DØ Regional Analysis Center Concepts

Roadmap of Talk

- The Mission
- The Resource Potential
- DØ Regional Strategy
- RAC Details
- RAC progress
- Summary and Future

CHEP 2003
UCSD
March 24-28, 2003
Lee Lueking
DØ Offsite Analysis Task Force

Official members (and other participants)
Iain Bertram – Lancaster University, UK
Chip Brock, Dugan O’Neil – Michigan State University
John Butler – Boston University
Gavin Davies, (Rod Walker) – Imperial College, United Kingdom
Amber Boehnlein, David Fagan, Alan Jonckheere, Lee Lueking, Don Petravik,
Vicky White, (co-chair) - Fermilab
Nick Hadley (co-chair) - University of Maryland
Sijbrand de Jong - University of Nijmegen, The Netherlands
Peter Maettig, (Daniel Wicke, Christian Schmitt) – Wuppertal, Germany
(Christian Zeitnitz) – Mainz, Germany
Pierre Petroff (c0-chair) - Laboratoire de l Accelerateur Lineaire, France
(Patrice Lebrun) – ccin2p3 in Lyon, France
Jianming Qian – University of Michigan
Jae Yu – University of Texas Arlington
We have a very complex physics mission:

- Billions of recorded triggers
- Dozens of physics analysis areas
- Complex analyses, Precision measurements, Minute signal searches, subtle systematics
 - Understand the underlying event consistent with 5 MeV/c² statistical precision on M_W
 - Understand the jet energy scale to more precisely measure M_{top}
 - Tag and vertex B mesons in an environment of 5-10 overlapping interactions

- Estimated R2a (through 2004) computing needs for MC, Reconstruction, and Analysis. Needs beyond 2004 are larger still.
 - 4 THz CPU
 - 1.5 PB total data archive
Many Potential Resources, But…

• We have many potential resources
 • Technology and Computing Resources abound.
 • CPU and memory are inexpensive
 • Networking is becoming more pervasive
 • Disk and tape storage is affordable
 – An army of Physicists, Over 600 collaborators, are “available”

• But, they are not all in one place anymore, and they are not really “ours”
 – The resources are distributed around the world at 80 institutions in 18 countries on 4 continents.
 – In most places, the resources are shared with other experiments or organizations
• Management, Training, Logistics, Coordination, Planning, Estimating needs, and Operation are real hard
• Infrastructure and tools needed to pull this all together are essential.

The Good News is …

There are $$$, €€€, and £££ for computing.

The Rub is…

It is for many projects, LHC, Grid, and multi-disciplinary…

so we need to share and be opportunistic
The Overall Game Plan

• Divide and conquer
 – Establish 6-10 geographical/political regions.
 – Establish a Regional Analysis Center (RAC) in each area.
 – Define responsibilities for each region.

• Enable the effective use of all resources
 – Hardware
 – Informational
 – Human

• Lay basic infrastructure now, fine-tune later

• Open all communications channels

“Without a vision, the people perish” King Solomon - Proverbs
The DØ Process

- **1998:** DØ Computing Model - The distributed computing concepts in SAM were embraced by the DØ management. All of DØ’s Monte Carlo was produced at remote centers.

- **2001:** D0RACE – Remote Analysis Coordination Effort team helped to get the basic DØ infrastructure to the institutions. With this effort, 60% of the DØ sites have official analysis code distributions and 50% have SAM stations.

- **2002:** RAC grassroots team – Met throughout spring and summer to write a formal document outlining the concepts.*

- **2002:** OATF - Offsite Analysis Task Force – Charged by the Spokespersons to further study the needs of offsite computing and analysis

- DØ Finance committee – decides how the collaboration as a whole will contribute remote computing resources to the experiment.

- Plans for MOU’s are being made.

Why Regions are Important

1. Opportunistic use of **ALL** computing resources within the region
2. Management for resources within the region
3. Coordination of all processing efforts is easier
4. Security issues within the region are similar, CA’s, policies…
5. Increases the technical support base
6. Speak the same language
7. Share the same time zone
8. Frequent Face-to-face meetings among players within the region.
9. Physics collaboration at a regional level to contribute to results for the global level
10. A little spirited competition among regions is good
Deployment Model

- Fermilab-centric SAM infrastructure is in place, …

…now we transition to more hierarchical Model
Hierarchical Model

CAC – Central Analysis Center (Fermilab)
RAC – Regional Analysis Center (6-10)
IAC – Institutional Analysis Center
DAS – Desktop Analysis Station
RAC Functionality

- Preemptive caching
 - Coordinated globally
 - All DSTs on disk at the sum of all RAC’s
 - All TMB files on disk at all RACs, to support mining needs of the region
 - Coordinated regionally
 - Other formats on disk: Derived formats & Monte Carlo data
- On-demand SAM cache: ~10% of total disk cache
- Archival storage (tape - for now)
 - Selected MC samples
 - Secondary Data as needed
- CPU capability
 - supporting analysis, first in its own region
 - For re-reconstruction
 - MC production
 - General purpose DØ analysis needs
- Network to support intra-regional, FNAL-region, and inter-RAC connectivity
Required Server Infrastructure

- SAM-Grid (SAM + JIM) Gateway
- Oracle database access servers (DAN)
- Accommodate realities like:
 - Policies and culture for each center
 - Sharing with other organizations
 - Firewalls, private networks, et cetera
Data Model

Fraction of Data Stored per Region

<table>
<thead>
<tr>
<th>Data Tier</th>
<th>Size/event (MB)</th>
<th>FNAL Tape</th>
<th>FNAL Disk</th>
<th>Remote Tape</th>
<th>Remote Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW</td>
<td>0.25</td>
<td>1</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reconstructed</td>
<td>0.50</td>
<td>0.1</td>
<td>0.01</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>DST</td>
<td>0.15</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Thumbnail</td>
<td>0.01</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Derived Data</td>
<td>0.01</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MC D0Gstar</td>
<td>0.70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MC D0Sim</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MC DST</td>
<td>0.40</td>
<td>1</td>
<td>0.025</td>
<td>0.025</td>
<td>0.05</td>
</tr>
<tr>
<td>MC TMB</td>
<td>0.02</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>MC PMCS</td>
<td>0.02</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>MC root-tuple</td>
<td>0.02</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Totals RIIa/RIIb</td>
<td>1.5PB/8 PB</td>
<td>60TB/800 TB</td>
<td>~50TB</td>
<td>~50TB</td>
<td></td>
</tr>
</tbody>
</table>

Data Tier Hierarchy

- **Metadata**
 - ~0.5TB/year

- Numbers are rough estimates

the cpb model presumes:
- 25Hz rate to tape, Run Ila
- 50Hz rate to tape, Run I Ib
- events 25% larger, Run I Ib
Summary of the *minimum* RAC

For Run Ila

estimate something like this:

- This alone adds > 500 cpu’s, deployed in an efficient way - where the physicists are
- IAC’s should have considerable additional capability
- All in host countries.
Characterizing RAC’s

Hardware needed to achieve various levels of RAC utility

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Good</th>
<th>Better</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Connectivity</td>
<td>1 Gbps</td>
<td>1 Gbps</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>Disk Cache</td>
<td>60 TB</td>
<td>80 TB</td>
<td>100 TB</td>
</tr>
<tr>
<td>Archival Storage</td>
<td>0</td>
<td>100 TB</td>
<td>500 TB</td>
</tr>
<tr>
<td>HA Servers</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Processing CPU’s</td>
<td>50 x (Clock Rate de Jour)</td>
<td>100 x (Clock Rate de Jour)</td>
<td>200 x (Clock Rate de Jour)</td>
</tr>
<tr>
<td>Estimated Cost</td>
<td>$250k</td>
<td>$500k</td>
<td>$1M</td>
</tr>
</tbody>
</table>

This is the Run IIa investment
Challenges

• Operation and Support
 – Ongoing shift support: 24/7 “helpdesk” shifters (trained physicists)
 – SAM-Grid station administrators: Expertise based on experience installing and maintaining the system
 – Grid Technical Team: Experts in SAM-Grid, DØ software + technical experts from each RAC.
 – Hardware and system support provided by centers
• Production certification
 – All DØ MC, reconstruction, and analysis code releases have to be certified
• Special requirements for certain RAC’s
 – Forces customization of infrastructure
 – Introduces deployment delays
• Security issues, grid certificates, firewalls, site policies.
RAC Prototype: GridKa

- **Overview:** Aachen, Bonn, Freiburg, Mainz, Munich, Wuppertal
 - Location: Forschungszentrum Karlsruhe (FZK)
 - Regional Grid development, data and computing center. Established: 2002
 - Serves 8 HEP experiments: Alice, Atlas, BaBar, CDF, CMS, Compass, DØ, and LHCb

- **Political Structure:** Peter Mattig (wuppertal) FNAL rep. to Overview Board, C. Zeitnitz (Mainz), D. Wicke (Wuppertal) Tech. Advs. Board reps.

- **Status:** Auto caching Thumbnails since August
 - Certified w/ physics samples
 - Physics results for Winter conferences
 - Some MC production done there
 - Very effectively used by DØ in Jan and Feb.

- **Resource Overview:** (summarized on next page)
 - Compute: 95 x dual PIII 1.2GHz, 68 x dual Xeon 2.2 GHz. D0 requested 6%. (updates in April)
 - Storage: DØ has 5.2 TB cache. Use of % of ~100TB MSS. (updates in April)
 - Network: 100Mb connection available to users.
 - Configuration: SAM w/ shared disk cache, private network, firewall restrictions, OpenPBS, Redhat 7.2, k 2.418, D0 software installed.
Summary of Current & Soon-to-be RACs

<table>
<thead>
<tr>
<th>RAC</th>
<th>IAC’s</th>
<th>CPU ΣHz (Total*)</th>
<th>Disk (Total*)</th>
<th>Archive (Total*)</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>GridKa @FZK</td>
<td>Aachen, Bonn, Freiburg, Mainz, Munich, Wuppertal,</td>
<td>52 GHz (518 GHz)</td>
<td>5.2 TB (50 TB)</td>
<td>10 TB (100TB)</td>
<td>Established as RAC</td>
</tr>
<tr>
<td>SAR @UTA</td>
<td>AZ, Cinvestav (Mexico City), LA Tech, Oklahoma, Rice, KU, KSU</td>
<td>160 GHz (320 GHz)</td>
<td>25 TB (50 TB)</td>
<td></td>
<td>Summer 2003</td>
</tr>
<tr>
<td>UK @tbd</td>
<td>Lancaster, Manchester, Imperial College, RAL</td>
<td>46 GHz (556 GHz)</td>
<td>14 TB (170 TB)</td>
<td>44 TB</td>
<td>Active, MC production</td>
</tr>
<tr>
<td>IN2P3 @Lyon</td>
<td>CCin2p3, CEA-Saclay, CPPM-Marseille, IPNL-Lyon, IRES-Strasbourg, ISN-Grenoble, LAL-Orsay, LPNHE-Paris</td>
<td>100 GHz</td>
<td>12 TB</td>
<td>200 TB</td>
<td>Active, MC production</td>
</tr>
<tr>
<td>DØ @FNAL</td>
<td>Farm, cab, clued0, Central-analysis</td>
<td>1800 GHz</td>
<td>25 TB</td>
<td>1 PB</td>
<td>Established as CAC</td>
</tr>
</tbody>
</table>

Numbers in () represent totals for the center or region, other numbers are DØ’s current allocation.
From RAC’s to Riches
Summary and Future

- We feel that the RAC approach is important to more effectively use remote resources.
- Management and organization in each region is as important as the hardware.
- However…
 - Physics group collaboration will transcend regional boundaries.
 - Resources within each region will be used by the experiment at large (Grid computing Model).
 - Our models of usage will be revisited frequently. Experience already indicates that the use of thumbnails differs from that of our RAC model.
 - No RAC will be completely formed at birth.
- There are many challenges ahead. We are still learning…