
artdaq Introduction

artdaq is a toolkit for creating the high performance distributed event
building and filtering portions of a DAQ to be used on common
commodity servers.
• A set of ready-to-use components along with hooks to support experiment-

specific customization.
• Integrated with the art event reconstruction and analysis framework for

event filtering and data compression.

artdaq grew out of initial work by Jim Kowalkowski, and its primary developers
are Marc Paterno and Chris Green. In addition, several members of the SSI
and RSI groups have contributed at various points in time, including the agile-
development-inspired work session at the start of the project.

Marc presented artdaq at the Real-Time 2012 conference last June, and his
paper on the subject has been submitted to IEEE Transactions on Nuclear
Science (DocDB #4907). Jim presented art at this meeting two months ago.

19-Sep-2012 artdaq - SCD Projects Meeting 1

artdaq Goals

• Support the use of commodity computers as close to the data
collection as possible.

• Make efficient use of multi-core computers.
• Take advantage of high-speed networking and hardware buses.
• Support modular algorithms, enable the use of GPGPUs.
• Enable collaborators to contribute to online code development.
• Allow for concurrent processing of events to best utilize all of the

cores on a node.
• Produce an environment for our own R&D tasks.

– Measure the performance of candidate data compression algorithms run as art
modules (DarkSide-50 feasibility study).

– Investigate the use of MPI for efficient, high-speed data transfers.
– Investigate parallel reconstruction techniques.
– Determine the appropriate specs for experiment proposals (e.g. DS-50, Mu2e).

• Provide a springboard for DAQ development in future experiments.

19-Sep-2012 artdaq - SCD Projects Meeting 2

Generic DAQ

19-Sep-2012 artdaq - SCD Projects Meeting 3

D
at

a
lin

k
ca

rd

Fragment Receiver Event Builder art

Fragment Receiver

Multicore node
D

at
a

lin
k

ca
rd

P
C

Ie
bu

s
P

C
Ie

bu
s

Event Builder art

Multicore node

... [x M] ... [x N]

Multicore node

Multicore node

Lots of variations:
• multiple fragment receivers per front-end node
• multiple event builder/art process pairs per reconstruction node
• (multiple art processes per event builder)
• everything run on a single node
A flexible configuration process makes testing and deployment easier.

(Round-robin routing
of fragments)

artdaq architecture

19-Sep-2012 artdaq - SCD Projects Meeting 4

Experiment-specific
hardware readout

Experiment-specific
output modules

MPI and mpirun

In artdaq, MPI (Message Passing Interface) is used to transfer data between
the distributed processes and to manage the processes.
• MPI is “a library specification for message passing, designed for high

performance on parallel machines and workstation clusters.”
• It supports point-to-point and collective messaging. It also supports parallel

execution features such as synchronization between processes (e.g. all
process wait until they have all reached a certain point in their execution).

• An MPI “program” contains all of the cooperating processes, and startup is
handled by an agent (mpirun) that runs the program on a configurable set of
nodes.

• In MPI-1, the same executable binary is used for all processes, and the
different processes know which role to perform based on their “rank”.

• For the initial artdaq test system, we wrote a straightforward Python script
to automate the configuration of the nodes and handle the invocation of
mpirun.

19-Sep-2012 artdaq - SCD Projects Meeting 5

Performance Studies

19-Sep-2012 artdaq - SCD Projects Meeting 6

To test the performance of a candidate compression algorithm for DarkSide-50, a cluster of four
32-core nodes connected by a QDR Infiniband switch was used. In this test, the detector
electronics was simulated by a Linux process that read DS50 fragment data from disk. In this
test, all five Fragment Receivers, all five Event Builders, and all five art reconstruction
applications (with 5 threads – one per fragment) were run on the same host to make use of all
of the 32 cores on the machine.

Throughput results, with no compression, as a function of
time during the test. In the test, the event size was 6 MB, so
the average throughput data rate was 2.2 GB/s.

Performance results from a test of a candidate Huffman
compression algorithm. The compression time results are
per event per art process, so the overall measured rate was
~250 events per second.

Current and Future Use

DarkSide-50:
• artdaq will be used in the data taking at Gran Sasso next year. Our groups will

provide the necessary enhancements to artdaq, and experimenters will provide the
necessary control and monitoring applications.

uBooNE:
• At the moment, individual classes from the artdaq libraries are being used in the data

transfer, and the MPI-based data transfer from artdaq is being implemented as an
option. (uBooNE currently does not foresee the need for filtering in software.)

Mu2e:
• The current baseline design uses FPGAs to do the event building, but artdaq can

handle this function, if needed, and it will be used for simulation and testing.

LBNE:
• We will present artdaq to LBNE folks with the goal of convincing them that it should

seriously be considered for their DAQ.

19-Sep-2012 artdaq - SCD Projects Meeting 7

DarkSide-50 Architecture

19-Sep-2012 artdaq - SCD Projects Meeting 8

Fragment Receiver

D
at

a
lin

k
ca

rd

Fragment Receiver

Fragment Receiver

Fragment Receiver

Event Builder art

Aggregator

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Multicore node

D
at

a
lin

k
ca

rd
D

at
a

lin
k

ca
rd

P
C

Ie
bu

s
P

C
Ie

bu
s

P
C

Ie
bu

s

… [5 total]

Event Builder art

Multicore node

Q
D

R
 In

fin
ib

an
d

N
et

w
or

k

Current and Future Development

DarkSide-50:
• Add Aggregator functionality; assist with the integration of the front end readout with the Fragment

Receiver; add interfaces, etc. to handle external control; provide an additional distributed logging
technology for the Message Facility; provide a data pathway for online data quality monitoring
applications; add robustness by recovering from the death of a process or node without bringing
down all the processes across the MPI application; etc. (Also assist with system issues like PC &
network setup and configuration, GPFS investigation, and integration testing.)

Mu2e
• Validate the baseline design, which uses a commercial PCIe data receiver card. Evaluate

performance of various networking options.

General: Our desire is to move toward
a more full-featured DAQ toolkit,
including reusable control and
monitoring functionality, where
appropriate.

19-Sep-2012 artdaq - SCD Projects Meeting 9

Control Messages
Message Logging
Run Control

Configuration management
Process management
DAQ monitoring

