G-NetMon: A GPU-accelerated Network Performance Monitoring System for Large Scale Scientific Collaborations
Wenji Wu, Phil DeMar, Don Holmgren, Amitoj Singh
Computing Division, Fermilab
Batavia, IL 60510, USA

E-mail: {wenji, demar, djholm, amitoj}@fnal.gov

Abstract—Network traffic is difficult to monitor and analyze, especially in high-bandwidth networks. Performance analysis, in particular, presents extreme complexity and scalability challenges. GPU (Graphics Processing Unit) technology has been utilized recently to accelerate general purpose scientific and engineering computing. GPUs offer extreme thread-level parallelism with hundreds of simple cores. Their data-parallel execution model can rapidly solve large problems with inherent data parallelism. At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system, called G-NetMon, to support large-scale scientific collaborations. In this work, we explore new opportunities in network traffic monitoring and analysis with GPUs. Our system exploits the data parallelism that exists within network flow data to provide fast analysis of bulk data movement between Fermilab and collaboration sites. Experiments demonstrate that our G-NetMon can rapidly detect sub-optimal bulk data movements.
Keywords: GPU, Flow Analysis, Network Performance Monitoring, High-speed netwworks.
I. Introduction
Large-scale research efforts such as Large Hadron Collider experiments and climate modeling are built upon large, globally distributed collaborations. The datasets associated with these projects commonly reach petabytes or tens of petabytes per year. The ability to efficiently retrieve, store, analyze, and redistribute the datasets generated by these projects is extremely challenging. Such projects depend on predictable and efficient data transfers between collaboration sites. However, achieving and sustaining efficient data movement over high-speed networks with TCP remains an on-going challenge. Obstacles to efficient and sustainable data movement arise from many causes and can create major impediments to the success of large-scale science collaborations. In practice, most sub-optimal data movement problems go unnoticed. Ironically, although various performance debugging tools and services are available to assist in identifying and locating performance bottlenecks, these tools cannot be applied until a problem is detected. In many cases, effective measures are not taken to fix a performance problem simply because the problem is either not detected at all or not detected in a timely manner. Therefore, it is extremely beneficial to possess a set of tools or services that can quickly detect sub-optimal data movement for large-scale scientific collaborations.

Generally speaking, network traffic is difficult to monitor and analyze. Existing tools like Ping, Traceroute, OWAMP [
] and SNMP provide only coarse-grained monitoring and diagnosis data about network status [
][
]. It is very difficult to use these tools to detect sub-optimal data movement. For example, SNMP-based monitoring systems typically provide 1-minute or 5-minute averages for network performance data of interest. These averages may obscure the instantaneous network status. On the other extreme, packet trace analysis [
][
] involves traffic scrutiny on a per-packet basis and requires high-performance computation and large-volume storage. It faces extreme scalability challenges in high-speed networks, especially as network technology evolves towards 100 Gbps. Flow-based data analysis, using router-generated flow-data such as Cisco’s NetFlow [
] lies in between the two extremes. It produces a finer-grained analysis than SNMP, yet much less complex or voluminous as packet trace analysis. In this paper, we use flow-based analysis to detect sub-optimal data movements for large-scale scientific collaborations.

[image: image1.emf]

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

20
09
/1
1/
12
T0
0

20
09
/1
1/
15
T0
8

20
09
/1
1/
18
T1
6

20
09
/1
1/
22
T0
0

20
09
/1
1/
25
T0
8

20
09
/1
1/
28
T1
6

20
09
/1
2/
02
T0
0

20
09
/1
2/
05
T0
8

20
09
/1
2/
08
T1
6

20
09
/1
2/
12
T0
0

20
09
/1
2/
15
T0
8

20
09
/1
2/
18
T1
6

20
09
/1
2/
22
T0
0

N
um

be
r o

f F
lo
w
 R
ec
or
ds

M
ill
io
ns

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2

0

0

9

/

1

1

/

1

2

T

0

0

2

0

0

9

/

1

1

/

1

5

T

0

8

2

0

0

9

/

1

1

/

1

8

T

1

6

2

0

0

9

/

1

1

/

2

2

T

0

0

2

0

0

9

/

1

1

/

2

5

T

0

8

2

0

0

9

/

1

1

/

2

8

T

1

6

2

0

0

9

/

1

2

/

0

2

T

0

0

2

0

0

9

/

1

2

/

0

5

T

0

8

2

0

0

9

/

1

2

/

0

8

T

1

6

2

0

0

9

/

1

2

/

1

2

T

0

0

2

0

0

9

/

1

2

/

1

5

T

0

8

2

0

0

9

/

1

2

/

1

8

T

1

6

2

0

0

9

/

1

2

/

2

2

T

0

0

N

u

m

b

e

r

o

f

F

l

o

w

R

e

c

o

r

d

s

M

i

l

l

i

o

n

s

Figure 1 Number of Flow Records Generated at Fermilab Border Routers

To quickly detect sub-optimal data movements, it is necessary to calculate transfer rates between collaboration sites on an ongoing basis. Sub-optimal bulk data movement is detected if the associated transfer rate falls below some standard that is either predefined or provided by other network services. To this end, we use network flow data to calculate transfer rates between Fermilab and collaboration sites. Our flow-based analysis requires traffic scrutiny on a per-flow-record basis. In high-bandwidth networks, hundreds of thousands of flow records are generated each minute. Fermilab is the Tier-1 Center for the Large Hadron Collider’s (LHC) Compact Muon Solenoid (CMS) experiment, as well as the central data center for several other large-scale research collaborations. Scientific data (e.g., CMS) dominates off-site traffic volumes in both inbound and outbound directions. Every hour, millions of flow records are generated at Fermilab border routers (Figure 1). Processing that much flow data in near real time requires both enormous raw compute power and high I/O throughputs.
Recently, GPU technology has been employed to accelerate general purpose scientific and engineering computing. GPUs offer extreme thread-level parallelism with hundreds of simple cores. The massive array of GPU cores offers an order of magnitude higher raw computation power than a conventional CPU. Its data-parallel execution model and ample memory bandwidth effectively hide memory access latency and can boost I/O intensive applications with inherent data parallelism.

At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system (G-NetMon) for our large-scale scientific collaborations. In this work, we explore new opportunities in network traffic monitoring and analysis with GPUs. G-NetMon exploits the inherent data parallelism that exists within network flow data and uses a GPU to rapidly calculate transfer rates between Fermilab and collaboration sites in near real time. Experiments demonstrate that GPU can accelerate network flow data processing by a factor of 5 or more. G-NetMon can rapidly detect sub-optimal bulk data movement.

The rest of the paper is organized as follows. In section 2, we discuss some background and related work. In section 3, we introduce our G-NetMON design. In section 4, we discuss the experiments we used to evaluate how GPU can accelerate network flow data processing in high-speed network environments. Also, we evaluate how our system can effectively detect sub-optimal data transfer between Fermilab and collaboration sites. Finally, Section 5 concludes the paper.
II. Background & Related Work
The rapidly growing popularity of GPUs makes them a natural choice for high-performance computing. Our GPU-accelerated network performance monitoring system is based on NVIDIA’s Tesla C2070, featuring NVIDIA’s latest Fermi GPU architecture. In the following sections, we give a simple introduction of NVIDIA’s CUDA programming model and the Fermi GPU architecture.
A. CUDA and the Fermi GPU Architecture
CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute programs written with C, C++, and other languages. It provides a simple programming model that allows application developers to easily program GPU and explicitly express parallelism. A CUDA program consists of parts that are executed on the host (CPU) and parts on the GPU. The parts that exhibit little or no data parallelism are implemented as sequential CPU threads. The parts that exhibit a rich amount of data parallelism are implemented as GPU kernels. GPU instantiates a kernel program on a grid of parallel thread blocks. Each thread within a thread block executes an instance of the kernel, and has a per-thread ID, program counter, registers, and private memory. Threads within a thread block can cooperate among themselves through barrier synchronization and shared memory. Thread blocks are grouped into grids, each of which executes a unique kernel. Each thread block has a unique block ID. A thread indexes its data with its respective thread ID and block ID.

NVIDIA’s Fermi GPU architecture consists of multiple streaming multiprocessors (SMs), each consisting of 32 CUDA cores. A CUDA core executes a floating-point or integer instruction per clock for a thread. Each SM has 16 load/store units, allowing source and destination addresses to be calculated for sixteen threads per clock and 4 special function units (SFUs) to execute transcendental instructions. The SM schedules threads in groups of 32 parallel threads called warps. Each SM features two warp schedulers and two instruction dispatch units, allowing two warps to be issued and executed concurrently. The execution resources in a SM include registers, thread block slots, and thread slots. These resources are dynamically partitioned and assigned to threads to support their execution. We list these resource limits per SM in Table 1. In addition, the Fermi GPU has six 64-bit memory partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 DRAM memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread global scheduler distributes thread blocks to SM thread schedulers.
Table 1 Physical Limits per SM for Fermi GPU

	Maximum Warps:
	48

	Maximum Threads:
	1536

	Maximum Blocks:
	8

	Shared Memory:
	48K

	Register Count:
	32K

B. GPU in Network Related Applications
GPU offers extreme thread-level parallelism with hundreds of simple cores. The massive array of GPU cores offers an order of magnitude higher raw computation power than a conventional CPU. GPU’s data-parallel execution model and ample memory bandwidth fits nicely with most networking applications, which have inherent data parallelism at either packet level or at network data flow level. Recently, GPUs have shown a substantial performance boost to many network applications, including GPU-accelerated software router [
], pattern matching [
][
][
], network coding [
], IP table lookup [8], and cryptography [
]. So far, the application of GPU in network applications is manly focusing at packet level. In this work, we make use of GPU to accelerate network flow data analysis.

C. Flow-based Analysis

Flow-based analysis is widely used in traffic engineering [
][
], anomaly detection [
][
], traffic classification [
][
], performance analysis, and security [
][
][
], etc. For example, Internet2 makes use of flow data to generate traffic summary information by breaking the data down in a number of ways, including by IP protocol, by a well-known service or application, by IP prefixes associated with “local” networks, or by the AS pairs between which the traffic was exchanged. In [15], the sub-space method is applied to flow traffic to detect network-wide anomalies.

III. G-NetMon System Design
To quickly detect sub-optimal data movements, G-NetMon uses network flow data to calculate transfer rates between Fermilab and collaboration sites on an on-going basis. A sub-optimal bulk data movement is detected if the associated transfer rates fall below some standard that is either predefined or provided by other network services. Our GPU-accelerated network performance monitoring system is deployed as shown in Figure 2. It receives flow data from site border routers as well as internal LAN routers. The routers export NetFlow V5 records. The flow data is complete, not sampled.

A. System Hardware Configuraton
Our flow-based analysis requires traffic scrutiny on a per-flow-record basis. Fermilab is the US-CMS Tier-1 Center and the main data center for a few other large-scale research collaborations. Every hour, millions of flow records are generated at Fermilab border routers (Figure 1). Considering the increasing volume of scientific data created every year, coupled with the evolution towards to 100 GigE network technologies, it is anticipated that our network flow data analysis requirements will be increasing accordingly. Therefore, our G-NetMon not only needs to handle current network conditions, but have the capability to accommodate the large growth of traffic expected in the near future. For now, Fermilab border routers generate less than 5,000,000 flow records every hour. Our target is to allow G-NetMon to handle 50,000,000 flow records per hour.

[image: image2.emf]

R&E
Networks

FNAL Site

Border
Routers

CPU

HUB

GPU

NIC

Network Performance
Monitoring System

CPUCPU
RAM

Tesla C2070

FlowData
Feed

R&E

Networks

FNAL Site

Border

Routers

CPU

HUB

GPU

NIC

Network Performance

Monitoring System

CPU

CPU

RAM

Tesla C2070

FlowData

Feed

Figure 2 G-NetMon – Deployment
G-NetMon is implemented in a system that consists of two 8-Core 2.4 GHz AMD Opteron 6136 processors, two 1Gbps Ethernet interfaces, 32 GB of system memory, and one Tesla C2070 GPU. The Tesla C2070 GPU features the Fermi GPU architecture. Its key features are listed in Table 2.
Table 2 Tesla C2070 Key Features
	SMs:
	14

	Cores:
	448

	Core Freq.:
	1.15 GHz

	Global Memory Size:
	6GB GDDR5

	Memory Bandwidth:
	144 GB/s

	System Interface:
	PCIex16 Gen2

	Double Precision Peak Performance:
	515 GFlops

B. System Architecture
The G-NetMon architecture is as shown in Figure 3. The system consists of a few parts that are executed on either the host (CPU) or GPU. Based on the CUDA design principle, the parts that exhibit little or no data parallelism are implemented as sequential CPU threads; the parts that exhibit a rich amount of data parallelism are implemented as GPU kernels.
[image: image3.emf]

FlowData
Receiver

NetFlow v5
(UDP)

Flow Data
StoreSite Catalog CP

U
Do

m
ai

n
G

PU
 D

om
ai

n

Site
Registration

Flow Data
Store

Site
Registration

Copy

TransRate
Kernel

Catalog
Kernel

G
PU

Site Catalog

TranRate
Statistics

TranRate
Statistics

NetPerf
Monitoring

Performance
Warning

FlowData

Receiver

NetFlow v5

(UDP)

Flow Data

Store

Site Catalog

C

P

U

D

o

m

a

i

n

G

P

U

D

o

m

a

i

n

Site

Registration

Flow Data

Store

Site

Registration

Copy

TransRate

Kernel

Catalog

Kernel

G

P

U

S

i

t

e

C

a

t

a

l

o

g

TranRate

Statistics

TranRate

Statistics

NetPerf

Monitoring

Performance

Warning

Figure 3 A G-NetMon – Architecture
B.1 CPU Domain
Three CPU threads are implemented in the CPU domain.

Site Registration Thread: it registers scientific subnets to our network performance monitoring system. The registered subnets are stored in the Site Catalog (a data buffer in host memory), which helps to identify scientific data transfer between Fermilab and collaboration sites. Large-scale research efforts like LHC CMS are built upon large, globally distributed collaborations. However, available computing and networking resources at different collaboration sites varies greatly. Larger sites, such as Fermilab, have data centers comprising thousands of computation nodes that function as massively scaled, highly distributed cluster-computing platforms. These sites are usually well connected to the outside world with high-bandwidth links of 10 Gbps or more. On the other hand, some small collaboration sites have limited computing resources and significantly lower bandwidth-networking connectivity. Therefore, scientific data transfers between collaboration sites can vary greatly in terms of performance and scale. It is difficult to design machine-learning algorithms to automatically identify scientific data transfers in terms of traffic patterns or characteristics. However, for a large-scale scientific application, the collaboration relationships between research institutions tend to be relatively static. In addition, the systems and networks assigned to a scientific application at a site are relatively fixed. Large-scale scientific data movement usually occurs between some specific subnets at each site. Therefore, by registering these subnets to our system, we can easily monitor data transfers between Fermilab and its collaboration sites through flow analysis of traffic between those subnets.
FlowData Receiver Thread: a UDP daemon, which receives NetFlow V5 packets from border routers. The received flow records are stored in Flow Data Store (a data buffer in host memory). In the current implementation, Flow Data Store is designed to hold 50,000,000 flow records. Since a NetFlow V5 flow record is less than 50 Bytes, these 50,000,000 flow records require approximately 2.5GB of memory. Processed flow records in Flow Data Store are periodically cleaned and stored to disk to create space for subsequent network flow data.
NetPerf Monitoring Thread: the main thread of our network performance monitoring system. Periodically (each hour), it copies Site Catalog and Flow Data Store to GPU memory and launches the corresponding GPU kernels to calculate the transfer rates between Fermilab and its collaboration sites. When GPU computation is completed, the NetPerf Monitoring Thread will synthesize the final results. A sub-optimal bulk data movement is detected if the associated transfer rates are below some predefined standard. Considering that TCP traffic is elastic, we use the statistics of transfer rate medians as our evaluation criteria. For a given site, network performance warnings would be issued if the associated median were less than 1Mbps for two consecutive hours.
B.2 GPU Domain

1) GPU Kernels
In the GPU domain, we have implemented two GPU kernels, Catalog Kernel and TransRate Kernel.

Catalog Kernel: it builds GPU Site Catalog, a hash table for registered scientific subnets in GPU memory, from Site Catalog. TransRate Kernel makes use of GPU Site Catalog to rapidly assign flow records to their respective subnets by examining their source or destination IP addresses. To make the hash table easy to implement and fast to search, all registered networks are transformed into /24 subnets and then entered in GPU Site Catalog. For the sake of scientific data transfer, a /24 subnet is large enough for most collaboration sites. Any network larger than /24 is divided into multiple entries in the hash table. Since GPU Site Catalog is mainly used for lookup operations and is rarely updated, there is no need to implement locks to protect unsynchronized write accesses. If any update is necessary, the table is rebuilt from scratch.

TransRate Kernel: it calculates the transfer rates between Fermilab and its collaboration sites. TransRate Kernel exploits the inherent data parallelism that exists within network flow data. When GPU instantiates TransRate Kernel on a grid of parallel threads, each thread handles a separate flow record. On a C2070 GPU, thousands of flow records can be processed simultaneously. To handle a flow record, a TransRate thread first attempts to assign the flow record to its respective site and then calculates the corresponding transfer rates. With a hash of the /24 subnet of the flow record’s source or destination IP address, TransRate Kernel looks up the site to which the flow record belongs in GPU Site Catalog. Because each flow record includes data such as the number of packets and bytes in the flow and the timestamps of the first and last packet, calculation of transfer rate is simple. However, two additional factors must be considered. First, because a TCP connection is bidirectional, it will generate two flow records, one in each direction. In practice, a bulk data movement is usually unidirectional. Only the flow records in the forward direction reflect the true data transfer activities. The flow records in the other direction simply record the pure ACKs of the reverse path and should be excluded from transfer rate calculations. These flow records can be easily filtered out by calculating their average packet size, which is usually small. Second, a bulk data movement usually involves frequent administrative message exchanges between the two endpoints. A significant number of flow records are generated due to these activities. These records usually contain a small number of packets with short durations; their calculated transfer rates are generally of low accuracy and high variability. These flow records are also excluded from our transfer rate calculation.
We calculate transfer rates (maximum, minimum, average, median) for each registered site and for each host in a registered site. To calculate the median statistics, we create an array of buckets for each host to count transfer rate frequencies. Each bucket represents a 10kbps interval. To save space, all transfer rates greater than 100Mpbs are counted in the last bucket. Therefore, for each host, we maintain a bucket array of size 10001. A bucket n represents the frequency of flow rates that fall within the interval [n*10kbps (n+1)*10kbps]. From the resulting bucket counts we determine the host and site medians. We use atomic CUDA operations to calculate and store all transfer rates in order to prevent unsynchronized data accesses by the threads.

2). GPU Kernel Optimization

The Catalog Kernel is relatively simple, with few opportunities for optimization. In fact, its functionality could be included in TransRate Kernel. However, because the overhead to launch a kernel is negligible [7], we have chosen to implement it as an independent kernel to preserve a modular design.

Our TransRate kernel is optimized using various approaches:

· Register Spilling Optimization. Without this optimization, a TransRate thread will use 47 registers. These registers hold compiler-generated variables. Because registers are in-chip memories that can be accessed rapidly, a single thread’s performance increases if registers are readily available. However, when we used the CUDA Occupancy Calculator to measure SM occupancy with varying block sizes, to our surprise, the occupancy rates were unacceptably low (Table 3). At such a low SM occupancy, the overall GPU performance would be greatly degraded. The improvement in each single thread cannot make up for the loss in overall thread parallelism. To raise GPU occupancy, we limit the maximum number of registers used by TransRate to 20 by compiling this kernel with the “-maxrregcount 20” option. As shown in Table 3, this register spilling optimization is effective, and the best GPU occupancy achieved as the number of threads per block is varied is now 100%.

· Shared memory. Shared memories are on-chip memories and can be accessed at very high speed in a highly parallel manner. The TransRate kernel makes use of shared memory as much as possible to accelerate flow data processing.

· Non-caching Load. Fermi architecture global memory has two types of loads, caching and non-caching. The caching load is the default mode. It first attempts to load from L1 cache, then from L2 cache, and finally from the global memory. The load granularity is 128 bytes. The non-caching load first attempts to hit in L2, and then the global memory. Its load granularity is 32 bytes. Our experiments show that non-caching load can boost the performance by at least 10%, and so the optimized TransRate kernel uses non-caching load to access Flow Data Store.
Table 3 SM Occupancy Rates at Different Kernel Block Sizes

	Thread Size per Block
	64
	128
	256
	512

	SM Occupancy Rates @ Register/Thread=47
	33%
	42%
	33%
	33%

	SM Occupancy Rates @ Register/Thread=20
	33%
	67%
	100%
	100%

IV. Experimental Evaluation
In this section, we show results of our experimental evaluation of G-NetMon. First, we evaluate the performance of our G-NetMon system. Also, we study how GPU can accelerate network flow data processing in high-volume network data flow environments. Second, we deploy our G-NetMon in Fermilab production environments. We evaluate how G-NetMon can effectively detect sub-optimal data transfers between Fermilab and its collaboration sites.
A. Performance Evaluation

At present, Fermilab border routers produce fewer than 5,000,000 flow records in an hour. However, our G-NetMon system is designed to handle a maximum load of 50,000,000 flow records per hour. To evaluate the capabilities and performance of our system at such a network load, we collected more than a day’s flow records from the border routers and fed G-NetMon with 50,000,000 flow records. FlowData Receiver Thread receives these flow records and stores them in Flow Data Store. We also select the top 100 /24 scientific subnets that transfer to and from Fermilab in terms of traffic volume, and register them with Site Catalog.
A.1 GPU Performance & Optimization
To evaluate GPU performance, and the effects of various GPU kernel optimization approaches, we have implemented several G-NetMon variants with different enabled optimizations. Our objectives are to compare effects:

· Shared-Memory vs. Non-Shared-Memory. For Non-Shared-Memory, the TransRate Kernel does not use shared memory, and all the operations are executed on GPU global memory.
· Caching-Load vs. Non-Caching-Load.
· Hash-Table-Search vs. Non-Hash-Table-Search (sequential search). To calculate transfer rates between Fermilab and collaboration sites, it is first necessary to assign flow records to their respective sites. G-NetMon implements a hash table to perform this function. We have also implemented a Non-Hash-Table method (i.e., sequential search) in which all of the registered scientific subnets are maintained in a sequential list. To categorize a flow record, the TransRate kernel searches the list one by one until a matching site, or none, is found.

We list all the G-NetMon variants according to enabled optimizations in Table 4. In the table, “Y” indicates that the “xxx” optimization is enabled, while “N” indicates the optimization is not used. We enabled the register-spilling optimization when compiling all of these GPU variants, and so the TransRate Kernel is launched with 100% occupancy. We ran experiments to measure the rates at which these G-NetMon variants process network flow data and compared them with the performance of the fully optimized G-NetMon.
Table 4 GPU Variants with Different Features

	GPU Variants
	Features

	
	Hash Table
	Share-Memory
	Caching Load

	G-NetMon
	Y
	Y
	N

	NH-S-C-GPU
	N
	Y
	Y

	NH-NS-C-GPU
	N
	N
	Y

	NH-NS-NC-GPU
	N
	N
	N

	H-NS-C-GPU
	Y
	N
	Y

	H-NS-NC-GPU
	Y
	N
	N

	H-S-C-GPU
	Y
	Y
	Y

	NH-S-NC-GPU
	N
	Y
	N

[image: image4.png]E

Processing Time (ms)
H

8 088 8

0

& $*

&

&

Figure 4 GPU Processing Time

The NetPerf Monitoring thread copies Site Catalog and Flow Data Store to GPU memory and launches the corresponding GPU kernels to calculate the transfer rates. We evaluate how fast GPU can handle these data. The experiment results are shown in Figure 4. To handle 50,000,000 flow records, G-NetMon takes approximately 900 milliseconds. The effects of the various GPU kernel optimizations are shown. For example, with the combination of hash table and non-caching-load, shared-memory can accelerate flow record processing by as much as 9.51%. As discussed above, shared memories are on-chip memories that can be accessed at very high speed in a highly parallel manner. The experiment results show that the hash table mechanism significantly boosts G-NetMon performance, ranging from 11% to 20%. We used NVIDIA’s Compute Visual Profiler to profile the TransRate Kernel execution. Figure 5 gives the “Instruction Issued” comparisons of Hash-Table vs. Non-Hash-Table of all GPU code variants. These experiments show that the hash table mechanism can significantly reduce flow record categorization overheads.

[image: image5.png]2508408

‘A mmn B I I I I
o . #f #’f j’) fﬁ ff f’ﬁ “f(}?

§ % % § §
g & 8 & §
T e

Figure 5 Hash-Table (in Red) vs. Non-Hash-Table (in Blue)

To our surprise, Figure 4 shows that non-caching-load boosts the performance significantly, by more than 10%. We speculate that the non-caching-load mode better fits G-NetMon’s traffic pattern. When using the caching load, the performance gain in L1 cache does not compensate for the performance loss caused by the larger load granularity. Table 5 gives the comparisons of caching load vs. non-caching load for various memory access parameters. We see that caching load causes higher memory traffic, degrading the overall performance.
Table 5 Caching-Load vs. Non-Caching-Load
	
	G-NetMon
	H-S-C-GPU

	L2 Read Requests
	1.61835e+08
	2.98727e+08

	L2 Write Requests
	1.15432e+07
	1.61657e+07

	Global Memory Read Requests
	2.17803e+08
	2.48466e+08

	Global Memory Write Requests
	3.01409e+07
	3.22455e+07

A.2 GPU vs. CPU

In order to evaluate how GPU can accelerate network flow data processing in high-bandwidth network environments, we compare G-NetMon with its corresponding CPU implementations. We implemented two CPU variants, which are termed H-CPU and NH-CPU, respectively. Like G-NetMon, H-CPU applies a hash table mechanism to rapidly assign flow records to their respective sites and then calculates the corresponding transfer rates. In contrast, NH-CPU implements a similar Non-Hash-Table method (sequential search) as NH-S-NC-GPU, in which all of the registered scientific subnets are maintained in a sequential list. To assign a flow record, CPU searches the list one by one until a matching site, or none, is found. We ran each of H-CPU and NH-CPU on a single 2.4 GHz AMD Opteron 6136 core, with the same set of data as used above. We make the comparisons of G-NetMon vs. H-CPU and NH-S-NC-GPU vs. NH-CPU. The results are shown in Figure 6. It takes H-CPU 4916.67 ms to handle 50,000,000 flow records; in contrast, G-NetMon requires 900ms. For the non-hash-table variants, NH-CPU and NH-S-NC-GPU take 36336.67 ms and 1098.23 ms, respectively. The comparisons clearly show that GPU can significantly accelerate the flow data processing, by a factor of 5.38 (G-NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-NC-GPU vs. NH-CPU). The reason that we present the comparison of GPU vs. CPU for the non-hash-table implementations is because many network applications feature a similar sequential search computation pattern as our non-hash-table implementations. For example, a network security application needs to examine each packet or flow with security rules one by one. The experiment results show GPU can significantly accelerate the data processing.

[image: image6.png]G-NetMon

NHSNC

Py

NH-CPU.

Figure 6 G-NetMon vs. CPU
A.3 Receiving Flow Records

G-NetMon receives NetFlow V5 packets from border routers via UDP. The received flow records are stored in Flow Data Store. A NetFlow V5 flow record is 48 bytes. A 1500-byte UDP packet, the largest allowed by standard Ethernet at the network, can transmit at most 30 flow records. Our G-NetMon system is designed to handle a maximum load of 50,000,000 flow records per hour. Therefore, the FlowData Receiver thread needs to handle at least 463 packets per second, which amounts to an average traffic load of 5.56Mbps. Our G-NetMon system can easily handle such a traffic load. However, because the flow records are transmitted via UDP, if CPU is busy with other tasks and the FlowData Receiver thread is not scheduled to handle the NetFlow traffic in time, the incoming packets can be dropped when the UDP receive buffer is full. We have run experiments to verify this scenario. In the experiments, the FlowData Receiver thread was assigned to share a core with a CPU-intensive application and the UDP receive buffer size was set to 4MB. We then sent it UDP traffic at varying rates, ranging from 100Mbps to 1Gbps, for 0.5 seconds. When the UDP traffic rates reached 500Mbps or above, serious packet loss would occur. We repeated the above experiments with the FlowData Receiver thread assigned a dedicated core. No packet loss was detected. Therefore, to avoid the situation of NetFlow packets being dropped, G-NetMon assigns a dedicated core for the FlowData Receiver thread to handle NetFlow traffic.
B. Network Performance Monitoring

We have registered 100 /24 scientific subnets that transfer to and from Fermilab in G-NetMon. G-NetMon monitors the bulk data movement status between Fermilab and these subnets by calculating the corresponding data transfer statistics every hour. G-NetMon calculates the transfer rates (maximum, minimum, average, median) for each registered site and for each host in a registered site. Figure 7 gives the data transfer rates in an hour between Fermilab and a collaboration site.
[image: image7.png]800

wenji@gputest2:/data/wenji/ gpu-shared-memory — ssh — 215x18

Site Netuork:

Host
Host
Host
Host
Host
Host
Host
Host
Host
Host
Host
Host
Host
Host
Host
Host

®
P
P
P
P
P
P
P
P
P
P
P
P
P
P
®

144. 16,

acidress:
acidress:
acidress:

dekdress:

acidress:
acidress:
acidress:
acidress:

dekdress:

acidress:
acidress:
acidress:
acidress:

dekdress:

acidress:

Address:

111.8 /243 Data Transferred:

104,
104,
104,
104,
104,
104,
104,
104,
104,
104,
104,
104,
104,
104,
104,
144,

16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.

111,
111,
111,
111,
111,
111,
111,
111,
111,
111,
111,
111,
111,
111,
111,
111,

3,
4,
7,
a8,
40,
50,
53,
54,
55,
56,
57,
58,
50,
60,
61,
62,

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Transferred:
Transferred:
Transferred:

Transferred:

Transferred:
Transferred:
Transferred:
Transferred:

Transferred:

Transferred:
Transferred:
Transferred:
Transferred:

Transferred:

Transferred:

Transferreds

41933398959 Bytes,

571785056
1421253338

et
3383424495
282199919
s378%a5617
2aamaezsed

648636974
2a72298576
2196479037
os724266
452357646
54565098

2ovaosen
416444045
2062358312

Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,
Bytes,

28343460 Packets,

238889
o5
532476

2zmamEe

1897711

3670408

1986604
ame37

1384526

1473845

2195328

235347

Sesesaz
148475

2238317

1383854

Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,
Packets,

31448 Flows,

2145
1281
1489
1644
1520
a1z
1818
1585
1425
1224
1960
2122
2181
1713
um

A

Flovs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flavs,
Flows,

14911 Bulk Flows; Throughputs (Mbps): Aver B.42, Max 33.46, Medion 8.87,ftin 6.83

1094
B
44
667
B

1463
467
506
756
54
e

1245
948
394

144
a0z

Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk
Bulk

Flous;
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flous:
Flows;

Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs
Throughputs

(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver
(Hops) Aver

.39,
a2,
28,
61,
62,
44,
71,
15,
35,
54,
43,
a2,
55,
o5,
35,
67,

Hax23,
Hax2z.
Hax 7
Hax3s,
Hax3s.
Hax3n.
Haxat,
Hax B
Haxs,
Hax23,
Hax2s,
Hax24,
Hax33,
Hax o)
Hax3s.
Hax36.

53,
17,
38,
o6,
43,
96,
25,
5,
o8,
118,
23,
a8,
78,
14,
46,
68,

Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian
Hedian

06,
o6,
o6,
o6,
o6,
o6,
o6,
13,
o6,
o6,
o6,
o6,
o6,
o4,
o6,
06,

Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin
Hin

o
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5

A sub-optimal bulk data movement is detected if the associated transfer rate falls below a predefined standard. Considering that TCP traffic is elastic and network conditions are volatile, we use the statistics of transfer rate medians as our evaluation criteria. For a given site, network performance warnings would be issued if the associated median were less than 1Mbps for two consecutive hours.

To evaluate the effectiveness of G-NetMon in detecting sub-optimal bulk data movements, we investigated the G-NetMon warnings for a period of two weeks. During this period, G-NetMon issued performance warnings for 7 sites in total (there were multiple warnings for the same sites). For those sites that G-NetMon issued warnings, we contacted their network administrators to conduct end-to-end performance analysis. Five sites responded to our requests. The end-to-end performance analysis indicated poor network conditions between these sites and Fermilab. To our surprise, one site in Greece is even connected to the outside world with a 100 Mbps link. The investigation of these warnings demonstrated that our G-NetMon can effectively detect sub-optimal bulk data movements in a timely manner. G-NetMon can detect a sub-optimal bulk data movement in two hours.
V. Conclusion & Discussion

At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system for large-scale scientific collaborations, called G-NetMon. Our system exploits the inherent data parallelism that exists within network data flows and can rapidly analyze bulk data movements between Fermilab and its collaboration sites. Experiments demonstrate that our G-NetMon can detect sub-optimal bulk data movement in time.

Considering TCP traffic is elastic and network conditions are volatile, our G-NetMon system applies a very conservative approach to issue performance warnings. G-NetMon is chosen to perform transfer rate analysis every hour. Running G-NetMon with shorter intervals can detect sub-optimal bulk data movement faster. However, it would also generate more ephemeral warnings and finally degrade our system’s effectiveness.

The main purpose of this work is to explore new opportunities in network traffic monitoring and analysis with GPUs. The experiment results show that GPU can significantly accelerate the flow data processing, by a factor of 5.38 (G-NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-NC-GPU vs. NH-CPU). At present, G-NetMon is designed to detect sub-optimal bulk data movements. In the future, we will enhance it with security features. To implement security features, G-NetMon needs to examine flow records with security rules one by one in real time or semi-real time, which require more computation capabilities. The computation pattern of examining flow records with security rules one by one is similar to that of the non-hash-table implementations discussed in the paper, in which GPU can significantly accelerate the flow data processing.
References
�

Figure 7 Transfer rates between Fermilab and a Collaboration Site

[�]	OWAMP website, http://www.internet2.edu/performance/owamp/

[�]	K. Papagiannaki, R. Cruz, C. Diot, “network performance monitoring at small time scales,” Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, Miami Beach, FL, USA, 2003.

[�]	T. Benson, A. Anand, A. Akella, M. Zhang, “Understanding Data Center Traffic Characteristics,” In Proceedings of ACM WREN, 2009.

[�]	V. Paxson, “Automated packet trace analysis of TCP implementations,” In Proceedings of SIGCOMM’97, 1997.

[�]	V. Paxson, “End-to-End Internet packet dynamics,” In proceedings of SIGCOMM’97, 1997.

[�]	NetFlow website, http://www.cisco.com/

[�]	S. Han, K. Jang, K. Park, S. Moon, “PacketShader, a GPU-Accelerated Software Router,” In Proceedings of SIGCOMM’10, New Delhi, India.

[�]	S. Mu, X. Zhang, N. Zhang, J. Lu, Y.S. Deng, and S. Zhang, “IP Routing Processing with Graphic Processors,” In Design, Automation & Test in Europe Conference & Exhibition, 2010.

[�]	R. Smith, N. Goyal, J. Ormont, C. Estan, and K. Sankaralingam, “Evaluating GPUs for Network Packet Signature Matching,” In IEEE ISPASS, 2009.

[�]	G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis, “Gnort: High performance network intrusion detection using graphics processors,” In Proceedings of Recent Advances in Intrusion Detection (RAID), 2008.

[�]	H. Shojania, B. Li, and X. Wang, “Nuclei: GPU-accelerated many-core network coding,” in IEEE INFOCOM, 2009.

[�]	O. Harrison and J. Waldron, “Practical Symmetric Key Cryptography on Modern Graphics Hardware,” In USENIX Security, 2008.

[�]	A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and N. Taft. Structural Analysis of Network Traffic Flows. In ACM SIGMETRICS’04, New York, June 2004.	

[�]	A. Kalafut, J. Merwe, M. Gupta, “Communities of interest for internet traffic prioritization,” In Proceedings of 28th IEEE International Conference on Computer Communications Workshops, 2009.

[�]	A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-Wide Traffic Anomalies,” In Proceedings of ACM SIGCOMM’04, 2004.

[�]	A. Lakhina, M. Crovella, C. Diot, “Characterization of Network-Wide Anomalies in Traffic Flows,” In Proceedings of IMC’04, 2004.

[�]	J. Wallerich, H. Dreger, A. Feldmann, B. Krishnamurthy, W. Willinger. A methodology for studying persistency aspects of internet flows,” SIGCOMM Comput. Commun. Rev. 35, 2 (2005).

[�]	Internet2 NetFlow, http://netflow.internet2.edu/weekly/

[�]	 R. Sommer and A. Feldmann, “NetFlow: Information loss or win?,” in Proc. ACM Internet Measurement Workshop, 2002.

[�]	C. Gates, M. Collins, M. Duggan, A. Kompanek, M. Thomas, “More netflow tools: for performance and security,” In Proceedings of LISA’04, 2004.

[�]	V. Krmicek, J. Vykopal, R. Krejci, “Netflow based system for NAT detection,” In Proceedings of 5th international student workshop on emerging networking experiments and technologies, 2009.

Chart1

G-NetMon	H-NS-C-GPU	H-NS-NC-GPU	H-S-C-GPU	NH-S-C-GPU	NH-NS-C-GPU	NH-NS-NC-GPU	NH-S-NC-GPU	3.81645E7	3.3066E7	3.39265E7	3.98931E7	1.77769E8	2.09061E8	1.97611E8	1.77771E8	

Inst Issued

Sheet1

								G-NetMon		913.08						G-NetMon		913.08

								H-S-C-GPU		1087.78						NH-S-NC		1098.23				0.2027752223

								H-NS-C-GPU		1113.67						H-CPU		4916.67		5.3847088974				6.390504142

								H-NS-NC-GPU		999.91						NH-CPU		36336.67		39.7957134096

								NH-NS--C-GPU		1242.06

								NH-S-C-GPU		1218.42

								NH-NS-NC		1114.68

								NH-S-NC		1098.23

								H-CPU		4916.67

								NH-CPU		36336.67

				G-NetMon		913.08

				H-S-C-GPU		1087.78

				H-NS-C-GPU		1113.67

				H-NS-NC-GPU		999.91

				NH-S-NC-GPU		1098.23

				NH-NS--C-GPU		1242.06

				NH-NS-NC-GPU		1114.68

				NH-S-C-GPU		1218.42

				share		no shared

				1087.78		1113.67				2.38%

				913.08		999.91				9.51%

				1218.42		1242.06				1.94%

				1098.23		1114.48				1.48%

				caching

				913.08		1087.78				0.191330442

				999.91		1113.67				0.1137702393

				1098.23		1218.42				0.1094397348

				1114.68		1242.06				0.1142749489

				4916.67		1087.78		1113.67

						1218.42		1242.06

						0.1200978139		0.1152854975

				hash

				913.08		999.91

				1098.23		1114.68

				0.2027752223		0.1147803302

G-NetMon	NH-S-NC	H-CPU	NH-CPU	913.08	1098.23	4916.67	36336.67	G-NetMon	H-S-C-GPU	H-NS-C-GPU	H-NS-NC-GPU	NH-S-NC-GPU	NH-NS--C-GPU	NH-NS-NC-GPU	NH-S-C-GPU	913.08	1087.78	1113.67	999.91	1098.23	1242.06	1114.68	1218.42	

Processing Time (ms)

Sheet2

						GPU Variants		Inst Issued		DramRe		DramWr

						G-NetMon		3.82E+07		2.18E+08		3.01E+07

						H-NS-C-GPU		3.31E+07		1.95E+08		2.52E+07

						H-NS-NC-GPU		3.39E+07		1.75E+08		2.09E+07

						H-S-C-GPU		3.99E+07		2.48E+08		3.22E+07

						NH-S-C-GPU		1.78E+08		1.52E+08		2.29E+07

						NH-NS-C-GPU		2.09E+08		1.48E+08		2.85E+07

						NH-NS-NC-GPU		1.98E+08		1.57E+08		2.45E+07

						NH-S-NC-GPU		1.78E+08		1.61E+08		1.83E+07

G-NetMon	H-NS-C-GPU	H-NS-NC-GPU	H-S-C-GPU	NH-S-C-GPU	NH-NS-C-GPU	NH-NS-NC-GPU	NH-S-NC-GPU	3.81645E7	3.3066E7	3.39265E7	3.98931E7	1.77769E8	2.09061E8	1.97611E8	1.77771E8	

Inst Issued

Chart2

G-NetMon	NH-S-NC	H-CPU	NH-CPU	913.08	1098.23	4916.67	36336.67	

Time (ms)

Sheet1

				4096		4096		4096		4096		4096		4096

				4096		4096		4096		4096		4096		4096

				38160		26364624		2003472		3909994		19823112		3828506

				42576		22835256		2876856		3965808		17513208		3862716

				36816		23090112		3274272		4221778		17938464		4191506

				34608		23340768		2854512		4308766		18198288		4332900

				39264		25123848		1015800		4222592		18613032		4180594

				65160		26005608		1512432		4180264		19288800		4082826

				36240		23772312		2784576		3876026		18852912		3808112

				34152		22211136		2727168		3586572		17423808		3514676

				39840		23034288		2614272		3827010		17756088		3711466

				23136		26400264		2210784		3468234		20975880		3443418

				35568		30489024		530856		3306292		24255120		3300660

				36744		31586280		506448		3464296		24743544		3440646

				26064		27487728		595560		4538248		22620456		4460500

				48216		28501704		758760		6644858		23285736		6503090

				50832		32498256		760368		8931868		27784272		8903400

				57672		37105128		766080		10314040		31744560		10395594

				55848		34071648		762384		10648550		28571160		10601866

				51144		34253640		708600		11985248		29411496		11853072

				72072		35508816		718320		11842358		29731776		11725142

				42024		33416280		643152		11225478		28239984		11075284

				388368		29377824		763512		11144276		23463408		10964294

				49200		30584352		799128		10377400		25279656		10256422

				22416		29096856		781008		8480296		23586432		8407520																						G-NetMon		913.08

				34656		24391848		596928		6159692		19225608		6128320																						NH-S-NC		1098.23

																																				H-CPU		4916.67

																																				NH-CPU		36336.67

				4096		4096		4096		4096		4096		4096

				4096		4096		4096		4096		4096		4096

				34968		27267024		2363256		4996552		21497184		5068822				61227806

				32808		23811504		1099680		4317786		19289280		4294026				52845084

				34704		25959960		720912		4297304		20214792		4439600				55667272												ethernet		1500

				45696		27596208		856008		4680456		21562752		4738404				59479524												ip header		20

				33288		25665072		632880		4434056		19998336		4536884				55300516												upd header		8

				32544		27168624		587928		4338158		20781264		4395402				57303920												payload		1472

				45960		28626648		570768		3652506		23441592		3723368				60060842														1448

				31632		27427992		539472		3527766		22257984		3584394				57369240												flow record		30.1666666667

				35664		29204232		486288		3628922		21577512		3668390				58601008

				36000		26667528		483960		3520506		21125280		3603996				55437270

				32280		28814688		512208		3827230		24108960		3933622				61228988														30 flow

				22368		29145120		551592		4185478		23916480		4422330				62243368

				25248		29805384		570144		5188414		24635736		5327806				65552732														50000000

				28104		31985664		591336		7381154		25338984		7420226				72745468												number of packet		1666666.66666667

				38472		34317576		844368		8958906		28523808		9005810				81688940

				124776		34998096		775104		10229912		29906328		10266014				86300230														462.962962963				every second 463 packet

				118368		37299360		721992		10765150		31217352		10776414				90898636

				55536		32513568		753624		11770616		27318240		11849222				84260806

				66600		32711160		725760		11511214		27434208		11475178				83924120																		5556000

				65712		32250744		761688		10733492		27154752		10729774				81696162

				61200		32156616		807384		11087318		27235992		11064020				82412530

				54000		32221752		752328		10194910		26353632		10202192				79778814																		5Mbps

				40104		30243192		776448		8266236		24956760		8373772				72656512

				35880		26728128		771504		6543592		22431456		6778046				63288606

6.1227806E7	5.2845084E7	5.5667272E7	5.9479524E7	5.5300516E7	5.730392E7	6.0060842E7	5.736924E7	5.8601008E7	5.543727E7	6.1228988E7	6.2243368E7	6.5552732E7	7.2745468E7	8.168894E7	8.630023E7	9.0898636E7	8.4260806E7	8.392412E7	8.1696162E7	8.241253E7	7.9778814E7	7.2656512E7	6.3288606E7	G-NetMon	NH-S-NC	H-CPU	NH-CPU	913.08	1098.23	4916.67	36336.67	

Time (ms)

1l

