
CernVM-FS - A Scalable and Low Maintenance
Software Distribution Service

7th February 2013

1 / 25

1 Introduction

2 From Package Managers to a File System

3 Keeping the File System Client Benign in Heterogenous
Environments

4 Use Case 𝜇CernVM: Next Generation Virtual Machine

5 Summary

2 / 25

CernVM File System at a Glance
Caching HTTP file system, optimized for software delivery

Operating System &
Applications

CernVM-FS

OS Kernel
Fuse

HTTP Content
Distribution

Network

File System Buffers CernVM-FS
Hard Disk Cache

CernVM-FS “Repository”
(All Releases Available)

(Known) Users: ATLAS (+ Conditions Data), LHCb (+ Conditions Data),
CMS, ALICE, NA61, NA49, BOSS, Geant4, AMS, LHC@Home 2.0

CDN: Full replicas at CERN, RAL, BNL, ASGC, FermiLab
Site-local cache servers (Frontier Squids)

Avg. Load: Very modest,
≈5MB/s, 20 requests per second on CERN Replica

Volume: 75 million objects (2010: 30 million), 5 TB (2010: 1TB)

3 / 25

The Client: A Read-Only File System in User Space

open(/ChangeLog)

glibc

VFS
inode cache
dentry cache

ext3

NFS

...

Fuse

libfuse

CernVM-FS

user space

kernel space
syscall /dev/fuse

SHA1

file descr.fd HTTP GET

inflate+verify

4 / 25

The Server: A Publish Interface using Union-FS

∙ Kernel-level Union File System
AUFS

∙ < 5% performance loss (untar)

CernVM-FS Read-Only

Read/Write Scratch Area

AUFS
(Union File System)

Read/Write
Interface

∙ Fully POSIX-compliant read-write file system

∙ Encapsulated change set in scratch area

∙ In contrast to file-wise write: publishing of new snapshots

5 / 25

1 Introduction

2 From Package Managers to a File System

3 Keeping the File System Client Benign in Heterogenous
Environments

4 Use Case 𝜇CernVM: Next Generation Virtual Machine

5 Summary

6 / 25

Data Analysis Environment

N∑︀
n=1

e
𝜋in2
N

Data Packets
(Events)

7 / 25

Data Analysis Environment

N∑︀
n=1

e
𝜋in2
N

Data Packets
(Events)

7 / 25

Data Analysis Environment

> cmsRun DiPhoton_Analysis_cfg.py
N∑︀

n=1
e

𝜋in2
N

Data Packets
(Events)

7 / 25

Data Analysis Environment

> cmsRun DiPhoton_Analysis_cfg.py
N∑︀

n=1
e

𝜋in2
N

Data Packets
(Events)

Compiler
System Libraries

OS Kernel

20 MLOC

High Energy Physics
Libraries

5 MLOC

Experiment
Software Framework

4 MLOC

Individual
Analysis Code

0.1 MLOC

7 / 25

Data Analysis Environment

> cmsRun DiPhoton_Analysis_cfg.py
N∑︀

n=1
e

𝜋in2
N

Data Packets
(Events)

Compiler
System Libraries

OS Kernel

20 MLOC

High Energy Physics
Libraries

5 MLOC

Experiment
Software Framework

4 MLOC

Individual
Analysis Code

0.1 MLOC

st
ab

le
ch

an
gi

ng

7 / 25

Data Analysis Environment

> cmsRun DiPhoton_Analysis_cfg.py
N∑︀

n=1
e

𝜋in2
N

Data Packets
(Events)

Compiler
System Libraries

OS Kernel

20 MLOC

High Energy Physics
Libraries

5 MLOC

Experiment
Software Framework

4 MLOC

Individual
Analysis Code

0.1 MLOC

st
ab

le
ch

an
gi

ng

Amplifying

∙ Frequent Updates

∙ Reproducibility

∙ Not easily chunkable

7 / 25

Experiment Software from a File System Viewpoint

Software Directory Tree

atlas.cern.ch

repo

software

x86_64-gcc43

17.1.0

17.2.0
...

8 / 25

Experiment Software from a File System Viewpoint

1

5

10

15

Statistics over 2 Years

#
Fi

le
Sy

st
em

E
nt

rie
s

[×
10

6
]

Files

Software Directory Tree

atlas.cern.ch

repo

software

x86_64-gcc43

17.1.0

17.2.0
...

8 / 25

Experiment Software from a File System Viewpoint

1

5

10

15

Statistics over 2 Years

#
Fi

le
Sy

st
em

E
nt

rie
s

[×
10

6
]

File Kernel

Duplicates

Software Directory Tree

atlas.cern.ch

repo

software

x86_64-gcc43

17.1.0

17.2.0
...

8 / 25

Experiment Software from a File System Viewpoint

1

5

10

15

Statistics over 2 Years

#
Fi

le
Sy

st
em

E
nt

rie
s

[×
10

6
]

File Kernel

Duplicates

Software Directory Tree

atlas.cern.ch

repo

software

x86_64-gcc43

17.1.0

17.2.0
...

Between consecutive software versions: only ≈ 15 % new files
8 / 25

Experiment Software from a File System Viewpoint

1

5

10

15

Statistics over 2 Years

#
Fi

le
Sy

st
em

E
nt

rie
s

[×
10

6
]

File Kernel

Duplicates

Directories
Symlinks

Software Directory Tree

atlas.cern.ch

repo

software

x86_64-gcc43

17.1.0

17.2.0
...

Fine-grained software structure (Conway’s law)
Between consecutive software versions: only ≈ 15 % new files

8 / 25

Runtime Behavior

Working Set as seen with CernVM

∙ ≈10 % of all available files are requested at runtime

∙ Median of file sizes: < 4 kB

9 / 25

Runtime Behavior

Working Set as seen with CernVM

∙ ≈10 % of all available files are requested at runtime

∙ Median of file sizes: < 4 kB

Flash Crowd Effect
∙ Up to 500 kHz

meta data request
rate

∙ Up to 1 kHz file
open request rate

/share

/share

/share

“Grid Installation Jobs” Model

Software

∙ ∙ ∙

9 / 25

Runtime Behavior

Working Set as seen with CernVM

∙ ≈10 % of all available files are requested at runtime

∙ Median of file sizes: < 4 kB

Flash Crowd Effect
∙ Up to 500 kHz

meta data request
rate

∙ Up to 1 kHz file
open request rate

/share

/share

/share

dDoS

“Grid Installation Jobs” Model

Software

∙ ∙ ∙

9 / 25

Software vs. Data

Based on ATLAS Figures 2012

Software Data

POSIX Interface put, get, seek, streaming
File dependencies Independent files
107 objects 108 objects
1012 B volume 1016 B volume
Whole files File chunks
Low latency High throughput
Absolute paths Any mount point
Open source Confidential

WORM (“write-once-read-many”)
Versioned

10 / 25

Software vs. Data

Based on ATLAS Figures 2012

CernVM-FS
Global

File System

Content-Addressable
Storage

Distributed
Caching

Software Data

POSIX Interface put, get, seek, streaming
File dependencies Independent files
107 objects 108 objects
1012 B volume 1016 B volume
Whole files File chunks
Variant symlinks No Symlinks
Absolute paths Any mountpoint
Open source Confidential

WORM (“write-once-read-many”)
Versioned

10 / 25

Content-Addressable Storage in CernVM-FS

Repository

/cvmfs/atlas.cern.ch

software

17.0.0

ChangeLog
...

806fbb67373e9...

Chunk store File catalogs

Compression, SHA-1

Data Store
∙ Compressed chunks (files)

∙ Eliminates duplicates

File Catalog

∙ Directory structure, symlinks

∙ Content hashes of regular files

∙ Digitally signed
⇒integrity, authenticity

∙ Time to live

∙ Partitioned / Merkle hashes
(user assisted)

⇒ Immutable files, trivial to check for corruption, consistency by snapshots
≈ 6× reduction in number of files / volume

11 / 25

Partitioning of Meta-Data

Automatic Approaches
File based (Tolia et al. 2004), directory based (Kutzner 2008),
global (Compostella et al. 2010)

∙

i586x86_64

AliRoot

v4-21-16-AN

ROOT

v5-27-06d

Geant3

v1-11-21

CernVM-FS: Semi-automatic, use of human knowledge about
∙ locality by software version

∙ locality by frequency of changes

12 / 25

CernVM-FS Content Distribution

Stratum 0 R/W

CERN

United
Kingdom

United
States

Taiwan

St
ra
tu

m

1

Pu
bl
ic

M

irro
rs

Proxy
Hierarchy

Proxy
Hierarchy

13 / 25

1 Introduction

2 From Package Managers to a File System

3 Keeping the File System Client Benign in Heterogenous
Environments

4 Use Case 𝜇CernVM: Next Generation Virtual Machine

5 Summary

14 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Server Stratum 1 Server

HTTP HTTP

15 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Server Stratum 1 Server

Retry &
Backoff

HTTP

15 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Group Stratum 1 Server

Retry &
Backoff

Retry&
Backoff

HTTP

HTTP

15 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Group Stratum 1 Server

Retry &
Backoff

Failover

HTTP

15 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Group

Remote Proxy Group

Stratum 1 Server

Failover &
Reset

HTTP

15 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Group

Remote Proxy Group

Stratum 1 Ring

Failover &
Reset

Selection by
Geo-IP

(Work in progress)

15 / 25

High-Availability by Horizontal Scaling

Server side: stateless services

Site-local

Worker Nodes

Proxy Group

Remote Proxy Group

Stratum 1 Ring

Failover &
Reset Failover

15 / 25

CernVM-FS Client in Heterogeneous Environments
In order to fully benefit from CernVM-FS, the file system has to be available on
all relevant computing resources.

Range of Environments:
Scientific Linux, Fedora, Ubuntu, SuSE, OS X
1 core to 48+ cores
Tens of mounted repositories
Possibly no Fuse, disk-less server farms

Portability:

∙ Portable C++ /
POSIX code

∙ Library interface,
connector to Parrot
(by Dan Bradley)

Scalability:

∙ Memory fragmentation
open hash collision resolution ↦→

linear probing
path strings stored on the stack

∙ Concurrent file system access
Fine-grained locking
Asynchronous, parallel HTTP I/O

∙ Cache sharable among repositories

∙ Hotpatch functionality for Fuse client
16 / 25

Shared Local Hard Disk Cache

Issue: Enforce shared quota, coordinated bookkeeping required
Idea: Turn the cache manager thread into a shared process

cvmfs2 processes cvmfs2 processes

Fuse Module

Cache Manager

Exclusive Cache

Anonymous Pipe

Fuse Module

Cache Manager
cvmfs2
shared
process

Named Pipe

Shared Cache

∙ No extra service: automatically spawned by first cvmfs mount point,
automatically terminated by last unmount

∙ Named pipe can be turned into a network socket:
Foundation for distributed shared memory cache

17 / 25

Hotpatching / Reloading

Addresses the issue of “worker node draining”
when there is a new version of CernVM-FS

libcvmfs_fuse.so

cvmfs2 Loader
(linked against libfuse)

Kernel

stat read . . .

. . .pass-through

∙ A minimal loader implements
the Fuse interface

∙ The logic is part of an
(unloadable) shared library

∙ Very little state across file
system calls: open files and
open directories

∙ Can be also seen as a reload of
parameters (like SIGHUP)

18 / 25

Hotpatching / Reloading

Addresses the issue of “worker node draining”
when there is a new version of CernVM-FS

Unloaded

cvmfs2 Loader
(linked against libfuse)

Kernel

stat read . . .

block

∙ A minimal loader implements
the Fuse interface

∙ The logic is part of an
(unloadable) shared library

∙ Very little state across file
system calls: open files and
open directories

∙ Can be also seen as a reload of
parameters (like SIGHUP)

18 / 25

Hotpatching / Reloading

Addresses the issue of “worker node draining”
when there is a new version of CernVM-FS

libcvmfs_fuse.so
(reloaded)

cvmfs2 Loader
(linked against libfuse)

Kernel

stat read . . .

. . .pass-through

∙ A minimal loader implements
the Fuse interface

∙ The logic is part of an
(unloadable) shared library

∙ Very little state across file
system calls: open files and
open directories

∙ Can be also seen as a reload of
parameters (like SIGHUP)

18 / 25

Hotpatching / Reloading

Addresses the issue of “worker node draining”
when there is a new version of CernVM-FS

libcvmfs_fuse.so
(reloaded)

cvmfs2 Loader
(linked against libfuse)

Kernel

stat read . . .

. . .pass-through

∙ A minimal loader implements
the Fuse interface

∙ The logic is part of an
(unloadable) shared library

∙ Very little state across file
system calls: open files and
open directories

∙ Can be also seen as a reload of
parameters (like SIGHUP)

(Just released)

18 / 25

Deployment Configurations

1 As part of CernVM
∙ Auto-configured

2 As Fuse module on the worker node / workstation
∙ Almost all of ATLAS, LHCb using it this way
∙ Very little problems
∙ “Private mounts” as normal user possible

3 NFS-exported Fuse module
∙ Brings back infamous NFS bottleneck
∙ Only solution for disk-less farms
∙ DESY: 2 k nodes on CernVM-FS / NFS

4 As part of the Grid job
∙ Using library interface + Parrot connector
∙ Runs as normal user

Squids: Site-local, Frontier, Public Service

19 / 25

1 Introduction

2 From Package Managers to a File System

3 Keeping the File System Client Benign in Heterogenous
Environments

4 Use Case 𝜇CernVM: Next Generation Virtual Machine

5 Summary

20 / 25

𝜇CernVM
Work in progress

Classic CernVM

rAA
“Just Enough

Operating System”

CernVM-FS

Operating System Kernel

Contextualization

XMPP
HTTP (Amazon EC2)

Fuse

HTTP Cache
Hierarchy

CernVM Online CernVM Co-Pilot

∙ Uniform and portable environment for physics data processing
∙ Minimal operating system derived from application dependencies
∙ Easy to maintain and to distribute

21 / 25

𝜇CernVM
Work in progress

𝜇CernVM

initrd: CernVM-FS + 𝜇Contextualization

AUFS R/W Overlay

OS + Extras

KernelIS
O

Im
ag

e
Sc

ra
tc

h
H

D

XMPP
HTTP (Amazon EC2)

FuseAUFS

CernVM Online CernVM Co-Pilot

Idea: Operating system on CernVM-FS
Instead of 400MB hard disk image: 10 MB ISO image + 100MB cache.

∙ Not a LiveCD, not a diskless node
⇒ Operating System on Demand

21 / 25

Booting 𝜇CernVM
Work in progress

22 / 25

𝜇CernVM Changes the VM Life Cycle
Work in progress

2. Prepare
Repositories

3. Build 4. Test

1. Plan

6. Instantiate

9. Terminate 8. Monitor

7. Contextualize

5. Endorse

10. Feedback

Development
Cycle

Deployment
Cycle

User InfrastructureCernVM Infrastructure

11. Retire

Figure 1: Visual representation of the two sub-cycles that form the Virtual Machine Lifecycle.

2. The Virtual Machine Lifecycle
A virtual machine passes through various different stages throughout it’s life. These stages are
just a logical separation of the fundamental procedures that are common for the maintenance of
every virtual machine (VM). They are usually independent and are associated with a specific set
of tools. For instance, the life of the VM begins when the specifications of the build process are
prepared and stored in a reference database, and it is terminated after it has completed the job it
was instantiated for. In order to find an optimal solution it is important to identify those stages,
the tools associated with them and their dependencies. This way the appropriate tools can be
grouped with the stages and form a stand-alone and independently-maintained component.

In the CernVM Project we pass through all stages of the every time we release a new version.
In our case, after a VM instance completes it’s cycle, user feedback is processed and a new
development cycle begins. Because of this cycling pattern, we decided to use the term lifecycle to
refer to the life of CernVM. This lifecycle can be split into two logical sub-cycles: the development
cycle and the deployment cycle (Figure 1).

The development cycle begins with the definition of the specifications and finishes with the
production of the distributable VM media. This cycle is performed entirely inside the CernVM
infrastructure.

The deployment cycle begins with the instantiation of the released image and finishes with the
termination of the instance. This cycle is performed outside the CernVM infrastructure, such as
a public or private cloud infrastructure (e.g. Amazon or OpenNebula) or an individual computer
(e.g. desktop hypervisors or a small computer farm). In all these cases, the OS needs to contact
the CernVM infrastructure in order to obtain contextualization information and software packages
from our repository.

The two cycles are connected via two intermediate stages: The release of the produced image
to the public and the feedback that is collected from the users and triggers a new development
cycle. The two stages are in the borders that split the private infrastructure and the public.

As was mentioned before, each stage is independent and is typically supported by a number of
specialized tools.

Plan: This is a stage on which the desired functionality of the VM is planned. The resulting

23 / 25

𝜇CernVM Changes the VM Life Cycle
Work in progress

2. Prepare
Repositories

3. Build 4. Test

1. Plan

6. Instantiate

9. Terminate 8. Monitor

7. Contextualize

5. Endorse

10. Feedback

Development
Cycle

Deployment
Cycle

User InfrastructureCernVM Infrastructure

11. Retire

Figure 1: Visual representation of the two sub-cycles that form the Virtual Machine Lifecycle.

2. The Virtual Machine Lifecycle
A virtual machine passes through various different stages throughout it’s life. These stages are
just a logical separation of the fundamental procedures that are common for the maintenance of
every virtual machine (VM). They are usually independent and are associated with a specific set
of tools. For instance, the life of the VM begins when the specifications of the build process are
prepared and stored in a reference database, and it is terminated after it has completed the job it
was instantiated for. In order to find an optimal solution it is important to identify those stages,
the tools associated with them and their dependencies. This way the appropriate tools can be
grouped with the stages and form a stand-alone and independently-maintained component.

In the CernVM Project we pass through all stages of the every time we release a new version.
In our case, after a VM instance completes it’s cycle, user feedback is processed and a new
development cycle begins. Because of this cycling pattern, we decided to use the term lifecycle to
refer to the life of CernVM. This lifecycle can be split into two logical sub-cycles: the development
cycle and the deployment cycle (Figure 1).

The development cycle begins with the definition of the specifications and finishes with the
production of the distributable VM media. This cycle is performed entirely inside the CernVM
infrastructure.

The deployment cycle begins with the instantiation of the released image and finishes with the
termination of the instance. This cycle is performed outside the CernVM infrastructure, such as
a public or private cloud infrastructure (e.g. Amazon or OpenNebula) or an individual computer
(e.g. desktop hypervisors or a small computer farm). In all these cases, the OS needs to contact
the CernVM infrastructure in order to obtain contextualization information and software packages
from our repository.

The two cycles are connected via two intermediate stages: The release of the produced image
to the public and the feedback that is collected from the users and triggers a new development
cycle. The two stages are in the borders that split the private infrastructure and the public.

As was mentioned before, each stage is independent and is typically supported by a number of
specialized tools.

Plan: This is a stage on which the desired functionality of the VM is planned. The resulting

Avoids: Image Building Solves: Image Distribution

Options for updating: stay, diverge, rebase
CernVM-FS snapshots facilitate long-term data preservation 23 / 25

1 Introduction

2 From Package Managers to a File System

3 Keeping the File System Client Benign in Heterogenous
Environments

4 Use Case 𝜇CernVM: Next Generation Virtual Machine

5 Summary

24 / 25

Summary

CernVM-FS
∙ Publish-subscribe file system

∙ Based on snapshots,
distributed caching,
content-addressable storage

∙ Very low network traffic

∙ Optimized for small files,
heavy meta-data operation

Use cases
∙ Software Distribution

∙ Distribution of Conditions Data

∙ Operating System for the Cloud

∙ Building block of long-term
data preservation

Source code: https://github.com/cvmfs/cvmfs
Downloads: http://cernvm.cern.ch/portal/filesystem/downloads
Nightly builds: https://ecsft.cern.ch/dist/cvmfs

Mailing lists: cvmfs-talk@cern.ch, cvmfs-devel@cern.ch

25 / 25

https://github.com/cvmfs/cvmfs
http://cernvm.cern.ch/portal/filesystem/downloads
https://ecsft.cern.ch/dist/cvmfs
cvmfs-talk@cern.ch
cvmfs-devel@cern.ch

6 Backup Slides

26 / 25

CernVM-FS Client Tools

Fuse Module
∙ Normal namespace:

/cvmfs/<repository>
e. g. /cvmfs/atlas.cern.ch

∙ Private mount as a user possible

∙ One process per fuse module +
watchdog process

∙ Cache on local disk

∙ Cache LRU managed

∙ NFS Export Mode

∙ Hotpach functionality
cvmfs_config reload

Mount helpers
∙ Setup environment (number of file

descriptors, access rights, . . .)

∙ Used by autofs on /cvmfs

∙ Used by /etc/fstab or mount as
root
mount -t cvmfs atlas.cern.ch
/cvmfs/atlas.cern.ch

Diagnostics
∙ Nagios check available

∙ cvmfs_config probe

∙ cvmfs_config chksetup

∙ cvmfs_fsck

∙ cvmfs_talk, connect to running
instance

27 / 25

Cumulative File Size Distribution

24

26

28

210

212

214

216

218

0 10 20 30 40 50 60 70 80 90 100

D
at

ei
gr

öß
e

[B
]

Perzentil

ATLAS
LHCb
ALICE

CMS
UNIX

Web Server

Requested

cf. Tanenbaum et al. 2006 for “Unix” and “Webserver”

28 / 25

Software Distribution Systems in HEP

One-Time Per Computing Center Per Machine

Installation

D
e-

de
pl

ic
at

io
n

Fi
le

/B
lo

ck
Fi

le
/B

lo
ck

Pa
ck

et

D
is
tr

ib
ut

io
n

ALICE SW
Installation

(Porter et al. 2012)

Shared
Software Area

AFS
GROW-FS

(Compostella et al. 2009)

CernVM-FS

Persistent
Local Cache

Data +
Meta Data

Data

None

29 / 25

Comparison CernVM-FS / NFS I

30th June 2011

CernVM-FS Performance

8

•NFS Atlas SW Server Loads - switched Atlas to CVMFS in May

•Site (cluster) Squid Server loads - this is just one of the two

Thursday, 30 June 2011
(Source: Collier 2011)

30 / 25

Comparison CernVM-FS / NFS II

An alternative model to distribute VO specific software to WLCG sites:
a prototype at PIC based on CernVM file system

E.Lanciotti for the PIC Tier1 team in collaboration with J.Blomer (CERN)

Abstract:

.The current model to dostribute VO software to the WLCG sites presents several limitations. A possible alternative is a model based on a new protocol: CernVM file system, a
network file system developed in the framework of CernVM project. A test-bed set up at PIC Tier1 shows the feasibility of this solution

CVMFS installation and configuration
!Installation with yum. No need to change any kernel parameter of the WN.
!Simple configuration: specify path to local cache, URL of software repository,
and a local site proxy (Squid proxy)
CernVM-FS v2.47: added multi VO support, two repositories (ATLAS, LHCb mounted on

the same system)

Summary and outlook:
!Limitations of the current model for software distribution
!Possible alternative model based on CernVM-FS: First tests very promising

! No change required in the VO software or in the framework for job submission (only an
environment variable has to be changed)

! Very fast execution when software cached locally

Advantages with respect to the current model:
! No need to install the software at the site
! No need to maintain a shared area at the site and mount it on the WNs

!Next to do:
! Test scalability adding a list of Squid servers at the site and running many (O(1000))

concurrent jobs

Metrics to measure:
Execution time for SetupProject script - the most demanding phase of the job for the
software area (huge amount of stat() and open() calls)

! Execution time for DaVinci
! Dependence with the number of concurrent jobs

1
Results: LHCb SetupProject execution time
!Clear dependence of the execution time with the number of jobs per node with NFS protocol.

! Effect on client side: 8 jobs on one node gives an execution time of 100s. Might depend on
mount options (ro, noatime, nolock)

!Very low execution time, and no dependence with the number of jobs per node for CernVM-FS

Test-bed set up at PIC
!A dedicated blade of 16 Wns, 8 cores each, configured in a test queue
!On each node: software area mounted through NFS (production NFS server) and software
repository of CernVM mounted through CernVM-FS
!One Squid server at the site as http proxy and web cache: necessary to reduce network latency
and reduce the load on the origin web server of CernVM

Current model to distribute VO software to
sites:
!In a distributed computing model as WLCG the software
of VO specific applications has to be efficiently distributed
to any site of the Grid
!Applications software currently installed in a shared area
of the site visible for all worker nodes (WN) of the site
(through NFS, AFS or other)
!The software is installed by jobs which run on the SGM
node (a privileged node of the computing farm where the
shared area is mounted in write mode)

Limitations of the current model for software distribution
! NFS scalability issues
! Shared area sometimes not reachable (not properly mounted on the WN, or

NFS server very slow, due to high load...)
! NFS locked by SQLite (known bug if NFS is mounted in r-w mode)
! Software installation in many Grid sites is a tough task (job failures,

resubmission, tags publications...)
! Limited quota per VO in the shared area: if VOs want to install new releases

and keep the old ones they have to ask for an increase of quota
!Number of GGUS tickets relative to shared area issues for LHCb: 33 in the last
quarter

SGM

node
NFS server

All
WNRO

RW

PIC shared area
setup

An alternative model based on CernVM-FS
! CernVM-FS is a network file system developed in the framework of CernVM project
! Repository of applications: contains the result of a make install
! Can be mounted on the WN and accessed as read-only file system, through http protocol
! Complemented by local site proxy for web caching

NFS server
16 WNs

NFS

PIC LAN ORIGIN WEB SERVER
hosting the software

repository

CVMFS/

HTTP

Description of tests done at PIC:
!A test job which sets the environment and runs the application for LHCb analysis
package (DaVinci)
!No development required: only difference is an environment variable (path to the
software area)

Results: ATLAS test job execution time
!Same test-bed and test script than LHCb, different executable
!Executable is an Athena test job: MC generation (1 evt) + reconstruction + analysis
!Only the total execution time is measured

Very slight difference between CernVM-FS and NFS.
! This ATLAS job accesses less data in the software area. Not possible to compare

with the LHCb SetupProject

 CernVM-FS performs

equally or slightly better than NFS for a

 typical ATLAS test job

 Barcelona
(Spain)

HTTP

!"#$%&'()*"&)%(')+'

,&-.'%"('/%0%&)1.'

An alternative model to distribute VO specific software to WLCG sites:
a prototype at PIC based on CernVM file system

E.Lanciotti for the PIC Tier1 team in collaboration with J.Blomer (CERN)

Abstract:

.The current model to dostribute VO software to the WLCG sites presents several limitations. A possible alternative is a model based on a new protocol: CernVM file system, a
network file system developed in the framework of CernVM project. A test-bed set up at PIC Tier1 shows the feasibility of this solution

CVMFS installation and configuration
!Installation with yum. No need to change any kernel parameter of the WN.
!Simple configuration: specify path to local cache, URL of software repository,
and a local site proxy (Squid proxy)
CernVM-FS v2.47: added multi VO support, two repositories (ATLAS, LHCb mounted on

the same system)

Summary and outlook:
!Limitations of the current model for software distribution
!Possible alternative model based on CernVM-FS: First tests very promising

! No change required in the VO software or in the framework for job submission (only an
environment variable has to be changed)

! Very fast execution when software cached locally

Advantages with respect to the current model:
! No need to install the software at the site
! No need to maintain a shared area at the site and mount it on the WNs

!Next to do:
! Test scalability adding a list of Squid servers at the site and running many (O(1000))

concurrent jobs

Metrics to measure:
Execution time for SetupProject script - the most demanding phase of the job for the
software area (huge amount of stat() and open() calls)

! Execution time for DaVinci
! Dependence with the number of concurrent jobs

1
Results: LHCb SetupProject execution time
!Clear dependence of the execution time with the number of jobs per node with NFS protocol.

! Effect on client side: 8 jobs on one node gives an execution time of 100s. Might depend on
mount options (ro, noatime, nolock)

!Very low execution time, and no dependence with the number of jobs per node for CernVM-FS

Test-bed set up at PIC
!A dedicated blade of 16 Wns, 8 cores each, configured in a test queue
!On each node: software area mounted through NFS (production NFS server) and software
repository of CernVM mounted through CernVM-FS
!One Squid server at the site as http proxy and web cache: necessary to reduce network latency
and reduce the load on the origin web server of CernVM

Current model to distribute VO software to
sites:
!In a distributed computing model as WLCG the software
of VO specific applications has to be efficiently distributed
to any site of the Grid
!Applications software currently installed in a shared area
of the site visible for all worker nodes (WN) of the site
(through NFS, AFS or other)
!The software is installed by jobs which run on the SGM
node (a privileged node of the computing farm where the
shared area is mounted in write mode)

Limitations of the current model for software distribution
! NFS scalability issues
! Shared area sometimes not reachable (not properly mounted on the WN, or

NFS server very slow, due to high load...)
! NFS locked by SQLite (known bug if NFS is mounted in r-w mode)
! Software installation in many Grid sites is a tough task (job failures,

resubmission, tags publications...)
! Limited quota per VO in the shared area: if VOs want to install new releases

and keep the old ones they have to ask for an increase of quota
!Number of GGUS tickets relative to shared area issues for LHCb: 33 in the last
quarter

SGM

node
NFS server

All
WNRO

RW

PIC shared area
setup

An alternative model based on CernVM-FS
! CernVM-FS is a network file system developed in the framework of CernVM project
! Repository of applications: contains the result of a make install
! Can be mounted on the WN and accessed as read-only file system, through http protocol
! Complemented by local site proxy for web caching

NFS server
16 WNs

NFS

PIC LAN ORIGIN WEB SERVER
hosting the software

repository

CVMFS/

HTTP

Description of tests done at PIC:
!A test job which sets the environment and runs the application for LHCb analysis
package (DaVinci)
!No development required: only difference is an environment variable (path to the
software area)

Results: ATLAS test job execution time
!Same test-bed and test script than LHCb, different executable
!Executable is an Athena test job: MC generation (1 evt) + reconstruction + analysis
!Only the total execution time is measured

Very slight difference between CernVM-FS and NFS.
! This ATLAS job accesses less data in the software area. Not possible to compare

with the LHCb SetupProject

 CernVM-FS performs

equally or slightly better than NFS for a

 typical ATLAS test job

 Barcelona
(Spain)

HTTP

(Source: Lanciotti 2011)

31 / 25

Comparision CernVM-FS / AFS

Running the “StressHepix” benchmark

0

2

4

6

8

10

12

LAN 25 50 100 150
0

100

200

300

400

500

600

Δ
t

[m
in

]

T
hr

ou
gh

pu
t

[M
bi

t/
s]

Round Trip Time [ms]

Running time penalty as a function of latency

AFS

CernVM-FS

Throughput

32 / 25

Integrity and Authenticity
Principle: Digitally signed root hash and (white-)list of permitted signing
certificates

release

manager

certificate white-list repository

CernVM-FS +
CernVM public key

fingerprint sign catalog

sign whitelist

1
download

signed catalog +
signed whitelist

2
verify whitelist +
check fingerprint

3
download

files

4
compare secure hash
against catalog entry

33 / 25

Turn-Around for Software Distribution

Shared Software Area

GROW-FS

AFS (using AFS replication in a hypothetical installation)

ALICE Installation Framework

CernVM-FS

N
ew

ve
rs

io
n

ta
gg

ed

N
eu

e
ve

rs
io

n
av

ai
la

bl
e

Create tarball Distribute tarball Extract tarball

Create
tarball

Distribute
tarball

Extract
tarball

Create
file catalog

Remount
file system

Release volume

Create tarball Seed tarball

Transformation
in CAS Replication Wait for TTL expiry

Improvement: from days (Grid Installation Jobs) to hours

34 / 25

CernVM-FS Distributed Storage BackendScaling of the Publish Process

R
ep

lic
at

io
n

to
St

ra
tu

m
1

Interface Machine
Changes tracked by AUFS

Compression &
Hashing
Compression &
Hashing
Compression &
Hashing

Master Storage
Stratum 0
Master Storage
Stratum 0
Master Storage
Stratum 0

Job Servers

4 Notification of
Processing Status

Job ServersJob Servers

CernVM-FS
Base Repository

3 New &
Modified Files

5 Packages of
Compressed &
Hashed Files

6 Modified
File Catalogs

1 List of
New Files

2 Load
Distribution

4 File
Hashes

Data / HTTP
Data / Chirp

Control Flow

Roles: File System Interface, Worker Node, Job Manager,
Master Storage (+ Stratum 0 Webserver, Signing Server)

Protocols: Chirp, HTTP

Storage Interface: Put, Get, Rename/Commit (on Stratum 0)
12 / 16

35 / 25

Publications
∙ Decentralized Data Storage and Processing in the Context of the LHC

Experiments at CERN
J. Blomer, PhD Thesis, TU Munich, 2012

∙ CernVM-FS: Delivering Scientific Software to Globally Distributed
Computing Resources
J. Blomer, P. Buncic, and T. Fuhrmann
Proc. of the 1st Workshop on Network-Aware Data Management held in
conjunction with the IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’11), Seattle, 2011

∙ A practical approach to virtualiztion in HEP
P. Buncic, C. Aguado Sánchez, J. Blomer, A. Harutyunyan, and M. Mudrinic
The European Physical Journal Plus, 126(1), 2011

∙ Distributing LHC Application Software and Conditions Databases using the
CernVM File System
J. Blomer, C. Aguado Sánchez, P. Buncic, and A. Harutyunyan
Journal of Physics: Conference Series, 331, 2011

∙ A Fully Decentralized File System Cache for the CernVM-FS
J. Blomer and T. Fuhrmann
Proc. 10th Computer and Communications Networks (ICCCN’10), Zürich, 2010

∙ LHC Cloud Computing with CernVM
B. Segal, P. Buncic, D. Garcia Quintas, C. Aguado Sánchez, J. Blomer, et al.
Proceedings of Science, ACAT(004), 2010

36 / 25

	Introduction
	From Package Managers to a File System
	Keeping the File System Client Benign in Heterogenous Environments
	Use Case CernVM: Next Generation Virtual Machine
	Summary
	Appendix
	Backup Slides

