L. 2

& Scalability and Performance Improvements
in Fermilab Mass Storage System

Matt Crawford, Catalin Dumitrescu, Dmitry Litvintsev, Alexander Moibenko, Gene Oleynik

Fermilab is Operated by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

rquests per second

Scalable Enstore Request Processing

B . N [
Monitoring,
encp commands mover
-
—gp request
S reply (normal or error)

To address these challenges Enstore and the SRM part of dCache were modified to scale for
performance, access rates, and capacity. The diagram at the left represents the request
processing of the Library Manager prior to scaling improvements.

cores.

bottleneck.

even though the

The following performance issues were identified:

feature was not in use.

By 2009 the Fermilab Mass Storage System had encountered several challenges:

The required amount of data stored and accessed in both tiers of the system (dCache and
Enstore) had significantly increased.

The number of clients accessing Mass Storage System had also increased from tens to
hundreds of nodes and from hundreds to thousands of parallel requests.

Server implementations were single threaded. This was in part the result of the version of
python in use, which did not have a threading implementation that could utilize multiple

In particular, a single thread was used to process different types of requests and was a

The end user had the ability to specify the delta time for queue priority advancement per
request. This feature put a heavy load on CPU resources, unnecessarily sorting request queues

The algorithm that throttled transfers from hosts to make sure they did not oversubscribe
network resources and hence tie up tape resources was not optimal

[

The Diagram on the right illustrates the re-architected Library Manager component of
Enstore. Improvements in the Library manager included:

Separate queues and threads for user (encp) requests, monitoring requests and tape
drive mover requests using Python multiprocessing threads that takes advantage of

multi-core computer architecture
Removal of the per request queue priority delta time dramatically speeding up queue
priority advancement processing
Improvement of the algorithm for throttling the number of active transfers that a
given host could have outstanding was improved.

In addition, other Enstore components were made multithreaded where appropriate.

This work increased the amount of simultaneously processed requests in a single Enstore
Library instance from about 1000 to over 30000. The rates of incoming request to
Enstore increased from tens to hundreds per second. Before the improvements, Enstore
could not cope with peak CMS loads, resulting in backlogs of requests. Since this work,
there have been no requests backlogs under the highest loads CMS has delivered.

(ot

GlobusFx Plugin |Tomcat 4 GlobusFx Plugin [Tomcat
Axis Axis
izati : tion
SRM Web Service SRM Web Service
SRM Request Handlers SRM Request Handlers
Asynchronous Synchronous Asynchronous Synchronous
Request Handlers Request Hapdlers Request Handlers Request H*dlers
‘l_mmm':r
Scheduler L;‘SRM;;‘
SRM Request DB SRM Request
implements [mol - ! implements- | n o
'\h*"‘(‘“‘“"ktilil — Lt . 4 AbstractStorageElel l"‘plc"‘?"l%
— e S— - mAuthorization - Az

- gPlazma

Namespac (== p,,|Manager #—

o

- Server

/

The plot shows request processing frequency vs number of simultaneous clients for
srmput and srmget operations when running 4 SRM instances. The result is compared
to terracotta based scalability solution which was contemplated in 2010 based on
SRM code and performance review. Terracotta behaved poorly because of latencies
introduced by global memory locks. This is not an ultimate judgment of Terracotta
distributed memory management, but rather a testament to the fact that SRM code

DCache

PnfsManager
‘ SpaceManager
PinManager /
- —_j -
’ TransferManager Data ’” L_
: Po T Data - Data

dCache Services
Designed for SRM Support

- ™
-~)

Monitoring,
commands

—

mover

movers
port

Scalable dCache SRM Server

l();_,lnﬂlnk

Testing

\3 designed is not easy to adapt to use with Terracotta.

300

250 r

200 r

150 |

100

50

4 nodes (chimera)

)

sn*nbut
srmget
srmput terracota
srmget terracota

Y ' ‘v‘ 111 **** ;1'\ U“‘ ,,\.I |‘I)J'

| o —“l“'.‘u 1 A | {"‘|I‘\ Y\'JI" {\M iy !I\W -u‘h' .""v\\ ("I'fl 'I | 1, if L‘Ml " | .l

&l ‘L | ll ’~." I |

0 50 100 150 200 250 300 350 400

load (#of simultaneous clients)

/m

_‘”“2“

aw multiple instances of SRM servers run i

the system. They share a common database
backend for request persistency in DB. So that DB
holds request state. The instance of SRM that
received the request serves it. Other SRM
instances of provide the status of this request by
restoring it from the database w/o caching. Any
action on request starts with pulling request
status from the DB. Each SRM instance
periodically polls in-memory requests to re-check
their status in DB to catch request status change
that might have been processed by the instan
that actually did not schedule the request.

SRM Design

N

3

CMS T1 SRM setup
CMS T1 uses round-robin DNS setup.. That is, "cmssrm”
resolves to "cmssrm1" or "cmssrm2" on round-robin basis.
cmssrm1 and cmssrm2 have their own grid host identities.

o

\/

cmsSsrm

- D

OJ
gooo oo
gooj poo

gootboo
0000 0oo
0000 ooo
(000 ooo
fooo ooo
fooo ooo
0000 0oo

L 1

Round Robin DNS

=3

fooo ooo
00oj poo
foocano
0000 0oo
gooo ooo
fooo ooo
fooo ooo
(000 0oo
gooo ooo

| I
cmssrml (IP1)

o o

fooo oo
goo} poo
goocano
0000 000
fooo oo
0000 0oo
gooo ooo
0000 000
gooo oo

| I

cmssrm2 (IP2)

