
 1

An Evaluation of Parallel Optimization for OpenSolarisⓇ Network Stack
Hongbo Zou* §, Wenji Wu§, Xian-He Sun*, Phil DeMar§, Matt Crawford§

* Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616
§ Computing Division, Fermi National Accelerator Laboratory, Batavia, IL 60510

{hzou1, sun}@iit.edu, {wenji, demar, crawdad}@fnal.gov

Abstract— Computing is now shifting towards
multiprocessing. The fundamental goal of multiprocessing
is improved performance through the introduction of
additional hardware threads or cores (referred to as
“cores” for simplicity). Modern network stacks can
exploit parallel cores to allow either message-based
parallelism or connection-based parallelism as a means to
enhance performance. OpenSolaris has redesigned and
parallelized to better utilize additional cores. Three
special technologies, named Softring Set, Soft ring and
Squeue are introduced in OpenSolaris for stack
parallelization. In this paper, we study the OpenSolaris
packet receiving process and its core parallelism
optimization techniques. Experiment results show that
these techniques allow OpenSolaris to achieve better
network I/O performance in multiprocessing
environments; however, network stack parallelization has
also brought extra overheads for system. An effective and
efficient network I/O optimization in multiprocessing
environments is required to cross all levers of the network
stack from network interface to application.
Keywords-Network Stack; OpenSolaris;

I. INTRODUCTION
As network bandwidths continue to increase at an

exponential pace, network stacks for uni-processor
architecture cannot keep pace with such growth in order
to efficiently utilize that bandwidth. At the same time,
the growing challenges of power consumption and heat
dissipation on single-core processor make the
computing industry shifting to multi-core architecture.
Therefore, it is a trend to use parallel processing core to
optimize network stack on multi-core architecture to
make up for the loss in performance growth of uni-
processor architecture.

The network stacks of mainstream operating
systems have already been parallelized. However,
parallelization has also brought extra overheads for OS
(Operating System): contention for shared resources,
software synchronization, and cache inefficiency [2].
Therefore, how to reduce these overheads have been the
leading challenges on network stack parallel
optimization. Investigations [1] indicate that the
coordinated affinity scheduling of network stack
processing and network applications on the same
processor can significantly reduce the extra overheads.
The coordinated affinity scheduling of network
processing and network applications on the same core
has three goals: interrupt affinity, flow affinity, and
network data affinity. Interrupt affinity implies that
network interrupts of the same type should be directed
to a single core. Flow affinity means that packets of

each data flow should be processed by a single core.
Network data affinity means that TCP/IP network
processing and network applications should be
scheduled on the same core to maximize cache
efficiency.

The OpenSolaris network stack architecture
(internally named FireEngine) went through multiple
transitions by which the core pieces (e.g., socket layer,
TCP, UDP, IP and device driver) using Softring Set
(SRS), Soft ring and Squeue (serialization queue) [4]. In
the hope of maximizing network stack parallelism,
FireEngine employs more threads on network stack
processing [6]. In some degree, this strategy addresses
the increasing performance demands of network-centric
applications and workloads. However, this strategy has
brought potential side effects that more threads are
bound to incur more context switch and decrease the
possibility of cache affinity on certain circumstance.
This paper will explore the strength and weakness of
OpenSolaris network stack in multiprocessing
environments. Because high-performance TCP data
receiving is a challenge to network stack performance,
our study mainly focus on OpenSolaris TCP packet
receiving process.

The rest of the paper is organized as follows:
Section II gives an introduction of Solaris network stack
history. Section III studies the OpenSolaris packet
receiving process and its optimization techniques. The
evaluation and experimental results are presented in
Section IV. Finally, Section V concludes the paper.

II. BACKGROUND
The network stack of Solaris 1.x was a BSD variant

and was very similar to the BSD Reno implementation.
Solaris 2.x migrated to AT&T SVR4 architecture. With
SVR4, the network stack went through a transition from
a BSD style stack to a STREAMs-based one [5]. During
the late 90s, with the prevalence of the multi-processor
and high speed NIC, how to parallel process high speed
network flow on multiple processors became an urgent
problem to OSes [1]. OpenSolaris network stack went
through one more transition to improve its parallelism.

The FireEngine is the new network stack developed
by Sun to meet the current and future networking needs.
Three special technologies: SRS, Soft ring and Squeue
are introduced for stack optimization. SRS is
responsible for collecting incoming packets from Rx
ring and classifying them into each soft-ring. Soft-ring
is a software abstraction of hardware Rx ring to enhance
system parallelism granularity. In addition, Squeue
tackles multiple threads synchronization and mutual

This research was supported in part by the Universities Research
Association (URA) Visiting Scholars Program and IIT Fieldhouse
Research Fellowship.

The 35th IEEE Conference on Local Computer Networks (LCN), Denver, 2010

 2

exclusion from IP to sockfs. These techniques allow
OpenSolaris network stack possible to achieve much
better performance in multiprocessing environments.

OpenSolaris is a thread-based, fully preemptible
system. To achieve the objectives of fairness,
interactivity and efficiency, the Solaris kernel
implements a global priority model to schedule threads
running in a prioritized round robin manner. There are
totally 170 values for thread priority assignment.
Interrupt threads (160-169), Real-time (RT) threads
(100-159), system threads (60-99), and user threads (0-
59) are assigned with different priorities, respectively.
A higher-priority thread preempts a lower one running
on a core in runtime. OpenSolaris network stack are
executed with threads. Using multi-threads to handle
packet processing can maximize network stack parallel
processing and reduce overall respond time [3].
However, preemption in packets processing and extra
context switch incur some potential negative effects on
network performance, especially in the high-speed
networking environments.

III. SOLARIS PACKET RECEIVING PROCESS

Figure 1. Solaris Networking Packet Receiving Process

An OpenSolaris network stack TCP packet receive
path is illustrated in Figure 1. On packet reception, there
are totally six types of threads working cooperatively in
the network stack to deliver an incoming packet from its
ingress to its final application. SRS, Soft-ring, and
Squeue are the main components of OpenSolaris
network stack. They are actually data structures to
queue incoming packets at different protocol levels.
Every data structure has an attached worker or poll
thread to perform the corresponding protocol
processing. According to the scope of these threads, the
packet reception can be roughly classified into three
stages [5]: (1) Packets are received and classified from
network interface card (NIC) to MAC layer’s SRS,
which are driven by Device Driver Processing; (2)
packets are spread to multiple Soft-Rings in SRS by
SRS worker thread. And then, every SR worker thread
continues the MAC Layer Processing to deliver packets
to IP interface; (3) depending on the speed of packets
arriving to Squeue, either Squeue worker or poll thread
will execute merged TCP/IP modules in Squeue
exclusively. Finally, Packet data is copied from the
socket receive buffer to the application. The following
section details these three stages.
A. Device Driver Processing

The Device Driver performs the layer 1 and 2
functions of the OSI 7-layer network model. When
packets are received by the NIC (assuming, NIC does

not support RSS technology), the NIC will generate
interrupts and inform the cores to respond to the
interrupt requests. A responding core then suspends its
current thread and invokes the corresponding NIC
interrupt thread to execute interrupt handler. After the
interrupt handler is completed, then interrupt thread
surrenders the core to the interrupted thread and goes to
sleep till a new packet arrives. An interrupt thread with
higher priorities is scheduled and preempted as a normal
one to classify and forward incoming packet to SRS
queues. After the packet delivery is completed, the
interrupt thread wakes up a SRS worker thread to take
over the next processing (shown in Figure 2i a). The
process is called the interrupt mode. If network
interrupts come too fast and the SRS worker thread is
not able to handle incoming packets timely, a poll
thread will be waked up by the worker thread to stop
further NIC interrupts and pull a chain of packets from
the Rx ring time to time, which is named the poll mode.
The poll thread will switch the NIC back to the interrupt
mode when there are no packets queued in Rx-ring. On
the receive side, a one to one mapping exists between a
SRS and a NIC hardware Rx ring. Thus, each individual
SRS can switch the hardware Rx ring processing
between the interrupt thread and the poll thread to
control incoming path bandwidth without impacting
each other. After packets have been delivered into SRS,
a software classification is executed by the SRS worker
thread to spread incoming packets to different soft
rings.

An RSS-enabled NIC supports multiple Rx rings.
Each ring is assigned a separate network-interrupt, and
hence an interrupt thread. To further improve the
network-processing efficiency. OpenSolaris network
stack applies a fast path mechanism that the SRS and
soft ring data structures will be bypassed by networking
processing if the NIC supports the RSS technology
(Figure 2i b). Under such conditions, a Squeue has a
one to one mapping with an Rx ring. When network
packets arrive, the RSS-enabled NIC classifies and
steers incoming packets into different Rx rings. The
associated interrupt thread for each Rx ring delivers
incoming packets to the mapping Squeue directly. In
addition, Squeue poll thread replaces SRS thread to pull
the incoming packets from the corresponding Rx rings
owned by each Squeue and dynamic switches the Rx
ring between interrupt and polling mode to control the
rate of interrupt and packet receiving.
B. Mac Layer Processing

Once the SRS worker thread has been waked up
(non-fast-path case), the software classification will be
executed to sort incoming packets as previously
mentioned. A full-featured software classification is
used when the NIC is not capable of classifying based
on L3/L4 headers, or is out of hardware Rx rings.
Software classification is performed by interrupt thread
(interrupt thread could continue to handle packets
delivered if there are no other packets backlogged on

 3

SRS queue) or SRS worker thread very early to assign a
packet to one of soft rings associated with the SRS
according to load spreading policies (e.g., hash of src IP
address or TCP/UDP protocol).

 i) Device Driver Packet Receiving ii) Mac Layer Packet Processing iii) Protocol Stack Processing

Figure 2. Three Stages of the Packet Receiving

The software classification functionality of the SRS
and soft rings provides the classification capability in
the MAC layer. These software modules aim to improve
network stack parallelism if RSS is not available.
Usually, a single Squeue is assigned to a SRS in the
absence of soft rings, or to each soft ring within a SRS.
With this assignment approach, Squeue could control its
bandwidth with its queue backlog state through
dynamic switching between soft ring worker thread and
Squeue poll thread. However, Soft rings within a single
SRS can be assigned to different Squeues. This function
is named fan-out. Since each Squeue is tied to a
separate core, the fan-out function spreads incoming
traffic to different cores and improves OpenSolaris
network stack parallelization in the MAC layer if RSS
is not available. After classification, SRS worker thread
will wake the corresponding soft ring worker thread up
to process its incoming packets on different cores in
parallel and independently. With this mechanism, TCP
processing load could be spread to multiple cores.
Figure 2ii illustrates packets classifying process with
the software classification engine.

If an RSS-enabled NIC can classify incoming
packets to different Rx rings, the packets could be
handed over to IP layer directly by means of function
calls. The entire MAC layer processing will be
bypassed. This is the fast-path mechanism that we have
discussed earlier. Such conditions happen in the
contexts that interrupt thread sends the incoming
packets to Squeue directly or the Squeue polls the
packet chain from the Rx ring with Squeue poll thread
for flow control.
C. Protocol Stack Processing

Before incoming packets are further delivered by
soft ring worker thread to Squeue (or pulled by Squeue
poll thread), IP connection classifier creates or looks up
a connection structure for each inbound packet. Based
on the classification, each packet is attached to a
connection state and queued in the Squeue to which its
connection is bound (Figure 2iii). After being delivered
to Squeue, the packet could be processed directly by
soft ring worker thread, or Squeue poll thread, or
queued for later processing by other threads. The choice

is determined by the Squeue entry point and the state of
the Squeue. A thread can enter Squeue for immediate
processing only when there is no other thread accessing
the same Squeue [4]. The Squeue only allows an
external thread (e.g., Soft ring worker thread, interrupt
thread on fast-path case) to do processing with a finite
duration, after which it switches processing to Squeue
worker thread. In the Squeue, Squeue poll thread can be
waked up at any time to take over current processing
when packets have been backlogged. Because
OpenSolaris only allow a single thread to enter Squeue
at any given time, threads have been serialized to access
the TCP connection structure in the merged TCP/IP
modules. This mechanism protects the whole
connection state from IP to sockfs. Finally, application
thread will be woken up to get its data packets on its
sockfs buffer.

IV. ANALYSIS AND EXPERIMENT
We ran data transmission experiments on two

machines connected back-to-back with optical fibers. In
the experiments, iperf transfers TCP data in the
direction from the sender to the receiver. The sender has
two Intel Xeon Dual-core 3.80GHz processors, 8GB
memory, and a Myri-10G NIC, running Linux 2.6.23.
The receiver has two Intel Xeon Quad-core 2.66GHz
processor, 16GB memory, and a Myri-10G NIC, loaded
with OpenSolairs SNV129.
A. Maximize Parallelism

The experiments aim to evaluate the effectiveness of
various parallelism techniques of OpenSolaris network
stack. In the experiments, iperf transmits TCP data for
100 seconds. The following parameters are varied: 1)
the number of Rx rings in the NIC; 2) the number of
soft rings; 3) enabling/disabling the fan-out function.
For simplicity, we labelled an experiment as RaSbFc.
Here, Ra represents a Rx rings; Sb refers to b soft rings;
and Fc refers to whether enable (c=1) or disable (c=0)
the fan-out function. There are totally four experiments,
R8S0F0, R1S8F1, R1S8F0, and R1S1F0. In addition,
we varied the number of TCP connections. Consistent
results are obtained across repeated runs. The
experiment results are as shown in Figure 3i. It can be
seen that R8S0F0 achieves much higher throughputs
than other experiments. This is because the RSS-
enabled NIC will effictively spread connections to
different cores, and hence increases the overall
parallelism in the receiver. The throughput of 16
connections reaches a peak of 6.47 Gbps. When the
number of connections is further increased, the achieved
throughput starts to decrease. This is because that the
increasing parallelism brings extra overheads for OS,
which finally offsets the parallelism gains.

It also can be seen that the software classification
functionality of the SRS and soft rings improves
network stack parallelism if RSS is not available. The
experiments show the effectiveness of this mechanism.
R1S8F1 achieves better throughputs than R1S1F0 and

 4

R1S8F0. In addition, we evaluate the fan-out function
by comparing R1S8F0 with R1S8F1. As for R1S8F0,
since the fan-out function is disabled, the 8 soft rings
are actually tied to a single core, the interrupt-handling
core. As a result, only one thread can access these soft
rings at any given time, with limited network stack
parallelism. As for R1S8F1, the fan-out function
actually assigns the 8 soft rings to multiple cores;
multiple threads can assess these soft rings at any given
time, which maximizes network stack parallelism. The
experiment results verify our argument and clearly
show that the throughputs of R1S8F1 are much higher
than those of R1S8F0.

i) Network Throughput on 4 Configuration ii) Comparison Experiment Logical Flowchat

Figure 3. Comparison Experiment

B. Enhance Core Affinity
OpenSolaris network stack supports interrupt

affinity and employs the per-core Squeue mechanism to
ensure flow affinity. We further evaluated network
stack performance from the perspectives of data
affinity. We designed three experiments as shown in
Figure 3ii: (a) network interrupts and iperf are bound to
core 7, and the soft ring fan-out function is disabled. (b)
The network interrupts are bound to core 7 and the soft
ring fan-out function is disabled. Iperf is bound to a
core set (from core 0 to 6). (c) iperf and NIC interrupts
are bound to the core 7 and the fan-out function is
enabled. In the experiments, iperf transmit 64 parallel
TCP connections from the sender to the receiver for 100
seconds. The performance metrics are collected in the
receiver. The metrics of interest are: 1) smtx - the
number of times cores failed to obtain a mutex
immediately; 2) migr - the number of thread migrations
to between cores; 3) l2_miss – the number of L2 cache
misses; 4) bus hitm – the number of memory
transactions with caused HITM to be asserted; 5)
sq_lock - the number of Squeue adaptive mutex hold
events. Consistent results are obtained across repeated
runs. The experiment results are listed in Table I (the
data is normalized by network bandwidth).

In (a), since the network interrupts and iperf are
bond to a single core and the soft ring fan-out function
is disabled, network processing and application are
executed on a single core. In the experiments, we
observed that Core 7’s CPU utilization ratio reaches
100%, and other cores’ CPU utilization ratios are
almost 0%. The observation confirms that network
processing and application are executed on a single
core. Therefore, (a) guarantees data affinity in network
processing. In (b), core 7’s CPU utilization ratio now
reduces to 67%; the average workload on the core set

(core 0 – 6) is 23%. The throughput of (b) is almost
twice that of (a). In (c), we bind iperf to core 7 and
enable the soft ring fan-out function. As a result, the
incoming network traffics are spread across to different
cores. For both (b) and (c), the network processing and
application are scheduled on different cores. However,
the hardware performance metrics clearly show that
scheduling iperf and network processing on the
different cores will cause significant extra costs (see
Table I). When network processing and application are
scheduled on different cores, it will cause three negative
side effects: (1) Concurrent threads contention for
shared resources (see the smtx and sq_lock
comparison); (2) Software synchronization overheads
(see the bus_hitm comparison); (3) Inefficient cache
usage (see the l2_miss comparison). As a general
purpose OS, the OpenSolaris scheduler prioritizes such
properties as load-balancing and fairness over core
affinity in network processing. As a result, it is more
likely that network processing and applications are
scheduled on different cores with more network
parallelisms introduced in multiprocessing
environments and leads to increased network processing
overheads.

TABLE I. DATA AFFINITY ANALYSIS UNDER FIGURE 3II.
 smtx migr l2_miss bus_hitm sq_lock

(a) 0.04 0.02 5.88 4.34 52.20
(b) 2.96 0.12 34.53 26.41 158.32

(c) 1.34 0.04 51.94 36.18 223.83

V. CONCLUSIONS

In this paper, we study the OpenSolaris packet
receiving process and its parallelism optimization
techniques. Experiment results show that these
techniques allow OpenSolaris to achieve better network
performance in multiprocessing environments;
however, network stack parallelization has also brought
extra overheads for OS. A more effective and efficient
parallel optimization still needs for improving the
current network stack.

REFERENCES
[1] A. Foong, et al. “Architectural Characterization of Processor

Affinity in Network Processing,” In Proceedings IEEE
International Symposium on Performance Analysis of Systems
and Software, 2005.

[2] P. Willmann, et al., “An Evaluation of Network Stack
Parallelization Strategies in Modern Operating System,” In
Proceedings of USENIX Annual Technical Conference, 2006.

[3] R. McDougall, et al., Solaris Internals: Solaris 10 and
OpenSolaris Kernel Architecture, 2nd Edition, Prentice Hall,
2006, ISBN-10: 0-13-148209-2.

[4] S. Tripathi, FireEngine – A New Networking Architecture for
SolarisTM Operating System. A Technical White Paper, 2004.

[5] S. Tripathi, et al., Crossbow: A Vertically Integrated QoS
Stack. In Proceedings of WREN’09, 2009.

[6] W. Wu, et al., The Performance Analysis of Linux Networking
– Packet Receiving. Computer Communications 30 (5) 2007.

