
SAMGRID WEB SERVICES
S. Veseli (FNAL)

Why Web Services?Why Web Services?

PerformancePerformance

Service Response Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

Number of simultaneous clients

Se
rv

ic
e

re
sp

on
se

 ti
m

e
[s

ec
on

ds
] DB Server

Web Service

After several years of operations SAMGrid has evolved to be both robust and
fault tolerant system. However, even though at this point the SAMGrid
software is in a fairly mature state, there is still room for improvement, most
notably in the areas of monitoring, software installation, configuration, and
client access.

SAMGrid users are still facing non-trivial software installation and
configuration issues. These issues usually do not represent a major obstacle
for SAMGrid access from machines or clusters on which the software was
installed and configured by the designated SAMGrid administrators. However,
they make it difficult for regular users to setup their desktops or laptops for
accessing SAMGrid via the distributed APIs.

SAMGrid Web Services have been designed to allow easy access to the system
by using standard web service technologies and protocols (SOAP/XML, HTTP).
In addition to hiding complexity of the system from users, these services
eliminate the need for the proprietary CORBA-based clients, and also
significantly simplify client installation and configuration.

SAMGridSAMGrid
SAMGrid is a distributed (CORBA-based) HEP data handling system presently
used by three running experiments at Fermilab: D0, CDF and MINOS. The
system offers a wide variety of services, such as job management, data
management, data transfer and storage, process accounting, etc. All services
which require database access are encapsulated within the SAMGrid DB Server.
Examples of those are various cataloguing and dataset services. On the other
hand, services involving data management, transfer and storage are provided
by a set of SAMGrid Station Servers.

The primary means of accessing the SAMGrid system is via Python and C++
client APIs, but some of the cataloguing and dataset services are also
provided by CGI scripts and Java Servlets. Python API incorporates all of the
SAMGrid functionality, including various administrative and monitoring
interfaces. It is distributed as a frozen binary with accompanying necessary
shared object libraries. This technique has the advantage that users have full
access to all of the SAMGrid interfaces, as well as to the standard Python
modules, without worrying about possible compatibility issues related to a
specific version of Python installed on a given system. On the other hand,
SAMGrid C++ API has much less functionality and is targeted for use in
experiments’ C++ reconstruction and analysis software.

SOAPpy takes care of marshalling
and un-marshalling SOAP messages,
as well as of processing WSDL files.
In addition to that, it comes with a
reliable threaded service container,
which greatly simplifies the service
deployment.

For those WSDL interfaces that
required communication to the
database, implementation has been
straightforward and mainly involved
translation between CORBA and
SOAP.

For the file delivery service we have
established a protocol for retrieving
data in small chunks.

ArchitectureArchitecture
We have chosen Python as the implementation language for the SAMGrid Web
Services. This allowed us to easily utilize the existing functionality in the
SAMGrid Python API. We also used SOAPpy, a Python web service package.

PerformancePerformance Future WorkFuture Work
 Although the current functionality offered by the SAMGrid Web Services is
sufficient for most of the regular system usage, several important pieces are
still missing. Most notably, the ability for users to declare and store new files
into the system is not there. In addition to the services that have to be added,
some work is also needed to insure reliability of the file transfer service.

At this time the SAMGrid Web Services have been deployed in production for
MINOS and are being tested for use at D0.

Web Service Overhead

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000

Dataset size

W
eb

 s
er

vi
ce

 o
ve

rh
ea

d
[s

ec
on

ds
]

For performance measurements we used the DB Server running on a 4-CPU
Linux machine (2.4GHz Xeon processors) with 3.5GB of memory, while the web
services were hosted on a dual Athlon MP 2000+ Linux node with 1GB of
memory. In order to understand the overhead associated with the additional
SOAP call, as well as with translating results returned by the DB Server into the
corresponding SOAP/XML struct, we performed a series of identical back-to-
back SOAP queries, and measured the time between sequential DB Server calls.

As expected, the average time necessary for
additional SOAP processing grows linearly with
the size of the SOAP message. The numbers
shown in this figure correspond to about 12% of
the total response time. Note that in most cases
the observed overhead falls within variation of
the direct DB Server query timing. For example,
in the case of a query returning a list of about
2500 files, response times for 10 direct DB
Server calls were in the range of 8.78 to 9.82
seconds, with the average of 9.24 seconds. The
same query against the Web Service had
response times between 9.04 and 9.88 seconds,
with the average of 9.32 seconds for 10 calls.

Load tests involved a number of simultaneous clients invoking the same set Load tests involved a number of simultaneous clients invoking the same set
of queries (unit of client work) 10 times. The average service response time of queries (unit of client work) 10 times. The average service response time
per unit of client work is shown in the figure below. For a single client, the per unit of client work is shown in the figure below. For a single client, the
effects of SOAP overhead are clearly visible. For two clients, the average effects of SOAP overhead are clearly visible. For two clients, the average
response time goes down because the DB Server had multiple connections to response time goes down because the DB Server had multiple connections to
the database, and therefore queries could be executed in parallel. It is the database, and therefore queries could be executed in parallel. It is
interesting that for larger number of clients the interesting that for larger number of clients the
Web Service outperforms the DB Server. This is Web Service outperforms the DB Server. This is
result of a more efficient usage of the DB result of a more efficient usage of the DB
Server proxies when the number of clients Server proxies when the number of clients
exceeds the number of available database exceeds the number of available database
connections.connections.

Note that we performed the same test with 100 Note that we performed the same test with 100
simultaneous clients without any performance simultaneous clients without any performance
degradation. The average service response degradation. The average service response
time per unit of work was 1.12 seconds for the time per unit of work was 1.12 seconds for the
Web Service, and 1.16 seconds for the DB Web Service, and 1.16 seconds for the DB
Server alone. Server alone.

