

Towards a unified X.509-based
Cloud Authorization

Steven Timm
Project leader, FermiCloud project

Ted Hesselroth
X509 developer, FermiCloud project
OGF32, Salt Lake City, July 16, 2011

Acknowledgements and disclaimers

● FermiCloud project staff: Ted Hesselroth, Faarooq
Lowe, Dan Yocum, Keith Chadwick, Parag
Mhashilkar, Tanya Levshina, Gabriele Garzoglio

● OpenNebula developers, in particular Tino
Vasquez who has been our liaison.

● My first OGF—please be nice if I get some
acronyms or technical terms wrong.

● Any talk on cloud software is obsolete as soon as
it is written

Outline

● Brief description of FermiCloud project

● Fermilab and FermiCloud security requirements

● Review of existing cloud AuthN/AuthZ

● Current X.509 authentication deployment in
OpenNebula

● Plans for X.509 authorization

The FermiCloud Project

● Infrastructure-as-a-service on demand

● Consolidated eight racks of legacy integration and
developer machines into one rack

● Virtual machines are integrated into Fermilab site
network, and open to the Internet.

● Phase 1: technology evaluation, requirements, pilot
service—complete

● Phase 2: scale up service and make it production quality
—in progress.

● Phase 3: high availability, redundancy, in planning.

Fermilab Security Enclaves

● General Computing Enclave
– Normal login access
– Strongly authenticated via Kerberos 5
– Kerberos 5 authentication extended to grid via Fermilab

Kerberos Certificate Authority (SLCS).
● Open Science Enclave

– Running arbitrary jobs via the grid
– X.509 authentication/authorization, any IGTF cert.

● Both Enclaves
– Approved OS baseline, required patch levels
– Automated vulnerability scanning

FermiCloud Security Requirements

● No stored secrets in virtual machine

● New virtual machines start in “network jail”, get
patched and virus-scanned before getting on
network

● Auto wake-up dormant machines for patches

● Interprocess communication between cloud
daemons secure.

FermiCloud Authentication Requirements

Launching a virtual machine:

– The equivalent of running a grid job with arbitrary code

– X.509 or Kerberos 5 authentication required

– Implemented in practice with X.509

● Logging into the virtual machine:

– Kerberos 5 authentication required

● Authorization—

– Only pre-authorized users get to launch virtual
machines. FermiCloud has to create your account.

Existing open-source cloud authentication

● EC2 SOAP API (Eucalyptus, OpenStack?, Nimbus)
– Uses X.509 certs BUT

● Self-signed
● Passwordless private key
● No idea of IGTF CA's, CRL's
● Often distributed in insecure ways.

● EC2 Query API (Eucalyptus, OpenStack?, Nimbus,
OpenNebula)

– Can be wrapped with TLS wrapper but by default not https:
– Uses access key/secret key pair
– “secret key” has to be stored unencrypted in a file

● Nimbus WSRF interface full GSI authentication with grid-mapfile.
● OCCI?

FermiCloud Plan, X.509-based AuthN

● We chose OpenNebula for wide diversity of virtual machines it
can make but despite its security and API limitations.

● Most 3rd-party tools use EC2 Query API so we have to make it
work

● Use pluggable authentication features of OpenNebula to use
internal X.509 authentication.

● “secret key” in user database-> X.509 DN.
● 3 components modified thus far: command line, “econe” query

daemon, and SunStone GUI
● Patches contributed back to OpenNebula, in trunk, expected to

be part of OpenNebula 3.0 release.
● Clients: HybridFox works without modification. Condor-G

modifying EC2_GAHP to support, first tests worked.

X.509 Authentication Details

● For “econe” and “Sunstone”
– X.509 certificate authenticated by Apache mod_ssl
– DN of certificate passed to OpenNebula core for normal

“password” check
– Server creates login token valid for subsequent

operations.
– Ruby plugin for X.509 authentication used

● For CLI
– Present certificate via X509_USER_CERT
– Create authentication token via oneauth command
– Ruby plugin for X.509 used.
– Also created certificate-based login for the admin user.

● For OCCI
– Haven't attempted yet but expect that the strategy used

with “econe” would work.
● Currently requires cert/key, trying to make it work with delegated

 X.509 proxies as well.

Towards X.509-based Authorization

● Authorization interoperability protocol currently used in
OSG, EGI grids among others. Fermilab was part of
effort. (GFD159)

● Clients make XACML-based callout to authorization
servers

● We want to implement VO and role-based authorization
(and resource quotas) as we move towards a bigger
cloud.

● Open-source cloud software needs to clean up its AuthZ
code anyway, lots of little MySQL databases, all different.

Current AuthZ work

● Make Ruby bindings to the existing client callout routines.

● Determine XACML parameters that should be sent to the
server. Anticipate they will be very similar to what is
currently used for grid jobs.

● Determine what modifications to code are necessary to
make OpenNebula, and other clouds.

● Rumor has it that OpenNebula 3.0 release will already
include pluggable authorization as well as authentication,
if so that will make it much easier.

● OpenNebula 3.0 also adding support for groups and
quotas

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

