait for data from network. Afterwards, when the process is
woken up, its wait time on the runqueue is fully credited to the sleep_avg because its P-
>activated code is 2.

w

P->activated code -1 1 2 0
Credited sleep time 0 0.3* wt wt N/A

Table 1 Credited sleep time vs. wait time on runqueue

Since Linux only counts time in integral tick units, the Linux clock granularity might
play a role when updating the sleep_avg: some sleep/run times are rounded up to the next
whole tick, while others are rounded down. On average, these two effects tend to cancel
out [23]. Furthermore, in Linux 2.6 the clock granularity is 1ms level. In general, the
sleep_avg is updated with reasonable accuracy.

4. Interactivity vs. Fairness in Networked Linux System

In previous sections we have discussed the Linux interactive scheduling mechanism: an
expired interactive process is reinserted back into the active array, instead of the expired
array. Interactive scheduling makes the Linux systems more responsive and interactive.
However, interactive scheduling would bring the possibility of unfairness if the interac-
tivity classification was inaccurate. For example, when a non-interactive process is
incorrectly classified as interactive, reinserting it back into the active array will gain it
extra scheduling runs, at the expense of other non-interactive processes. What’s worse is
that when a non-interactive process incorrectly gains interactive status, its dynamic prior-
ity is correspondingly enhanced, which might block some true interactive processes.

As remarked above, special measures have been taken to make interactivity classification
accurate. Those measures are effective in preventing processes that mainly wait for disk
I/O from being categorized as interactive [22]. However, our experiments and analysis
have shown that the current interactivity classification mechanism is not effective in clas-
sifying network-related processes. It tends to classify applications like ftp and rcp as
interactive when bandwidth is limited or the sender is slower than the receiver. Applica-

 7

tions like ssh, telnet, and http clients are generally interactive applications; but ftp, rcp,
scp, and the like are not. If they are misclassified, it will raise scheduling fairness issues.
In the following sections, we use a simplified model to analyze the fairness vs. interactiv-
ity issues.

Assume there is bulk data flowing from a sender to a receiver (as in ftp, for example).
Process P is the data receiving process in the receiver. The network is relatively stable,
and incoming packets are evenly spaced with a rate of packets/second (pps). There is
no other traffic directed to the receiver. This assumption holds for traffic patterns like
voice over IP [

iN

24] or an ideal TCP self-clocking stream such as in [25]. In reality, the
incoming traffic pattern is irregular. However, NAPI or "interrupt coalescing" will mask
the arrival pattern and to some extent nullify its effect on the receiver. Similar conclu-
sions are still expected to be valid, and are borne out by experiments. Also, let the NAPI
driver’s hardware interrupt time be Tintr , which includes NIC interrupt dispatch and ser-
vice time; the software interrupt softnet’s packet service rate be (pps); and process
P’s data service rate is (pps). When the network bandwidth is limited, or the sender’s
processing power is relatively slower than the receiver’s processing power, we can as-
sume that . Let process P have the default nice value of 0.

snR

PS

sni RN <<

4.1 Single process receiver
Only process P runs on the receiver, no other processes. At time 0, P is waiting for net-
work data from the sender (TCP or UDP).

As shown in Figure 3, packets start to arrive at receiver at time 0. As an interrupt-driven
operating system, the Linux execution sequence is: hardware interrupts → software inter-
rupts → processes [1][2]. Packet 1 is first transferred to ring buffer, then the NIC raises a
hardware interrupt to schedule softirq - softnet. Afterwards, the software interrupt handler
(softnet) starts to move packet 1 from ring buffer to the socket’s receive buffer of process
P, waking up process P and putting it to the runqueue. During this period, new packets
might arrive at the receiver. For example, packet 2 arrives during the period in Figure 3.
Softnet continues to process the packets within the ring buffer till it is empty. Letting

be the duration that Softnet spends on the ring buffer, we see that snT

⎣ ⎦ snsnisnintr RTNTT **)(1 =++ (6)

Here, is actually the number of packets that are handled together. snsn RT *

 snsn
isn

iintr
sn RR

NR
NTT /**1

⎥
⎦

⎥
⎢
⎣

⎢
−

+
= (7)

Then softirq yields the CPU. Process P begins to run, moving data from the socket’s re-
ceive buffer into user space. Since there are packets in the receiver buffer,
process P runs for a duration of

snsn RT *

Psnsnr SRTT)*(= . Here, we are considering a relatively
low incoming packet rate compared to the receiver’s processing power. Before the next

 8

packet (P3 in Figure 3) arrives at the receiver, process P runs out of data, and again goes
to sleep, waiting for more. Either of two conditions could lead to a relatively low incom-
ing packet rate: the network bandwidth from sender to receiver is low, or the sender’s
hardware is less powerful than the receiver’s. If the next packet always arrives before
process P goes to sleep, the sender will overrun the receiver. Incoming packets would ac-
cumulate in the socket’s receive buffer. For TCP traffic, the flow control mechanism
would take effect to slow down the sender.

When the next packet arrives at the receiver, the same scenario as described above occurs.
The cycle repeats until process P stops. At time , process P’s timeslice expires. Et

When incoming traffic wakes up process P, its wait time on runqueue is fully credited to
the sleep_avg. For the process being discussed, its P->activation code is 2. As shown in
Figure 3, process P runs for and sleeps for in each cycle. rT sT

Figure 3 Interactivity vs. Fairness in Networked Linux

Here:

 ==
P

snsn
r S

RTT *

P

sn
isn

iintr

S

R
NR

NT
⎥
⎦

⎥
⎢
⎣

⎢
−

+ **1

 (8)

−
⎥
⎦

⎥
⎢
⎣

⎢
−

+

=
i

sn
isn

iintr

s N

R
NR

NT

T
**1

P

sn
isn

iintr

S

R
NR

NT
⎥
⎦

⎥
⎢
⎣

⎢
−

+ **1

 (9)

Following (4) and (5), it is easy to update)(_ tavgsleepP >− at time . t

 9

From (8) and (9), it follows that:

iP

i

s

r

NS
N

T
T

−
= (10)

Correspondingly, process P’s CPU share is:

P

i

sr

r

S
N

TT
T

=
+

 (11)

Given the receiver and process P, is fixed. Therefore, it can be derived from (3), (4),
(5), and (10) that process P’s interactivity status would be strongly dependent on the
packet arrival rate , instead of interactive activities.

PS

iN

As illustrated in Figure 3, we will count cycles of run and sleep beginning when the proc-
ess wakes up. Cycle 1 starts at and ends at . Since an interval 0t 1t Tr of running is not
more than 100ms and decreases sleep_avg by αTr , with α ≤1, sleep_avg may fall to the
next 100ms bracket during the running portion of a cycle, but no further. This may in-
crease β by 1, but no more. Referring to (4) and (5), we collect the possible changes of
sleep_avg in one cycle, , in Table 2. avgsleep _Δ

)(_ 0tavgsleepP >− α β avgsleep _Δ
100)(_0 0 <>−≤ tavgsleepP 1 10 10Ts −Tr
200)(_100 0 <>−≤ tavgsleepP 1 10 or 9 10Ts −Tr or 9Ts −Tr
300)(_200 0 <>−≤ tavgsleepP 1/2 9 or 8 9Ts −Tr /2 or 8Ts −Tr /2
400)(_300 0 <>−≤ tavgsleepP 1/3 8 or 7 8Ts −Tr /3 or 7Ts −Tr /3
500)(_400 0 <>−≤ tavgsleepP 1/4 7 or 6 7Ts −Tr /4 or 6Ts −Tr /4
600)(_500 0 <>−≤ tavgsleepP 1/5 6 or 5 6Ts −Tr /5 or 5Ts −Tr /5
700)(_600 0 <>−≤ tavgsleepP 1/6 5 or 4 5Ts −Tr /6 or 4Ts −Tr /6
800)(_700 0 <>−≤ tavgsleepP 1/7 4 or 3 4Ts −Tr /7 or 3Ts −Tr /7
900)(_800 0 <>−≤ tavgsleepP 1/8 3 or 2 3Ts −Tr /8 or 2Ts −Tr /8

1000)(_900 0 <>−≤ tavgsleepP 1/9 2 or 1 2Ts −Tr /9 or 9/rs TT −
1000)(_ 0 =>− tavgsleepP 1/10 1 10/rs TT −

Table 2 Changes of sleep_avg in each cycle

From Table 2, we can surmise the following theorem.

Theorem 1: Process P is the data receiving process in the receiver. The network is rela-
tively stable, and incoming packets are evenly spaced with a rate of (pps). And
Process P’s data service rate is (pps). If

iN

PS 9.0/ <Pi SN , P will be categorized as interac-
tive if it runs long enough.

Proof: If , from (10) it can be derived that 9.0/ <Pi SN 9/ <sr TT . From Table 2, it is seen
that when , for any cycle. To categorize a process as interactive, 9/ <sr TT 0_ >Δ avgsleep

 10

it suffices to meet the condition in (3). Let’s assume process P’s initial sleep_avg is
when it is initially forked, and its nice value is 0.)0(_ avgsleep

 If ms . Since 0_ >avgsleep 700)0(_ ≥ Δ avg for any cycle, process P will al-
ways be categorized as interactive.

sleep

 If ms . Since avgsleep 700)0(_ < Δsleep_ avg ≥ 4Ts −Tr /6 > 5
2 Ts for any cycle,

process P needs to run for some finite number of cycles n to achieve

Δsleep_ avg(k)
k=1

n

∑ > 700ms− sleep_ avg(0) .

Therefore, process P will meet the condition in (3) to be categorized if it is running long
enough. Proof ends.

Theorem 1 shows that process P’s interactivity status is strongly dependent on the packet
arrival rate , instead of its interactive activities. Clearly, we can make the conclusions:
network packets arrive at the receiver independently and discretely and the “relatively
fast” non-interactive network process might frequently sleep to wait for packet arrival.
Though each sleep lasts a very short period of time, the wait-for-packet sleeps occur so
frequently that they lead to interactive status for the process.

iN

The current Linux interactivity mechanism carries the chance that a non-interactive net-
work process could consume a high CPU share, and at the same time be incorrectly
categorized as interactive. For example, assuming mstavgsleepPms 800)(_700 0 <>−≤ ,
process P has gained interactive status. Based on Table 2, the change of sleep_avg in
each cycle is 4Ts −Tr /7(or 3Ts −Tr /7). To keep the interactive status, it needs to meet
the condition of 4Ts −Tr /7 ≥ 0 (or 3Ts −Tr /7 ≥ 0), Which is Tr /Ts ≤ 28 (or Tr /Ts ≤ 21).
This condition can be easily met in normal network conditions. However, although proc-
ess P keeps its interactive status, process P might still be using a high CPU percentage.
When process P just meets the condition of Tr /Ts ≤ 28 (or Tr /Ts ≤ 21) to keep the interac-
tive status, its CPU can reach as high as 96.55%. Table 3 shows process P’s maximal
CPU share at different scenarios while keeping its sleep_avg in the indicated range.

)(_ 0tavgsleepP >− Tr /Ts CPU share
800)(_700 0 <>−≤ tavgsleepP 21 or 28 95.45% or 96.55%
900)(_800 0 <>−≤ tavgsleepP 16 or 24 94.12% or 96%

1000)(_900 0 <>−≤ tavgsleepP 9 or 18 90% or 94.74%
1000)(_ 0 =>− tavgsleepP 10 90.91%

Table 3 Process P’s CPU share

4.2 Receiver plus other CPU load
In this case, process P runs on the receiver with M other non-interactive processes. All
the processes have the same default nice value of 0.

Theorem 2: Process P runs on the receiver with M non-interactive processes. All the
processes have the default nice value of 0. Assume that the network is relatively stable,
and P has already gained interactive status. For process P, if 9.0/ <Pi SN , no matter how

 11

many non-interactive processes run on the system, process P will have a CPU share of
, rather than . The M non-interactive processes’ total CPU share is:

, rather than
Pi SN /)1/(1 +M

PiP SNS /)(− M /(M +1).

Proof: All processes begin in the active array, and are scheduled as described in section 3.
Since all processes have the same nice value, hence the same static priority, the second
special interactivity rule to circumvent starvation for the processes in the expired array is
not applicable here. Before process P is moved to the expired array, it will maintain its
interactive status and have higher dynamic priority than the M non-interactive processes.
This is due to the facts: (1) process P has already gained interactive status; (2) if it has

, it has for any cycle, as proven in Theorem 1. Therefore,
process P will not lose its interactive status. When process P expires, it will be reinserted
in the active array, until the condition in the first special interactivity rule is satisfied.

9.0/ <Pi SN 0_ >Δ avgsleep

Also, considering that Linux is preemptive: whenever a scheduler clock tick or interrupt
occurs, if a higher-priority task has become runnable, it will preempt the running task as
long as the latter holds no kernel locks. Therefore, no matter how many non-interactive
processes run on the system, before process P is moved to the expired array, process P’s
scheduling pattern is the same as that of the scenario discussed in section 4.1, where only
process P runs on the receiver. Correspondingly, process P’s CPU share won’t change: it
is . The M non-interactive processes’ total CPU share is: . The M
non-interactive processes can only run while process P sleeps.

Pi SN / PiP SNS /)(−

According to the first special interactivity rule, “if the time since the first process in the
active array expires is greater than or equal to , any
expired processes are moved to the expired array without regard to their interactive
status”. In all, there are M+1 processes in the runqueue, which implies

1_ +× runningNRLIMITSTARVATION

NRrunning = M +1.
Also, STARVATION _ LIMIT =1000ms . Let us denote the timeslice of a process with
nice value η as timeslice(η); mstimeslice 100)0(= .

If it is the case that 9.0/ <Pi SN , then 1.0/)(>− PiP SNS and it follows that

1)0(/)()1(_ +×>−×+× timesliceMSNSMLIMITSTARVATION PiP . This implies that all
the M non-interactive processes will expire and be moved to the expired array before the
first special interactivity rule comes into effect. Since non-interactive processes are run-
ning only when process P is sleeping, at the moment when the last non-interactive
process expires and is moved to the expired array, there is no runnable process in the ac-
tive array. Then the active array is switched with the expired array, and a new cycle starts.
Therefore, process P’s scheduling pattern is the same as that of the scenario discussed in
Theorem 2. Correspondingly, process P’s CPU share won’t change; it is , instead
of . The M non-interactive processes can only run when process P is sleeping.
The M non-interactive processes’ total CPU share is

Pi SN /
)1/(1 +M

PiP SNS /)(− , instead of)1/(+MM .
 Proof ends.

 12

From Theorem 2, it can be seen that networked Linux systems can have serious fairness
problems. For example, if M is 10 and Ni /SP = 0.85, then, process P’s CPU share would
be as high as 85% while the total CPU shares of the 10 non-interactive process is only
15%. This establishes our conclusion that the Linux interactivity mechanism carries the
chance that a non-interactive network process could consume a high CPU share, and at
the same time be incorrectly categorized as interactive.

5. Experiments and Analysis

To verify our claims in section 4, we run data transmission experiments upon Fermilab’s
sub-networks, and the wide area networks between Brookhaven National Laboratory
(BNL) and Fermilab (FNAL). In the experiments, we run iperf [26] to send data in one
direction between two computer systems. iperf ± on the receiver is the data receiving
process P. The sub-networks used at Fermilab are as shown in Figure 4a. The sender and
receiver are attached to two Cisco 6509 switches connected to each other by an uncon-
gested 10-gigabit/second link. During the experiments, the background traffic in the
network is low, and there is no packet loss or reordering in the network. For the network,
the Round Trip Time (RTT) statistics are: min/avg/max/dev = 0.134/0.146/0.221/0.25 ms.
In the experiments on local subnets, we use two different senders, one more powerful
than the other. For simplicity, in the following sections, they are termed “Fast Sender”
and “Slow Sender” respectively. The sender and receiver’s characteristics are shown in
table 4. Here, the Fast Sender and Slow Sender are relative to each other. At their full
transmission capacities, both senders can saturate the Gigabit Ethernets.

The wide area networks between BNL and FNAL are as shown in Figure 4b. During the
experiments, data are transmitted from BNL to FNAL. There might be packet loss, or
packet reordering in the wide area networks. The senders and receiver’s characteristics
are shown in table 5. The receiver is the same system as the one used on local subnets.
For the network, the RTT statistics are: min/avg/max/dev = 23.563/23.633/23.773/0.172
ms.

 Fast Sender Slow Sender Receiver
CPU Two Intel Xeon CPUs

(3.0 GHz)
One Intel Pentium IV

CPU (2.8 GHz)
One Intel Pentium III

CPU (1 GHz)
System Memory 3829 MB 512MB 512MB

NIC
Syskonnect, 32bit-PCI

bus slot at 33MHz,
1Gbps, twisted pair

Intel PRO/1000, 32bit-
PCI bus slot at 33 MHz

1Gbps, twisted pair

3COM, 3C996B-T, 32bit-
PCI bus slot at 33MHz,

1Gbps, twisted pair

Table 4 Senders and Receiver Features for Experiments upon Fermilab’s Sub-networks

 BNL Sender FNAL Receiver
CPU One Intel Pentium IV CPU (3.2 GHz) One Intel Pentium III CPU (1 GHz)

System Memory 1G 512MB

NIC Intel PRO/1000, 32bit-PCI bus slot at
33MHz, 1Gbps, twisted pair

3COM, 3C996B-T, 32bit-PCI bus slot at
33MHz, 1Gbps, twisted pair

Table 5 Sender and Receiver Features for Experiments upon Wide Area Networks

± Iperf is multi-threaded; here we mean the iperf data transmission/reception thread.

 13

Figure 4a Fermilab Sub-Networks Figure 4b Wide Area Networks between BNL and FNAL

In order to study the detailed interactive scheduling process, we have added instrumenta-
tion within Linux kernel. Specifically, (1) we keep track of the sleep_avg for each
process at the moments its timeslice runs out; (2) we monitor the number of times that a
process is reinserted into the active array due to its interactive status. For simplicity, it is
termed “reinsertion count;” (3) we collect each process’ stime and utime+ when it is ter-
minated. Also to study the effects of interactive scheduling on system performance, we
create a non-interactive scheduling Linux, in which expired processes are inserted into
the expired array, without regard to their interactivity status. In the following sections, we
term “WI” for interactive scheduling, and “NI” for non-interactivity scheduling.

To create non-interactive processes in the receiver, we run a purely CPU intensive appli-
cation that executes a number of arithmetic operations in a loop. Non-interactive
processes run as background loads. If there are m such processes in the receiver, it is
termed as “BLm”. In all the experiments, the sender transmits one TCP stream to the re-
ceiver for 100 seconds. In the receiver, iperf is run as “iperf –s –w 20M”. All the
processes are running with a nice value of 0. Further, since the transmission lasts 100
seconds, in the receiver we calculate iperf’s CPU share as: (stime+ utime) /100s . Consis-
tent results were obtained across repeated runs. In the following sections, we present our
experiment results.

5.1 Experiments over local subnets

Tables 6 and 7 show the iperf experiment results in the receiver for both slow sender and
fast sender. In the experiments, the background loads are varied. For each group of data
in the tables, we run the same experiments five times, and choose the group of data with
highest throughput. The corresponding experiment results for iperf in the receiver are re-
corded. Those data include throughput, iperf’s CPU share, and reinsertion count. Also, in
the experiments, we compare interactive to non-interactive scheduling. Iperf itself is not
an interactive application. However, the experiment results in Table 6 and 7 show that
iperf’s interactive status is strongly dependent on the network conditions: iperf is more
readily categorized as interactive with a slow sender than a fast sender. This verifies our
claims in Section 4: when network packets arrive at the receiver independently and dis-
cretely, the “relatively fast” non-interactive network process might frequently sleep to
wait for packet arrival. Though each sleep lasts a very short period of time, the wait-for-
packet sleeps occur so frequently that they lead to interactive status for the process.

+ stime, utime: the time process spent in the kernel space and user space respectively.

 14

Load Scheduler Throughput CPU
Share

Reinsertion
Count

WI 436 Mbps 78.489% 780
BL0

NI 473 Mbps 87.569% 0
WI 443 Mbps 81.573% 815

BL1
NI 285 Mbps 49.923% 0
WI 438 Mbps 80.613% 801

BL2
NI 185 Mbps 33.022% 0
WI 430 Mbps 79.217% 785

BL4
NI 113 Mbps 20.025% 0
WI 440 Mbps 81.093% 811

BL8
NI 64.7 Mbps 11.117% 0

Table 6 Iperf Experiment Results in the Receiver (Slow Sender)

Load Scheduler Throughput CPU
Share

Reinsertion
Count

WI 464 Mbps 99.228% 7
BL0

NI 478 Mbps 99.975% 0
WI 241 Mbps 49.995% 7

BL1
NI 241 Mbps 50.197% 0
WI 159 Mbps 34.246% 8

BL2
NI 160 Mbps 32.826% 0
WI 97.0 Mbps 20.859% 8

BL4
NI 105 Mbps 20.175% 0
WI 74.2 Mbps 15.375% 47

BL8
NI 58.3 Mbps 11.143% 0

Table 7 Iperf Experiment Results in the Receiver (Fast Sender)

For better comparison and presentation, we show the reinsertion count of different ex-
periment scenarios in Figure 5. In the case of the slow sender, the reinsertion count is
around 800 at different background loads; as for the fast sender, the highest reinsertion
count is only 47. As the experiment runs for 100 seconds, and the timeslice for a process
with default nice value of 0 is 100ms, there cannot be more than 1000 expirations of
iperf’s timeslice. When eliminating factors of process sleep time and system interrupt
time by noting iperf’s CPU share, reinsertion count of 800 implies that iperf is catego-
rized as interactive almost all the time.

Experiment results in Tables 6 and 7 also verify the correctness of Theorem 2: interactive
scheduling can lead to the fairness issue. As for non-interactive scheduling, when the
number of background processes increases, iperf’s CPU share is correspondingly reduced.
Basically, if the M+1 processes run in the system, each process has its share of 1/(M+1).
However, under interactive scheduling, iperf’s CPU shares are dependent on the network
conditions. With a slow sender, iperf’s CPU shares stays near 80%, no matter how many
background processes there are. This is in accord with Theorem 2. With a fast sender,
iperf’s CPU share is similar to what it receives under non-interactive scheduling. For bet-
ter presentation, we show the results of CPU shares in Figure 6. In the Figure, “FWI”
represents fast sender and interactive scheduling in the receiver; “SWI” represents slow
sender and interactive scheduling in the receiver; “FNI” represents fast sender and non-

 15

interactive scheduling in the receiver; “SNI” represents slow sender and non-interactive
scheduling in the receiver.

Figure 5 Comparison of Reinsertion Count

Figure 6 Comparisons of CPU Shares

To further probe the interactivity vs. fairness issues, we randomly choose two groups of
experiment results. The experiments are run with background load of BL8, one with fast
sender, and the other with slow sender. The experiment results are given in Figure 7 – 10.

Figures 7 and 8 give iperf’s sleep_avg in the receiver for slow and fast sender respec-
tively. For the slow sender (Figure 7), it can be seen that iperf’s sleep_avg is always
greater than 700ms. It means that iperf is categorized as interactive all the time. However,
for the fast sender (Figure 8), iperf is categorized as non-interactive most of the time.
This is the reason that with a fast sender, iperf’s CPU share is similar to what it is under
non-interactive scheduling. These experiment results agree with our analysis in previous
sections. It further demonstrates that the current interactivity classification mechanism is
not effective in classifying network-related processes, which are strongly dependent on
the network conditions.

 16

Figure 7 Iperf’s sleep_avg in the Receiver (Slow Sender)

Figure 8 Iperf’s sleep_avg in the Receiver (Fast Sender)

 17

Figure 9 Histogram of Time Intervals between Consecutive Timeslice Expiration Instants for Iperf in

the Receiver (Slow Sender)

Figure 10 Histogram of Time Intervals between Consecutive Timeslice Expiration Instants for Iperf

in the Receiver (Fast Sender)

Figures 9 and 10 give the histograms of time intervals between consecutive timeslice ex-
piration instants for iperf in the receiver. These results verify the correctness of Theorem
2 from another perspective. Figure 7 shows that with the slow sender iperf is always
categorized as interactive. Therefore, each time iperf’s timeslice expires, it is reinserted
into the active array, instead of the expired array. Also, due to its interactive status, iperf
gains a priority bonus, resulting in higher dynamic priority than other non-interactive
processes. Those non-interactive processes only run during the periods that iperf sleeps.
Considering that facts that (1) with a nice value of 0, the timeslice is 100ms; (2) iperf
might sleep to wait for data, most of the time intervals between consecutive timeslice ex-

 18

piration instants in Figure 9 are between 100ms and 200ms. However, Figure 10, the fast
sender case, shows another story. This is due to the fact that iperf is non-interactive most
of time with a fast sender (Figure 8). Once iperf’s timeslice expires, it will be moved to
the expired array and can only regain the CPU after all 8 non-interactive processes finish
their timeslices. That is why the majority of the time intervals between consecutive
timeslice expirations for iperf are greater than 900ms.

5.2 Experiments over Wide Area Networks from BNL to FNAL

We repeat our experiments over the wide area networks from BNL to FNAL. Experiment
results also verify the claims of previous sections. Table 8 shows the iperf experiment
results in the receiver. Figure 11 gives the comparison of CPU shares. It shows that the
fairness issue also arises in wide area networking.

Load Scheduler Throughput CPU
Share

Reinsertion
Count

WI 325 Mbps 75.877% 713
BL0

NI 304 Mbps 65.68% 0
WI 277 Mbps 59.472% 593

BL1
NI 248 Mbps 47.063% 0
WI 274 Mbps 58.996% 588

BL2
NI 195 Mbps 31.922% 0
WI 278 Mbps 64.144% 620

BL4
NI 116 Mbps 19.645% 0
WI 273 Mbps 58.788% 586

BL8
NI 79.8 Mbps 9.717% 0

Table 8 Iperf Experiment Results in the Receiver

Figure 11 Comparisons of CPU Shares

 19

Figure 12 Iperf’s sleep_avg in the Receiver

Figure 13 Histogram of Time Intervals between Consecutive Timeslice Expiration Instants for Iperf

in the Receiver (WAN)

Figures 12 and 13 give the results of one random wide area network experiment from
BNL to FNAL. The background load of the experiment is BL8. Figure 12 gives iperf’s
sleep_avg in the receiver. It can be seen that iperf is also categorized as interactive all the
time due to network conditions. Figure 13 shows the histogram of time intervals between
consecutive timeslice expiration instants for iperf in the receiver. It gives similar results
as Figure 9.

6. A Possible Solution

 20

Our experiments and analysis described above have shown that the current interactivity
classification mechanism is not effective in distinguishing non-interactive network proc-
esses from interactive processes, resulting in serious fairness/starvation problems. To
summarize, the causes of this are: (1) network packets arrive at the receiver independ-
ently and discretely; the “relatively fast” non-interactive network process might
frequently sleep to wait for network packets. Though each sleep lasts for a short period of
time, they occur more than frequently enough to lead to interactivity status. (2) The cur-
rent Linux interactivity mechanism provides the possibilities that a non-interactive
network process could consume a high CPU share, and at the same time be incorrectly
categorized as interactive. To resolve the interactivity vs. fairness issues there might be
two basic approaches. One approach is to completely overhaul the interactivity mecha-
nism. However, the current mechanism has been proven effective for traditional non-
networked applications. Major modifications would be likely to affect those applications.
Clearly, this approach might be complex and time-consuming. The second approach is to
reduce or eliminate those sleep_avg updates triggered by short inter-packet sleeps under
non-interactive conditions. We pursue the latter course.

Experiment <2ms <5ms <10ms <15ms <20ms Through-
put

Mean
(ms)

BNL->FNAL (1) 68.32% 83.82% 97.79% 99.84% 99.88% 263 Mbps 2.2214
BNL->FNAL (2) 68.72% 85.08% 98.85% 99.92% 99.95% 221 Mbps 2.0071

FNAL - > FNAL (1) 99.78% 99.85% 99.93% 99.93% 99.93% 383 Mbps 0.2285
FNAL -> FNAL (2) 99.70% 99.79% 99.88% 99.88% 99.89% 438 Mbps 0.2259

Table 9 wait-for-packet sleep statistics for iperf data transmission experiment

Usually, network applications can be classified into the following categories:
a) Interactive network applications like ssh, telnet, and web browsing. Since those appli-

cations involve human interactions, the wait-for-packet sleeps in the receiver usually
last for hundreds of milliseconds or even seconds to wait for user inputs. For example,
in [16] Y. Etsion et al. have reported that standard typing at a rate of about 8 charac-
ters per second. In the extreme case, if a packet was sent out for each character typed,
the inter-packet space would be average around 125 ms.

b) Non-interactive network applications. Some non-interactive network applications,
like ftp∗, gridftp∗, and scp, involve bulk data transmission. As explained above, due
to packet-switched network’s packet delivery nature: network packets arrive in the
receiver independently and discretely. The “relatively fast” network process in the re-
ceiver might frequently sleep to wait for network packets. Though each wait-for-
packet sleep is short, they are very frequent. Iperf also belongs to this category. Table
9 gives the wait-for-packet sleep statistics for a group of data transmission experi-
ments in section 5. It shows that most wait-for-packet sleeps last for a few
milliseconds or less.

∗ FTP implementations usually are multi-processed or multi-threaded: one process/thread
is in charge of FTP control channel, which may be interactive; other processes/threads are
in charge of data transmissions. Here, we mean FTP’s data transmission proc-
esses/threads, and similarly for gridftp.

 21

c) Multimedia network applications. For these applications, network packets are trans-
mitted and received periodically. For example, VOIP packets are transmitted and
received every 20ms. These applications are categorized as “soft real-time” so other
measures should be taken, regardless of the issues investigated here, to guarantee
their CPU shares and responsiveness. Possibilities include (1) In Linux 2.6, making
use of chrt [27] to classify these applications as real-time. Linux 2.6 provides two
real-time scheduling policies, SCHED_FIFO and SCHED_RR, which support soft
real-time behaviors [1][2]. (2) When developing these applications, specifically re-
questing real-time support. Linux 2.6 provides a family of system calls to support
such capabilities [2]. However such an approach might reduce application portability
[28]. (3) Making use of a proportional-share scheduler [18] [20] to provide protection
between various classes of applications. This paper mainly address the interactivity vs.
fairness issues for network applications of categories (a) and (b).

Table 9 gives us insight on how to distinguish interactive network applications from non-
interactive ones: for a truly interactive application, the wait-for-packet sleeps usually last
for tens or hundreds of milliseconds or more; however, the inter-packet sleeps for bulk
data transmission applications usually last for a few milliseconds or less. Accordingly, to
resolve the interactivity vs. fairness issues in networked Linux systems, our strategy is as
follows: when the sleep duration does not exceed some minimal value, sleep_avg for the
network process will not be updated; sleep_avg is only updated when the sleep exceeds
the threshold. We have modified the Linux kernel, and call this floor value the “Interac-
tive Network Threshold”. The value is configurable through a new item in the /proc
filesystem, /proc/sys/kernel/interactive_network_threshold, and its unit is milliseconds. It can
be set according to the network conditions and the system’s purpose. If the system is
mainly used for local area networks, a relatively small value such as 5ms is quite enough.
If the system is used for wide area networks, and the packet jitter is high, interac-
tive_network_threshold could be configured even higher. Usually high packet jitter implies
low throughput; it won’t cause serious fairness issues in the receiver. Therefore, interac-
tive_network_threshold need not be too high. In our implementation, the default
interactive_network_threshold is set at 30ms. If system owner does not care about the inter-
activity vs. fairness issues at all, it can be set as 0. If processing of streaming media such
as VOIP is competing with other system loads and has not been protected as suggested
above, an interactive_network_threshold of 15ms may be better.

We repeat the data transmission experiments as described in section 5 on the Linux up-
dated with the new interactivity parameter described as above. We compare the new
experiment data with those obtained in section 5. The old experiment will be prefixed
with “O-“, the new data with “N-“.

Table 10 shows the iperf experiment results in the receiver for experiments over Fermi-
lab’s sub-networks. Since the fairness issue is not serious with the fast sender, the
experiments are run only with the slow sender. The interactive_network_threshold is set as
5ms. For better comparison and presentation, we show the comparisons of CPU shares in
Figure 14. It can be seen that: with the updated interactivity algorithm, iperf’s CPU share

 22

decreases as the background load increases; the reinsertion count of N-WI is much re-
duced compared to O-WI. Since interactive_network_threshold is set so low, it won’t affect
the scheduling of true interactive network applications. The experiment results imply that
our proposed solution is effective in resolving the fairness issues while maintaining the
interactivity performance for true interactive network applications.

Load Scheduler Throughput CPU
Share

Reinsertion
Count

O-WI 436 Mbps 78.489% 780
BL0

N-WI 455 Mbps 87.467% 8
O-WI 443 Mbps 81.573% 815

BL1
N-WI 304 Mbps 56.38% 221
O-WI 438 Mbps 80.613% 801

BL2
N-WI 260 Mbps 47.493% 254
O-WI 430 Mbps 79.217% 785

BL4
N-WI 181 Mbps 32.682% 177
O-WI 440 Mbps 81.093% 811

BL8
N-WI 109 Mbps 19.748% 104

Table 10 Iperf Experiment Results in the Receiver (Slow Sender)

Figure 14 Comparisons of CPU Shares

Figure 15 shows iperf’s sleep_avg in the receiver with the updated interactivity algorithm
for a randomly chosen experiment (interactive_network_threshold=5ms, BL8). Compared
with Figure 7, it can be seen that most of the time iperf is not categorized as interactive.
When it is not, it doesn’t gain extra runs at the expense of other non-interactive processes.
This explains why iperf’s CPU share is effectively decreased when the background load
is increased. It further verifies the effectiveness of our proposed solution. However, it still
can be seen from Figure 15 that iperf’s sleep_avg might jump from a low value to a much
higher value, leading to the interactive status (also in Figure 8). This is caused by the
scheduling delay: when a low-dynamic-priority iperf wakes up upon packet arrival, it
might wait on the runqueue for a relatively long time before it is scheduled to run, which
is fully credited to the sleep_avg. Since the scheduling delays of interactive network
processes cannot be differentiated from those of non-interactive processes, the influence

 23

of this type of scheduling delays is hard to eliminate. This is also the reason that the CPU
shares in the N-WI runs are higher than in NI.

Figure 15 Iperf’s sleep_avg in the Receiver (Slow Sender)

Similar results are obtained in experiments over the wide area networks from BNL to
FNAL. Figure 16 shows iperf’s sleep_avg in the receiver for two random experiments
from BNL to FNAL with the new interactivity algorithm. In Figure 16(a), interac-
tive_network_threshold is set as 10ms, while it is set as 30ms in Figure 16(b). It can be seen
that for wide area networks, since the packet jitter is higher, the interac-
tive_network_threshold needs to be correspondingly configured higher. Setting
interactive_network_threshold to 30ms effectively improves the system’s fairness, while not
affecting true interactive network applications’ performance. In Figure 16, we also see
scheduling delays causing jumps in sleep_avg.

 24

(a) interactive_network_threshold = 10ms

(b) interactive_nework_threshold = 30ms

Figure 16 Iperf’s sleep_avg in the Receiver for Experiments from BNL to FNAL

7. Conclusions

Our researches have pointed out that the current Linux interactivity mechanism is not ef-
fective in distinguishing non-interactive network processes from interactive network
processes, and results in serious fairness/starvation problems. Mathematical analysis and
experiments results have verified our conclusions. Further, we propose and test a simple
scheduler modification to address the interactivity vs. fairness problems in networked
Linux systems. Experiment results have proved the effectiveness of our proposed solution.

 25

The improvements in fairness come at a cost: the network throughput for a given process
may be reduced, while the CPU share, response time, or network throughputs of other
processes are improved. This will be a desirable trade-off in some environments, but per-
haps not in all.

Acknowledgements

We would like to thank the editor and reviewers for their comments, which helped im-
prove the paper. Also, we would like to thank Dr. Dantong Yu and Dr. Dimitrios
Katramatos of Brookhaven National Laboratory. Without their sincere help, the wide area
network experiments between BNL and FNAL were impossible.

References

[1] D. P. Bovet et al., Understanding the Linux Kernel, 3rd Edition, O’Reilly Press, ISBN: 0-596-

00565-2, 2005.
[2] R. Love, Linux Kernel Development, Second Edition, Novell Press, ISBN: 0672327201, 2005.
[3] C. S. Rodriguez et al., The Linux(R) Kernel Primer: A Top-Down Approach for x86 and PowerPC

Architectures, Prentice Hall PTR, ISBN: 0131181637, 2005.
[4] www.kernel.org.
[5] “Goals, Design and Implementation of the new ultra-scalable O(1) scheduler”, Linux Documentation,

sched-design.txt.
[6] A. Silberschatz et al., Operating System Concepts, 7th Edition, John Wiley & Sons, ISBN:

0471694665, 2004.
[7] R. Love, “Interactive Kernel Performance: Kernel Performance in Desktop and Real-time Applica-

tions,” In Proceedings of the Linux Symposium, July 23 – 26, 2003, Ottawa, Canada.
[8] M. Mathis et al., "Web100: Extended TCP Instrumentation for Research, Education and Diagnosis,"

ACM Computer Communications Review, vol. 33, no. 3, July 2003.
[9] T. Dunigan et al., “A TCP Tuning Daemon”, SuperComputing 2002.
[10] M. Rio et al., "A Map of the Networking Code in Linux Kernel 2.4.20," March 2004.
[11] J. C. Mogul et al., “Eliminating Receive Livelock in an Interrupt-driven Kernel,” ACM Transactions

on Computer Systems, vol. 15, no. 3, pp. 217--252, 1997.
[12] M. J. Bach, The Design of the UNIX Operating System. Prentice-Hall, ISBN: 0132017997, 1986.
[13] U. Vahalia, UNIX Internals: The New Frontiers, Prentice Hall, ISBN: 0131019082, 1995.
[14] J. Mauro et al., Solaris Internals Core Kernel Architecture, ISBN: 0130224960, 1st Edition, Prentice

Hall PTR, 2000.
[15] M. K. McKusick et al., The Design and Implementation of the FreeBSD Operating System, Addi-

son-Wesley Professional, ISBN: 0201702452, 2004.
[16] Y. Etsion et al., “Process prioritization using output production: scheduling for multimedia,” ACM

Transactions on Multimedia Computing, Communications, and Applications, Volume 2, Issue 4,
Pages: 318 – 342, 2006.

[17] C. A. Waldspurger et al., “Lottery Scheduling: Flexible Proportional-Share Resource Management,”
In Proceedings of the 1st USENIX Symposium on Operating Systems Design and Implementation,
Monterey, CA, November 1994.

[18] P. Goyal et al., “A Hierarchical CPU Scheduler for Multimedia Operating Systems,” In Proceedings
of the 2nd OSDI Symposium, October 1996.

[19] J. Nieh et al., “Virtual-time Round-robin: An O(1) Proportional Share Scheduler,” In Proceedings of
the 2001 USENIX Annual Technical Conference, USENIX, Berkeley, CA, 2001, pp. 245-259.

[20] K. Jeffay et al., “Proportional Share Scheduling of Operating System Services for Real-time Appli-
cations,” In IEEE Real Time System Symposium, Madrid, Spain, December 1998.

[21] D. Petrou et al., “Implementing Lottery Scheduling: Matching the Specialisations in Traditional
Schedulers,” In Proceedings of the 1999 USENIX Technical Conference, pages 1-14, Monterey, CA,
USA, June 1999.

 26

[22] http://kerneltrap.org/node/780
[23] Y. Etsion et al., “Effects of Clock Resolution on the Scheduling of Interactive and Soft Real-Time

Processes,” In Proceedings of ACM SIGMETRICS Conference, Measurement and Modeling of
Computer Systems, pp. 172-183, June 2003.

[24] J. Davidson, et al., Voice over IP Fundamentals, 2nd Edition, Cisco Press, ISBN: 1587052571, 2006.
[25] V. Jacobson, “Congestion Avoidance and Control,” In Proceedings of ACM SIGCOMM, Stanford,

CA, August 1988, pp. 314 – 329.
[26] http://dast.nlanr.net/Projects/Iperf/.
[27] E. Siever et al., Linux in a Nutshell, 5th Edition, O’Reilly Media, Sebastopol, CA, ISBN: 0-596-

00930-5, 2005.
[28] Y. Etsion et al., “Desktop Scheduling: How can We Know What the User Wants?” In Proceedings

of the 14th international workshop on Network and Operating systems support for Digital Audio and
Video, Cork, Ireland, 2004. pp. 110-115.

 27

