
CS-doc-4583-v0

Evaluation of dCache (Chimera/NFSv4.1)
for Data Storage Applications in the

Intensity Frontier Experiments

Art Kreymer, Stephan Lammel, Margaret Votava, and Michael Wang

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

December 14, 2011

1. Introduction

The dCache system [1] is a distributed data caching system based on a large number of heteroge-
neous (and often commodity-component-based), network-connected disk storage servers offering
a unified, rooted filesystem tree view of the entire data repository. A key feature is the separation
of the file namespace of the repository, which is managed by a database, from the actual loca-
tion of the data files. This allows files to reside anywhere in the repository and the possibility of
multiple copies of the same file. Other key features include load balancing through caching mech-
anisms, user authentication, and easy integration of tertiary storage systems like robotic tape li-
braries. The dCache product, which is jointly maintained bythe Deutsches Electronen-Synchrotron
(DESY) and Fermi National Accelerator Laboratory, has a wide installation base in the High En-
ergy Physics community. The CDF collider experiment at Fermilab, for example, has nearly a
petabyte (~950TB) of dCache-based storage space.

Despite its success, dCache has seen only limited use in the experiments of the Intensity Frontier
(IF) program at Fermilab. One major reason is the limited functionality of the “filesystem” view
dCache exports, via NFS, to its clients. While standard, unix-style file namespace manipulations
(like ls, mv, rm) are supported, direct POSIX-compliant I/O (open, create, read, write...) is not.
In essence, only the meta-data associated with the data files(and not the data files themselves)
are distributed to the clients through NFS, requiring the use of a special dCache Access Protocol
(DCAP) to access the actual data files. Partly because of thislimitation, much of the disk storage
needs of the IF experiments is satisfied using commercial high performance BlueArc NFS servers
[2].

Recent developments in the evolution of the NFS standard, however, have provided a way to
address the limitations described above. The new NFS Version 4.1 protocol [3] includes a specifi-

1



2 TEST SETUP

cation for parallel NFS (pNFS) which is backed by various industry giants (Panasas, IBM, EMC,
etc.). Similar to the dCache approach, it extends NFS by moving the metadata server out of the
data path. The metadata server, which provides a single namespace of the data repository, presents
a map orlayout of the requested data to the pNFS clients which, in turn, interact directly with the
data servers. Because of the similarities in their basic architectures, dCache would seem the ideal
environment to implement the new NFSv4.1 protocol.

The latest version of dCache (Version 1.9.12+) does, in fact, implement a newChimera names-
pace server that is based on NFSv4.1. This new version of dCache supports POSIX-compliant I/O.
Being based on an open standard like NFSv4.1, it also takes advantage of standard pNFS client
implementations now available in the latest Linux kernels,completely eliminating the need for
special protocols like DCAP.

In this document, we will look in some detail at the new dCachethat uses the NFSv4.1Chimera
namespace server, with the goal of evaluating its applicability as a data storage solution for IF
experiments. We will begin by measuring and characterizingits basic I/O performance with com-
monly used benchmarking tools, and studying the behavior ofits system components in response
to increasing loads. This will be followed by custom tests that better represent its application in
the data handling environment of a typical IF experiment. Wehope the results presented here
will provide valuable input to the process of planning the data handling infrastructure of the IF
experiments.

2. Test Setup

A block diagram of the test dCache server used in this evaluation is shown in Figure 1. It consists
of a head node and two pool nodes running dCache version 1.9.12 with version 2.6.18 Linux
kernels (Scientific Linux Fermi 5.3 distribution). Hardware configuration details of each machine
are listed in Table 1. Each pool node is attached to a Nexsan SATABlade disk array through
a 2Gb Fiber Channel link. Each array consists of eight 250GB SATA drives (Hitachi Deskstar
HDT722525DLA380) configured as two RAID 6 partitions of fourdrives each, which show up as
/dev/sdb1 and /dev/sdb2 under Linux on the pool nodes. All four partitions are exported by the
head node as a single NFSv4.1 filesystem. The exported filesystem is mounted by clients running
pNFS/NFSv4.1 enabled version 2.6.40 Linux kernels (replacing the default kernel in the Scientific
Linux Fermi 6.1 distribution) on virtual machines (VMs) in the Fermicloud cluster. Configuration
details of each VM are shown in Table 2. Network access between the clients and the dCache
server is via Gigabit ethernet (1 GigE).

To better understand the limitations imposed on the dCache system by the capabilities of the
disk hardware and network infrastructure, simple benchmarks were run to characterize their per-
formance. Using thehdparm utility program (with -t -T options), each partition was found to
achieve∼ 150 MB/s when reading from the disk without prior caching of the data. The network
performance between the Fermicloud VM clients and the dCache server was measured to be∼ 120
MB/s using thettcp utility program.

2



3 IOZONE THROUGHPUT STUDIES

/dev/sdb1 /dev/sdb2

Nexsan SATABlade

dCache Pool Node (dmsdca09)

2Gb FC

dCache Head Node
(dmsdca08)

/dev/sdb1 /dev/sdb2

Nexsan SATABlade

dCache Pool Node (dmsdca10)

2Gb FC

VM Client

VM Client

VM Client

VM Client

Fermicloud

Test dCache
System

1GigE

exports nfsv41
filesystem

pNFS/nfsv41 - enabled
Linux clients

Figure 1: dCache setup

3. IOzone Throughput Studies

3.1. Configuration

Basic write and read peformance of the exported dCache filesystem is evaluated using the IOzone
Filesystem Benchmark (version 3.397) [4] program installed on the Fermicloud VM clients. IO-
zone is run in distributed mode (-+m client.list) with a master process running on one machine
coordinatingslave processes running remotely on pNFS enabled client machinesthat do the actual
I/O. Results from each client are sent back to the controlling process which measures the aggregate
throughput. Only sequential writes and reads are performedwith no retests specified (-+n) due to
the immutability of dCache files which prevents modificationof the files once they are created. A
fixed file size of 4 GB, chosen to be double the available memory(RAM) on each VM, is used for
all tests.

3.2. Monitoring of System Activity

As the tests are conducted, performance metrics are collected from the dCache head and pool nodes
and from each of the VM clients using the Performance Co-Pilot monitoring tool (version 3.5.8)
[5] in order to understand dCache system behavior better.

Figure 2 shows histograms in time of disk I/O in MB/sec for allfour partitions on the two dCache
pool nodes. Distributions for each partition of dmsdca09 and dmsdca10 are individually shown in
the top two rows and bottom two rows, respectively. Verticalblack lines indicate the start of the
sequential write test for a given number of clients. These black lines are followed by vertical
red lines indicating the start of the sequential read test ofthe newly created files. Histograms for
memory usage and network I/O for the dCache pool nodes, corresponding to those for disk I/O in
Fig. 2, are shown in Fig. 3. Corresponding histograms for memory usage and network I/O for all
VM clients are also shown in Figs. 4-7. The same vertical lines indicating the start of write and
read tests are shown on all plots.

As indicated in the lower left corner of Fig. 2, when the testsbegin with a single client, the
file is initially written to one partition on dmsdca10. In theregion immediately to the right of

3



3.3 Results 3 IOZONE THROUGHPUT STUDIES

the leftmost vertical red line, one sees that there is no visible disk activity in the ensuing read
test, since the 4GB file is read using the cached copy in the pool node’s 8GB memory buffer (see
corresponding memory usage distributions in Fig. 3). As thenumber of clients increases and the
amount of free memory on the pool node decreases, disk activity begins to show up in the read test
when files are read directly from the disk.

For many of the tests, especially those for dmsdca10, the distributions indicate a significant
amount of disk read activity occurring even before the startof the read test. This is due to the default
dCache policy of calculating checksums on the file written todisk. We repeated the tests for 3 and
4 clients after disabling thechecksum on write feature and verified that the yellow distributions
representing disk read activity occurring before the startof the read test do indeed disappear.

One also observes significantly less disk read activity occurring on dmsdca09 in the top two rows
of Fig. 2. This is due to the fact that the memory buffer on thisnode is twice as large as that for the
other node and files are read using cached copies. As Fig. 3 indicates, the memory buffer on this
node only begins to fill up when the tests are done with nine clients in the upper right hand corner
of the figure.

3.3. Results

The aggregate throughput measured for the sequential writeand read tests conducted with IOzone
described above are plotted as a function of the number of clients in Figure 8. As the plot shows,
in the intial half of the test, the write rates average about 125 MB/sec and rise abruptly to over 250
MB/sec in the second half of the test. This “turn-on” is due tothe initiation of write activity in
the second dCache pool node (dmsdca09) as indicated by the leftmost distribution of the network
activity plot in the second row of Figure 3. A similar trend isseen for the read rates. In both
halves of the plot defined by the sharp “turn-on”, the I/O rates saturate at levels imposed by each
pool node’s network connection (∼120 MB/sec). The fact that the write rates seem to exceed the
network capabilities of the pool nodes might be attributed to caching effects on the clients. To some
extent, the performance of a dCache system, represented by asingle filesystem, can be improved
by scaling-out and increasing its throughput in proportion to the number ofpool nodes in response
to growing data-handling needs.

3.4. Extending the Throughput Tests to Many More Clients

In this next study, we use IOzone to test the ability of dCacheto handle an increasing number
of concurrent clients beyond ten. We use a total of ten Fermicloud VMs and distribute the total
number of IOzone clients evenly among the ten VMs. The aggregate amount of data transferred
by all clients is always fixed at 40GB (or 4GB per VM) with each client transferring 40GB/n
wheren is the total number of clients. Except for the data transfer size, we use the same IOzone
settings as those described in Section 3.1. We perform our tests for up to a total of 200 concurrent
clients since this is close to IOzone’s maximum of 256 clients in cluster mode. Unlike the previous
study which focuses on maximum throughput and how it scales with more pool nodes, this study
largely looks at the ability of the metadata server component of the dCache head node to deal with
a large number of concurrent clients. To gauge this ability,we pay attention to the constancy of the
combined throughput of all clients as a function of the number of concurrent clients. In Fig. 9, we
plot the combined read rate of all clients versus the number of clients ranging from 20 up to 200
clients and find that the rate remains constant throughout the range.

4



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

F
ig

ur
e

2:
D

is
k

th
ro

ug
hp

ut
on

dc
ac

he
po

ol
no

de
s.

5



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

F
ig

ur
e

3:
M

em
or

y
us

ag
e

an
d

ne
tw

or
k

ac
tiv

ity
on

dc
ac

he
po

ol
no

de
s.

6



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

F
ig

ur
e

4:
M

em
or

y
us

ag
e

on
fir

st
gr

ou
p

of
fiv

e
F

er
m

ic
lo

ud
vi

rt
ua

lm
ac

hi
ne

cl
ie

nt
s.

7



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

F
ig

ur
e

5:
M

em
or

y
us

ag
e

on
se

co
nd

gr
ou

p
of

fiv
e

F
er

m
ic

lo
ud

vi
rt

ua
lm

ac
hi

ne
cl

ie
nt

s.

8



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

F
ig

ur
e

6:
N

et
w

or
k

ac
tiv

ity
on

fir
st

gr
ou

p
of

fiv
e

F
er

m
ic

lo
ud

virt
ua

lm
ac

hi
ne

cl
ie

nt
s.

9



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

F
ig

ur
e

7:
N

et
w

or
k

ac
tiv

ity
on

se
co

nd
gr

ou
p

of
fiv

e
F

er
m

ic
lo

udvi
rt

ua
lm

ac
hi

ne
cl

ie
nt

s.

10



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

Number of clients
0 2 4 6 8 10

M
B

/s
ec

0

50

100

150

200

250

300

IOzone test

Sequential write

Sequential read

Figure 8: Results of the sequential write and read tests using IOzone are shown as a function of the
number of clients.

11



3.4 Extending the Throughput Tests to Many More Clients3 IOZONE THROUGHPUT STUDIES

Number of clients
0 20 40 60 80 100 120 140 160 180 200

M
B

/s
ec

0

50

100

150

200

250

300

IOzone connectivity test

Sequential read

Figure 9: Results of the IOzone connectivity tests investigating dCache performance for many si-
multaneous clients (> 10). The aggregate data read rate is shown as function of number
of clients for a fixed total amount of data (40GB) evenly distributed among the clients.

12



4 METADATA PERFORMANCE MEASUREMENTS

Number of clients
0 2 4 6 8 10 12 14 16 18 20

O
pe

ra
tio

ns
/s

ec

0

50

100

150

200

250

300

dCache mdtest ops

Dir creation
Dir removal
File creation
File removal
Tree creation
Tree removal

Figure 10:mdtest results for directory, file, and tree creation and removal.

4. Metadata Performance Measurements

We use themdtest scalable I/O benchmark to evaluate the metadata performance of the test dCache
system. We runmdtest in parallel with up to 20 concurrent MPI clients, each of which runs on
a separate Fermicloud VM. Each client creates, stats, and removes 100 directories and 100 zero-
byte sized files in separate directories and the rate of theseoperations is measured and reported
by mdtest. We use the “read-your-neighbor” option inmdtest to avoid reading locally cached files
by forcing stat operations to be performed on the files and directories created by other nodes. The
measured rates are shown in Figs. 10 and 11 as a function of thenumber of clients.

We see from these plots that the rates for file and directory operations rise fairly linearly up to
about 6 or 8 clients and plateaus beyond that. When looking atthese results, it is important to
keep in mind that the Chimera namespace server used in dCachehas a database backend, which
is a PostgreSQL database in the current test setup. Since database access is provided by the Java
DataBase Connectivity (JDBC) API with no database implementation specific binding, Chimera
is not tied to any particular database implementation and can benefit from performance-enhancing
techniques available on the different platforms. It is alsonot crucial to have the best possible
metadata performance if dCache will be used primarily for the sequential I/O of large data files.

13



4 METADATA PERFORMANCE MEASUREMENTS

Number of clients
0 2 4 6 8 10 12 14 16 18 20

O
pe

ra
tio

ns
/s

ec

0

500

1000

1500

2000

2500

3000

3500

dCache mdtest ops

Dir stat
File stat

Figure 11:mdtest results forstat operations on directories and files.

Acknowledgements

The studies and results presented in this document would nothave been possible without the gen-
erous help of many individuals. We particularly wish to thank Dmitry Litvintsev, Yujun Wu, and
Terry Jones of the Data Movement and Storage (DMS) Department for setting up the test dCache
system described in Section 2 and for their help and assistance throughout the course of our in-
vestigations. We also wish to thank Stan Naymola and Gene Oleynik of the DMS Department for
their support. Finally we thank Steven Timm and Farooq Lowe of the Fermigrid department for
their help in setting up Scientific Linux Fermi 6 Virtual Machines on Fermicloud and getting them
to work.

14



A APPENDIX

A. Appendix

head (dmsdca08) pool-1 (dmsdca09) pool-2 (dmsdca10)

CPU Intel Xeon X3360 Intel Xeon E5430 Intel Xeon X3360
@ 2.83 GHz @ 2.66 GHz @ 2.83 GHz

BogoMips 5652.60 5333.33 5652.69
Memory 8 GB 16 GB 8 GB

Motherboard Supermicro X7SB4/E SuperMicro X7DB8 Supermicro X7SB4/E
(quad core) (dual quad core) (quad core)

Fibre-channel QLogic Corp. ISP2422-based 4Gb Fibre Channel to PCI-X HBA

Table 1: Hardware configuration of dCache nodes

Fermicloud virtual machine properties

CPU QEMU Virtual CPU version 0.9.1
@ 2.66GHz

BogoMips 5320.13
Memory 2 GB

Table 2: “Hardware” configuration of virtual machine clients in the Fermicloud cluster.

15



References References

References

[1] The dCache Project,http://www.dcache.org.

[2] BlueArc Corporation (now part of Hitachi Data Systems),http://www.bluearc.com.

[3] S. Shepler, M. Eisler, and D. Noveck.Network File System (NFS) Version 4
Minor Version 1 Protocol, Internet Engineering Task Force, RFC 5661 (2010);
http://www.ietf.org/rfc/rfc5661.txt.

[4] IOzone Filesystem Benchmark,http://www.iozone.org.

[5] D. Chattertonet al., Performance Co-Pilot for IA-64 Linux User’s and Administrator’s
Guide, Release 2.3, Silicon Graphics Inc., Mountain View, CA (2002); Performance Co-Pilot,
http://oss.sgi.com/projects/pcp.

[6] W. E. Loewe et al., LLNL’s Parallel I/O Testing Tools and Techniques
for ASC Parallel File Systems, UCRL-CONF-203489 (2004); Mdtest,
https://computing.llnl.gov/?set=code&page=sio_downloads.

16

http://www.dcache.org
http://www.bluearc.com
http://www.ietf.org/rfc/rfc5661.txt
http://www.iozone.org
http://oss.sgi.com/projects/pcp
https://computing.llnl.gov/?set=code&page=sio_downloads

	Introduction
	Test Setup
	IOzone Throughput Studies
	Configuration
	Monitoring of System Activity
	Results
	Extending the Throughput Tests to Many More Clients

	Metadata Performance Measurements
	Appendix

