Error Diagnostics for the Grid User

A Report on Grid User Diagnostics
Summer 2009

Written by:

	S.Gysin (Editor)
	FNAL/CD/CET

Checked by:

	R.Pordes
	FNAL/CD

	E.Berman
	FNAL/CD

	S.Timm
	FNAL/CD

	M.Votava
	FNAL/CD

	Version
	Date
	Comments

	1.0
	6/23/2009
	Revision for Presentation

	0.1
	6/11/2009
	Revision for Checked by list

	0.0
	5/29/2009
	Revision for R.Pordes

Table of Contents

21
Introduction

22
Problem Overview

22.1
Diagnostic Imbalance

42.2
Organizational Communication

42.3
System Inertia

53
Common Errors

53.1
Authentication and Authorization

63.2
Configuration and Dependencies

63.3
Input/Output Errors

63.4
Programming Errors

63.5
Job Number Mapping

74
Current Diagnostics Tools

74.1
Logs

74.2
Error Codes

74.3
Monitor Tools

85
Burdens

96
Recommendations

96.1
Introduce Exception Handling

106.2
Reduce the Number of Authentications and Authorizations

106.3
Implement a Global Job Map

106.4
Form a Consortium for Stack-Oriented Software

107
References:

118
Appendix A: JobMon

118.1
Overview

1 Introduction
This document is an overview of the Grid User Diagnostics and part of the Grid User Diagnosis project. The goal of the Grid User Diagnostics project is to provide individual users better access to information already available on the grid to aid in diagnosis of job failure. [1]
The intent of this document is to understand the types of errors, their root cause encountered by users of FermiGrid, the US CMS grid facility and OSG. It will also list the information available or could be made available to users to help them diagnose their individual job problems.
To write this document, several people were interviewed. This document summarizes the information from these interviews. All interviewees strongly agreed that diagnostics can be and should be improved.
2 Problem Overview
The grid has many tools for monitoring a specific software element. The monitor usually gives statistics such as the number of processed jobs, number of files stored, the mean and standard deviation of completion times, and excellent graphic displays. This is very useful for managers, administrators, and developers of a specific software element. However, it is not very useful to the individual user who is interested in the status of his job through a diverse stack of software elements.

The individual Grid job transverses through many software elements, but there is no tool to observe the status of a job through its software stack. The user is often left without any information. He only knows that his job has failed if it does not come back after a few days. The job may or may not return an error code, depending on where it failed in the software stack. If the job failed in an unfamiliar way the user is left to contact the administrator who often manually tracks the log files and either finds the error or forwards the problem to the next element administrator.
The lack of overall integration contributes to the scarcity of User Diagnostics. Each software team does an excellent job monitoring their particular software, but when integrated with other software, a protocol or ‘glue’ needed to propagate errors messages from one element to another is unavailable.

2.1 Diagnostic Imbalance
The difficulty in propagating of error messages through the software stack is the result of the extreme diversity of components in a software stack. Unless every element follows the same error processing protocol the information is lost or becomes muddled.

Users who are part of large collaboration with dedicated Grid resources and people to customize the software have a fair amount of diagnostics. Conversely, opportunistic users of the Grid have very little resources to apply to Grid diagnostics.

Figure 1 and 2 are sketches of two very different software stacks. Figure 1 illustrates the CMS stack. The CMS stack has three different monitor applications where a user may find information about his job for a certain software element. CMS is a large collaboration, which has dedicated resources and has been able to design or install custom software to monitor its resources. A good example of a custom diagnostic is JobMon [6], a new addition to the selection of monitors where a user can monitor several elements.

[image: image1.png]
Figure 1
Figure 2 shows the software stack for an opportunistic OSG user (for example a Geant 4 validation job). The elements in the software stack are dynamically allocated when the job is running. This is part of the definition of opportunistic use. The resources are not dedicated, and hence the monitoring is not customized. The monitor applications on a random software stack are fairly sparse.

[image: image2.png]
Figure 2

2.2 Organizational Communication
Each stack element is a large software project developed by unique and separate organizations. Condor, for example, is developed at the University of Wisconsin. There are several implementations of the Storage Resource Manager (SRM) protocol, with different mass storage systems, these are SRM-dCache developed at FNAL, SRM-Castor developed at CERN, and BestMan developed LBNL.
Grid service providers may be hesitant to request software changes to elements outside of their organization. For example, SRM might be hesitant to ask GSI authentication to change. In addition, because of the lack of coordination or resources, software projects are sometimes orphaned. In this case, asking for software changes is not possible.

A Grid service provider and user are likely to adapt the view that the software elements in the stack are closed systems. They are more likely to find a work around rather than ask for a change to the existing software. These work-arounds are useful for the particular users of the Grid service provider, but do not address the needs of the other similar service providers.
The closed system view also fosters duplication. For example, authentication is done multiple times in a software stack. One reason that an element duplicates authentication is because that element does not trust the previous element’s authentication. Duplicate requests made in series can have a severe impact on job reliability. A small probability of failure for single request multiplied several times can develop into a significant probability of failure for multiple requests. Duplication also means duplicate resources such as network connections, and people to support the code.
2.3 System Inertia
Even if a change has been successfully integrated and released by an element provider, the Grid service provider must schedule and implement a software update before the end user sees the improvement.

One reason upgrades inspire hesitation is the risk of reliability of the new version in this particular installation. It may be the first time this version is stressed to the extent of the particular installation, and it may fail under this particular configuration.

A second reason is the users expect high availability from the Grid. Therefore Grid service providers cannot schedule extended down time for maintenance. Short interruptions are tolerated for urgent upgrades, such as security patches. Longer interruptions are not part of the cultural acceptance of Grid users. Big Grid sites such as FNAL maintain a duplicate of the hardware and a transparent switch when the new software is installed on the duplicate hardware. However, small providers can not afford duplicating all hardware, and hence the upgrades are conservative.
A third reason upgrades are difficult is that the duration of the upgrade is unpredictable. Upgrades include configuration of the new system, fine tune, and integrate the new version with the older components, which may or may not be compatible, installing other components to make it compatible, and regression testing the basic functionality. Ideally upgrades are done sequentially, to isolate the problems to one source. The serial nature of upgrades makes it time consuming. This makes an upgrade time unpredictable.
3 Common Errors
Below is the list of the most common errors for a Grid Job:
3.1 Authentication and Authorization
Authorization failures are the most common type of failure. A failure due to invalid credentials is appropriate, and this diagnostics should reach the user quickly. The root cause for authorization failures is that authorization is done multiple times by different software against different authorization lists, and in different ways. This duplication increases the chance of failure.
The two authorization services that were looked at are GUMS and SAZ for the Fermigrid.
GUMS has a two servers with daily averages of 150,000 calls each, for a total of about 300,000 GUMS authentications per day. [4] Note that GUMS has reduced the calls by a factor of 10 last fall when a caching mechanism was deployed.

The two SAZ servers have a daily average of 80,000 calls. A total of about 160,000 daily authorization. [5]
Between the two services there are on the order of half a million calls to authorization per day. The number of busy slots per day on FermiGrid is about 12,000. [6]
Figure 3 is an example of multiple authorization for one job. This particular job does not use any storage elements, but only uses SAZ.

[image: image3.png]
1) GlideInWMS pilot job is authorization
2) Grid job is authorization
3) Start of the job triggers two authorizations. One to create the job

4) The other to make the directory

5) End of job triggers two authorization. One to kill the job

6) The other to remove the directory

7) For every file that is to be transferred the user is authorized
8) The proxy lifetimes vary between 4 hours and one year. For a short lifetime and a long job, the proxy can expire, and a renewal will cause a re- authorization.
Figure 3
3.2 Configuration and Dependencies
The worker nodes are not identically configured. This leads to configurations incompatible with the job’s requirements. A C++ job for example, has a dependency on the operating system, the compiler, and very likely a large set of libraries. Large collaborations, such as CMS, with their own resources, are in control of the configuration of their worker nodes. This is straightforward for production jobs especially because they are routine and consistent. However, analysis jobs, even in CMS, see configuration errors as their second most frequent failure type.
3.3 Input/Output Errors

A common source of errors for CDF and D0 are various I/O. For example, a file transfer timeout, a lost database connection, or a full disk. In addition, the user may not have permission to write a file to the file system. Not due to the user’s authorization, but to the permission settings on the file system. This is coupled with configuration errors.
3.4 Programming Errors
These are errors in the job code itself. For example, the memory used by one job is usually limited to 2.5 GB (CAF configuration). If a job consumes more than the limit it is restarted 3 times and then terminated. The large memory use may be due to a memory leak that only becomes obvious over a long running job.
The other common programming error is that the job exceeds the time limit by being idle waiting for a resource (for example a file via data handling). To the user, it is not obvious why the job is idle. Only knowledgeable users can find this information in the log files, and therefore the job continues to be idle without resolution.
If the user is notified as quickly as possible, he can make the fix and resubmit the job. This will significantly shorten the development cycle.
3.5 Job Number Mapping
This is not an error but a handicap to tracking errors. Many elements have their unique way to renumber/rename the job. Once the job is processed by a few elements it is very difficult to map it back to its original name. Without such a map logging information becomes extremely difficult to interpret.
4 Current Diagnostics Tools
The most common error diagnostic for the Grid User is the log file. It is the most basic element of many of the developed diagnostic tools.
4.1 Logs

The error logs on software elements are available to the administrators, but only very clever users with the correct authorization can access the logs. The user does get a log of his job back if the job terminates, but many logs reside on the system of the computing or storage element and are not publicly available.

The logs suffer from the job mapping problem, meaning that elements use their own job naming scheme and mapping a job from its start under the name it was submitted to its failure under a different name is difficult if not impossible.

The error logs often contain exceptions that are acceptable and even expected. The volume of text in the logs is very large because of this, and it is difficult for the administrator to discern which exceptions are fatal.

The main problem with error logs is that they are not available to the end user, and that even an administrator has access to a limited number of logs.
4.2 Error Codes
The Globus Toolkit, Condor, and SRM have defined error codes that are returned to the user. These are helpful, but often cryptic. SRM and Globus-WS return stack traces, but there are so many of them, the user is not sure which to ignore.
· Globus Toolkit: http://www.globus.org/toolkit/docs/2.4/faq_errors.html
· Condor: http://pages.cs.wisc.edu/~adesmet/status.html#condor-jobstatus
· SRM: http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.070402.html
4.3 Monitor Tools

A survey of the grid monitors has been documented at: https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=3106
Here are some examples
· MonALISA (deemed to be too resource intensive and not used at FermiGrid)
· Condor monitoring
· Some interactive monitoring for glideinWMS
· SRMWatch

· JobMon [6]
· Quill (tool to put current and historical condor information into a relational database)

· Ganglia
· DAGman (Condor Monitor)
· CMS Dashboard

· MCAS

5 Burdens
The lack of diagnostics can cause a significant burden on the resources available to the Grid. For example, the current convention for a user to find the cause of a job failure is as follows:
1. A user submits a job

2. If it does not return, he issues an incident report or calls the administrator

3. The administrator hunts for the error in his domain of log files

4. If he finds it, he will forward the diagnostics to the user

5. If he does not find it, he forwards the request to the administrator of the next element in the software stack.

6. This administrator repeats the procedure until the diagnostics are found.

Below are some examples of the cost for maintaining this convention:

· CAF (CDF’s work flow team)

· Three FTE’s are working on CAF. One person is on shift eight to five to monitor CDF’s grid software, the other two are doing support tasks such as testing new versions of software, making bug fixes, and adding enhancements.
· CDF opens 10-40 new bug requests (JIRA tickets) a week, the majority being about CAF/data handling. The shifters also answer direct email requests. On the day of the interview, the shifter received 3 requests per hour via email.
· This failure rate is not particularly high. At any given time, CDF has 5000 grid jobs running. However, tracking down 3 jobs per hour can keep a shifter busy sifting through the log files.
· OSG (Geant 4 Validation job)

· In this example, the liaison for OSG/GEANT 4 received a request from a user at CERN to find out if and why his GEANT 4 job had failed. The user had not received any diagnostics after days of submittal, and did not want to resubmit before resolving the problem. For this the liaison spent two of weeks at 30% of his time investigating. This attempt was futile without more information from the user’s system. He opted to travel to CERN to work with the user in person.

· OSG/LSG ticket exchange

· We have seen endemic problems with ticket exchange between the LCG and OSG, with tickets often getting dropped on the ground in both directions, that probably exacerbated the Geant 4 problem mentioned above.

· Fermi Grid (developers)

· Fermilab employees between 3 to 5 full time developers/admins for the Fermi Grid.
· End Users (Geant 4)

· The Geant 4 validation consist of about 3000 jobs and 80’000 CPU hours. The validation is needed for a major release about twice a year and should complete within 3 weeks. This deadline is impossible to meet if tracking a failure takes multiple days.

· End Users (CDF)

· The CAF administrator states that only experienced users can track their job which includes sifting through cryptic log files and interpreting error codes. This indicates a time consuming learning curve.

· Deterrent
· The lack of diagnostics is a deterrent to using the Grid. If the user has a more attractive alternative they will use it.

· Wasteful Use of Resources

· A job failure due to exceeding memory consumption is restarted 3 times before it is canceled. If this error is due to a memory leak, restarting it will not fix the problem, but consume three times the resources. If the user would received a useful diagnostic on the first failure, he could fix it before resubmission saving 2 job submissions.

6 Recommendations
The first three recommendations are for stack-oriented rather than element-oriented solutions. In a heterogeneous collection of software elements stacked together to run a job, there is a need for a stack-oriented software to keep track of job status, errors, user credentials, and job references.
The fourth recommendation explicitly addresses the responsibility of stack-oriented functionality by forming a consortium.

The specific recommendations for improving the Grid User Diagnostics are:

1. Introduce Exception Handling and develop a standard protocol for throwing exceptions to calling elements.

2. Reduce the number of authentications and authorizations.
3. Create a Global Job Map to keep track of references to the original job
4. Form a consortium of experienced software architects responsible for stack oriented software

6.1 Introduce Exception Handling
The convention for error diagnostic in software engineering is exception handling. When a problem/exception occurs the software containing the offending line is programmed to throw the exception back to the caller or to catch the exception and recover. It is convention to throw the exception recursively to the highest possible level, until it arrives at the top level which is the user’s command to start the job. The user sees a stack trace with the exact point of failure and the hierarchy of software calls that lead to the failure. [2]
This enables a quick trace through multiple software modules that can be reproduced and easily investigated.

A Grid Exception Handling protocol defining what exceptions are to be thrown and what exceptions should be caught enables a Grid software element developer to comply with the error handling expectations. This relieves him of the responsibility to decide what is important outside of the scope of his software element.

The exception protocol should also address the logistics of physically returning the exception to the calling element and ultimately to the user. In Java, for instance, a method may throw a set of known exceptions. When this method is called, the calling method has to either declare that it throws the exception or catch it or the program will not compile. An option to return the error through the software stack is a separate error channel.

Since exception handling is common to all software elements in a stack it is a common ‘aspect’. The documentation and tools of aspect oriented programming should be considered in the architecture of the error handling protocol.
6.2 Reduce the Number of Authentications and Authorizations
The ultimate goal should be to have one authentication, and as few as possible authorizations per job. The solution will most likely include caching and a trust mechanism between elements in a software stack.

6.3 Implement a Global Job Map

The goal of a Global Job Map is to be able to trace the job thought the software stack. There should be a map that is updated with every reference that is created for a particular job, and this information should be made available to the user for each job.

Some work has been done in this area: SAMGrid went with a global job map to make sure that every job from the beginning sends along a global job ID through every phase of the forwarding. FermiGrid has done something similar, and Condor has the concept of global job id as well.

6.4 Form a Consortium for Stack-Oriented Software

Recommendations 6.1-6.3 would be difficult to implement without some coordination across the grid. A group or consortium of experienced software architects should be responsible for stack-oriented software. This group would ensure the appropriate requirements, architecture, and implementation for stack-oriented software.
This consortium could be formed by a particular Grid service provider, however it would be more productive to have members from diverse parts of the Grid. The consortium should consist of about three architects, with the clear mission to refine the requirements and implement stack-oriented software.

7 References:

[1] Ruth Pordes: User Grid Diagnosis: Project Definition

[2] Exception Handling: http://en.wikipedia.org/wiki/Exception_handling
[3] Fermigrid SAZ daily authorization calls:

http://fermigrid.fnal.gov/metrics/fg5x3-saz-data.html

http://fermigrid.fnal.gov/metrics/fg6x3-saz-data.html
[4] Fermigrid GUMS daily authorization calls:

http://fermigrid.fnal.gov/metrics/fg5x2-gums-data.html
http://fermigrid.fnal.gov/metrics/fg6x2-gums-data.html
[5] Fermigrid average daily slots:

http://fermigrid.fnal.gov/monitor/fermigrid-merged-total-slots.html
[6] JobMon

https://twiki.cern.ch/twiki/bin/view/CMS/ItalianT2ToolsJobMonitor#Overview
[7] Aspect-oriented programming

http://en.wikipedia.org/wiki/AspectJ

http://en.wikipedia.org/wiki/Aspect-oriented_programming
8 Appendix A: JobMon
JobMon is an interesting new initiative to monitor Grid User jobs. The page is: https://twiki.cern.ch/twiki/bin/view/CMS/ItalianT2ToolsJobMonitor#Overview.The text from the webpage is included here in case the reader does not have access.
8.1 Overview

We have been developing a web based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components, (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is the first such monitoring system where an X509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with our web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens its scope significantly, allowing it to monitor jobs over multiple sites. We are also working towards a Condor Quill DB based implementation of the monitor. Thanks to its distributed nature, the monitor is pretty robust. It is also very generic in nature and can be easily extended to new batch systems.
There are two distinct ways to access the web based monitor,

· directly access the site monitor, e.g. https://gridse.sns.it/jobmon/pisa

· access a single job from a central web page that may link user jobs using the global gridid, e.g https://gridse.sns.it/jobmon/pisa/jobinfo.html?gridid=https://gridlb1.desy.de:9000/8pX2aZXpCu_y8mdEmNEf9Q

Access to the web interface of the monitor requires a valid client certificate. This is true even for the site administrators. There are several distinct levels of privacy of information

· site administrators can access all the information

· we can have a list of admins for each VO who have access to all the detail of all the jobs belonging to that VO

· end users, by default, have access to all the information for jobs that belong to the client DN and the public part of the information for jobs for all the VOs the client is a member of. For VO label access, DN-label privacy is enforced for "Job Dir", "Work Dir", "stdout", "stderr"

· strict privacy can be enforced such that a client can access only those jobs that belong to the client DN

Version 0.1

page 9 of 12

