

1

Document Name Job Tracking on the Open Science Grid for the DZero VO
Authors G.Garzoglio
Document # cd-docdb 3129

Version Date Comment
v0.1 Feb 16, 2009 Interview notes
v0.2 – v0.4 Mar 2, 2009 First Complete Draft
V1.0 Mar 16, 2009 Feedback Integrated

2

Job Tracking on the Open Science Grid

for the DZero Virtual Organization

Gabriele Garzoglio

March 16, 2009

Table of Contents

1. Introduction ... 3

2. Executive Summary .. 3

3. The DZero Grid Infrastructure .. 4

4. The Different Categories of Monitoring Information ... 5

4.1. Job Status Monitoring from Grid Middleware .. 5

4.2. Monitoring of the Characteristics of the Resource that Runs the Job 6

4.3. Monitoring of the Internal Status of Running Jobs ... 7

5. Problems and Desired Properties of the Monitoring Infrastructure 8

5.1. Reliability .. 9

5.1.1. Condor-G / Globus Gatekeeper ... 9

5.1.2. Grid Information Providers .. 10

5.1.3. SAM-Grid .. 10

5.2. Presentation ... 10

5.3. Completeness ... 11

5.3.1. Job Handling Components ... 11

5.4. Timeliness .. 12

6. Existing Mitigating Solutions – Input for DZero .. 13

6.1. Pilot-based Workload Management Systems (WMS) ... 13

7. Possible Infrastructural Improvements – Input for OSG .. 16

8. Experience from Other VOs ... 17

9. Acknowledgments... 18

10. References ... 18

3

1. Introduction

In December 2008, Qizhong Li, head of computing for DZero, contacted the Computing
Division to raise concerns on the usability of the Grid for DZero. The concerns could be grouped
in three main categories:

1. lack of monitoring: users complain that tracking their jobs through the OSG
infrastructure is difficult and, sometimes, impossible;

2. lack of a resource procurement process: in case of peak need, DZero users and the
DZero computing leadership do not have an established procurement process, agreed
with OSG.

3. suboptimal selection of Grid resources for Monte Carlo jobs: the SAM-Grid module
that interfaces with the OSG Resource Selection System (ReSS) implements a load
balancing algorithm that is too simplistic under many circumstances.

 This document focuses on the concern over lack of monitoring. Its goals are

1. Document the concerns of DZero users for the main activities of Data Reconstruction,
Montecarlo production, and Data Analysis on the Grid.

2. Recommend DZero strategies for mitigating any lacks of OSG-provided infrastructure.
Provide recommendations based on practices of other Grid communities. For this
document, we have interviewed experts and users from CMS, Atlas, OSG Engagement,
and CDF.

3. Provide recommendations to OSG for possible directions to improve the users’
experience on job tracking. DZero is responsible for discussing these recommendations
further with the OSG Executive Board.

2. Executive Summary

This document analyzes three categories of monitoring, particularly relevant for the DZero
activities (sec. 4): (1) job status monitoring from Grid middleware, (2) monitoring of the
characteristics of the resources that run the jobs, and (3) monitoring of the internal status of
running jobs. For DZero production, category 1 is the one that deserves most attention; for
DZero analysis, categories 1 and 3 are the most relevant.

The main concerns from DZero regard (in priority order) (sec. 5): (1) the reliability of
monitoring information (e.g. the Grid thinks that some jobs are still running, while they are not),
(2) the lack of completeness of status information (e.g. Grid middleware gives very little
information on why jobs are in a certain state), (3) the lack of an integrated portal for information
display, (4) the slow propagation (timeliness) of information from the monitoring systems.

4

Some of these concerns can be mitigated by using currently existing technologies (sec. 6). We
believe that the major benefits can be obtained by the adoption of a pilot-based workload
management system, in particular GlideIn WMS, because of its quasi-interactive monitoring
features.

The concerns reported by DZero are sometimes related to shortcomings of the OSG
monitoring infrastructure (sec. 7). These include bugs and lack of sufficient diagnostic interfaces
in the software stack, as well as services that are of interest but not offered by the OSG, such as a
monitoring display.

In this white paper we also mention relevant aspects of how other VOs do monitoring, even if
these are not directly applicable to the DZero use cases. Of particular interest are (1) the
forwarding of CMS jobs to OSG via a gLite WMS in EGEE; (2) the tracking of the internal
status of CMS running jobs via a VO-maintained MonaLisa service; (3) how the limited running
time (a few hours) of VO Engagement jobs let them overcome potential job status monitoring
problems by simply killing and resubmitting their jobs.

We conclude by thanking CMS, Atlas, CDF, and OSG Engagement representatives for their
invaluable input.

3. The DZero Grid Infrastructure

The DZero grid infrastructure is more complex for production activities than for data
analysis1.

For data analysis, users submit jobs to OSG via a personal Condor-G. Currently, the only
analysis jobs submitted to the OSG consist of a CPU intensive application, with minimal data I/O
requirements. Local storage at sites is not required: input and output are handled through a
GridFTP server maintained by the user. Jobs tend to run for 12 to 24 hours.

The current deployment is based on Condor 7.0.2

Production activities consist of two applications: (1) raw data processing and (2) montecarlo
production. Both activities use the SAM-Grid infrastructure to handle job requests, data I/O, and
monitoring (discussed in later sections). In short, users submit job requests to a SAM-Grid
queuing node (based on the Condor scheduler) via a remote client (based on Condor client

1 Data analysis has been discussed with Michael Wang; production activities with Mike Diesburg, for data
processing, and Joel Snow, for Monte Carlo production.

5

commands). Jobs are matched and submitted to Execution sites (based on the Globus Gatekeeper
/ Job Managers). At the execution site, job requests are split into multiple job instances (typically
a few hundred: e.g. 1 job for every input file for data reconstruction or 1 job for every 250
montecarlo events to be produced). These job instances can either be submitted to a local batch
system or forwarded to another Grid, such as OSG. The execution site also triggers data delivery
(binary, control, and input data) and controls data traffic shaping (typically involving SRM-based
site-local storage). After output has been produced and (typically) locally stored, both
applications run a merging step, to allow for more efficient long term storage of the results. Each
application tends to run for 4 – 24 hours, with a few jobs running for as little as 2 hours and for
as long as 6 days.

SAM-Grid forwards job instances to the OSG using a Condor-G scheduler, for queuing, and
the OSG Resource Selection Service (ReSS), for match making. The current deployment for
SAM-Grid and for the OSG client is based on VDT 1.10.1 (Condor 7.0.5).

The higher degree of complexity of the infrastructure used for production activities entails
more complex monitoring scenarios. For production, monitoring of the SAM-Grid infrastructure
needs to integrate with the monitoring services of the OSG. Today, this level of integration is
only partial.

4. The Different Categories of Monitoring Information

This document analyzes problems encountered by DZero users with three main categories of
monitoring information: (1) job status from Grid middleware, (2) general characteristics of the
clusters and machines running DZero jobs, and (3) internal status information of running jobs.

4.1. Job Status Monitoring from Grid Middleware

In modern Grid systems, several middleware components contribute to the management of a
job. For example, when submitting a job to the OSG, a chain of components are involved in
dispatching the job to its final running environment (Worker Node). These components include
client commands, queuing services (e.g. Condor-G Scheduler), computing resource gateways
(e.g. Globus Gatekeepers), cluster job schedulers (e.g. PBS, Condor, ...), etc.. For more complex
systems, such as the SAM-Grid, the chain is even longer. These components keep a record of the
job2 and are involved when the user enquires about the job status.

2 Client commands are typically not persistent, thus, strictly speaking, they do not keep a record of the job.

6

Ideally, each of these components should be able to provide a short description of the job
status (e.g Idle, Running, Completed, …), as they know it, and why the job is in that state.
Today, this information is only partially available. For example, when the short description of
the job status is “Idle” in the Condor-G Scheduler, is it because no resources can match the job
requirements, or because the system has surpassed the total number of jobs allowed by policy for
that resource, or because the system has not run a match making cycle yet, or because… Some
commands, such as condor_q –analyze, only provide partial explanations to this question,
especially for the Condor-G system. Having better diagnostic interfaces should allow users to
know how far in the middleware chain a job is and for how long the job will have to wait before
running.

In this category of monitoring information, we also include aggregate job status information.
That is, the total number of jobs in a certain state, as known by a middleware component. For
DZero users, a particularly relevant monitoring metric is the total number of idle and
running DZero jobs at each remote cluster batch system. These aggregate statuses are
typically obtained from the systems monitoring the resources (sec 4.2). The main problem with
these systems consists in the (possibly perceived) poor reliability of the information. An
alternative mechanism consists in querying all schedulers that manage DZero jobs and aggregate
the results. This works reasonably well for production applications, which are all submitted using
the SAM-Grid system. As new analysis groups start using the Grid, it is difficult to guarantee
that the “aggregator” (e.g. condor_q –global) knows about all job queues, i.e. that the aggregate
information includes all jobs. In the past, this category of information was made available to
users through the MonaLisa service. The service was considered by users reliable, timely, and
information well presented.

4.2. Monitoring of the Characteristics of the Resource that Runs the Job

The systems in this category monitor characteristics of the remote clusters and/or
machines that run the jobs. Examples of this information include worker nodes metrics such as
amount of memory, CPU load, and local disk space. Examples also include cluster metrics such
as computing gateway contact information, total number of available job slots, storage gateway
contacts, and opportunistic storage size.

The OSG provides this information through the Generic Information Providers (GIP), a series
of scripts that run at the remote resource. The information follows the Glude Schema and is
published by the CEMonitor service (CEMon) to two central systems, each handling a different
format:

1. the Berkeley DataBase Information Index (BDII) describes site information using
LDIF format (a structured information tree);

7

2. the OSG Resource Selection Service (ReSS) uses set of Condor classads (lists of
attribute / value pairs);

The problem with these information systems is the perceived low reliability of the information
produced by GIP. In reality, as discussed in sec. 5.1.2, the quality of the information has much
improved since the initial user experiences.

Other information systems in OSG are not strictly monitoring system, as they deal with
registered / static site information (VORS / OIM), alarming conditions (RSV), and job
accounting (Gratia).

Pilot-based Workload Management Systems (WMS) (sec. 6), such as Panda or GlideIn
WMS, provide operating system-level information about the worker node that runs the job.
Today, most OSG sites accept pilot jobs, but the Pilot-based WMS infrastructure must be
maintained by the Virtual Organization. This paradigm may change in the future, should OSG
charge a Facility to maintain a common WMS infrastructure for multiple VO 3.

For DZero, especially for analysis users, particularly interesting metrics are the total
number of available CPU slots and the number of idle and running jobs for DZero and for
all other VOs. As for job status monitoring, users found the MonaLisa system particularly
helpful for this category of information. In general, however, human consumption of this
category of information is deemed less crucial for operations than the monitoring of job statuses
(sec. 4.1).

It should be noted that for production activities, the SAM-Grid is integrated with this
information through ReSS, for automatic resource selection.

4.3. Monitoring of the Internal Status of Running Jobs

This category of monitoring allows users to know the internal status of a running
application. On the OSG, it is typically achieved in two ways:

1) Integrating the application with monitoring libraries. These libraries send messages to
a central monitoring system, when the application reaches internal milestones. For
example, this mechanism is used by USCMS. USCMS instruments its applications with
MonaLisa libraries. The VO maintains a dedicated MonaLisa server, which receives

3 This paradigm is used in the case of VO management services, for which FermiGrid maintains VOMS and
VOMRS instances for multiple OSG VOs.

8

information from the applications and display them to the USCMS Monitoring
Dashboard.

2) Looking at application log files, as they are written on the local system. For example,
this mechanism is used by CDF and USCMS through the facilities offered by the GlideIn
WMS system.

In general, other mechanisms include querying directly interfaces exposed by the application
over the network. These are not popular on the Grid for the presence of firewalls4 and for the
difficulty in coding such interfaces.

This category of monitoring has the problem that, by design, it gives information about an
application only if it is running. It should be noted that this category of monitoring is
complementing, rather than substituting, job status monitoring (sec. 4.1).

DZero analysis users would be particularly interested in this kind of monitoring. To achieve
this goal, we recommend the adoption of the GlideIn WMS system (sec. 6). DZero production,
instead, already supports this category of monitoring. The SAM-Grid system, in fact, wraps
DZero applications with programs that send status information to dedicated XML Databases.
The same XML Databases are also used by the Runjob system, a workflow engine that prepares
the environment for and wraps the DZero applications.

5. Problems and Desired Properties of the Monitoring Infrastructure

This section discusses different properties of job status monitoring, such as timeliness,
reliability, presentation, and completeness of information. For each property, we discuss known
issues and, where appropriate, expected behavior, as discussed with DZero Grid users.

It should be noted that users have formed their expectations on how a monitoring system
should behave by using the MonaLisa system. Deployment of MonaLisa on the OSG is no longer
recommended by default because its core engine is not open source and because of a reported
high load in administrative maintenance. This means that OSG does not require that sites install
the product. The system, however, is still available in the VDT distribution, it is still deployed by
some sites, and a central MonaLisa repository is maintained by the OSG Grid Operations Center.

For monitoring the internal status of running jobs, the OSG MonaLisa repository could be
used, if applications are properly “instrumented” (sec. 4.3); however, using a GlideIn WMS

4 Typically, OSG clusters do not allow incoming network connections to the worker nodes.

9

system is another solution, proposed later on (sec. 6.1). For monitoring the status of jobs and
resource, the sparse deployment of MonaLisa services at sites is probably not a solution to the
problems faced by DZero. In any case, OSG is open to discuss further the usage of MonaLisa by
DZero.

In summary, the high-level problems with monitoring for DZero are

• Individual middleware components do not offer interfaces to obtain complete and reliable
job status information (short status & reasons for that status).

• Information from resources (GIP) is perceived as unreliable.

• OSG does not provide a system that integrates all of this information in a single coherent
location.

5.1. Reliability

All DZero Grid users report problems in the reliability of monitoring information. In
particular, the components affected seem to be (1) Condor-G / Globus Gatekeeper
communication, (2) Grid Information Providers (GIP), and (3) SAM-Grid monitoring.

5.1.1. Condor-G / Globus Gatekeeper

All DZero Grid users occasionally observed that a job status reported by Condor-G was
inaccurate when compared to the status reported directly by the batch system running the job.
For example, some jobs are reported in Condor-G as “running” for days, while the batch system
has completed the jobs days before. The same happens for jobs reported in Condor-G as “idle”.

This problem seems to occur in Condor-G v7.0.5 (VDT 1.10.1) when interacting with the
Globus Gatekeepers from the Globus Toolkit pre-web services v4.0.5 (VDT v1.8 and v1.10).
This effect might be caused by multiple problems. For example, recent investigations have
uncovered a problem in the Globus job-manager for the LSF batch system (VDT Ticket #5009;
Globus Ticket #6688). However, there is anecdotic evidence of this problem also on PBS
systems, such as the DZero CAB cluster at FermiGrid. For completeness, it should be mentioned
that USCMS users do not see this issue, but they use a different version of Condor-G (v7.2).

To mitigate this problem we recommend that the OSG Software Tools Group works with
DZero and the relevant external software providers (Condor and Globus) to fix possible bugs in
Condor-G v7.0.5 and/or Globus.

10

5.1.2. Grid Information Providers

DZero users are interested in aggregated job status metrics from Grid sites for their VO. For
example, the total number of DZero jobs that are running, idle, etc. at the given Grid site. Users
are also interested in resource characteristics, such as available job slots. The MonaLisa system
had a reputation for reliability in providing this information.

Today on the OSG, this information is available from sites via the Grid Information Providers
(GIP) in the Glue Schema (VOView and VOInfo entities). This information is published to the
ReSS and BDII systems (sec. 4.2).

DZero Grid users have expressed concerns with respect to the reliability of the information
from GIP. While in the past some concerns were well founded, in recent years the quality of the
GIP product has improved considerably. In addition, GIP is an actively maintained product: bug
reports can be filed to the Grid Operation Centers (GOC). It should also be noted that GIP is also
highly important for OSG / LCG interoperability in CMS activities.

To mitigate DZero’s concerns, we recommend that DZero users try to use information from
GIP e.g. via ReSS (GlueCEState* attributes), after the deployment of the OSG v1.0 update (to be
released on March ‘09). Such information can be obtained from command line tools, such as
condor_status [4].

5.1.3. SAM-Grid

DZero users have reported occasional problems in the reliability of job status information in
the SAM-Grid system. The system is implemented on top of Condor-G and Globus and it may
suffer from the same problems in communication of Condor and Globus Gatekeeper (sec. 5.1.1).

In the past year, the Computing Division has been sponsoring projects dedicated to improving
the quality of production operations through the SAM-Grid. These projects represent the best
venue to raise the reliability issues, so that the appropriate priority can be given to each problem.

5.2. Presentation

DZero users have reported that the graphical representation of job and resource status
information would be useful for their operations. In particular, plotting system metrics vs. time
would be useful to spot potentially problematic trends. A graphical representation of job and
resource status would also give a feeling of the system at a glance. Such representations could
include graphs of the number of jobs in a certain status (idle, running, etc.) for single sites or for

11

the whole Grid. Currently, OSG does not offer this service. In any case, graphical interfaces
should always be provided together with command line tools.

Users also asked to put more of the information already available together in a single display.
The Computing Division has recently started the Metrics Correlation and Analysis Service
(MCAS) project [1] to address some of these concerns. Also, the MyOSG project [2] provides
web interfaces to different operational-oriented information available in OSG. MyOSG also
provides the ability of exporting such information and arranging it in personal web portals (e.g.
iGoogle).

5.3. Completeness

Ideally, for each of the middleware components involved with job handling, job status
monitoring should provide a short job status description and a reason for that status (sec. 4.1). In
this area, DZero users’ complaints center on OSG job handling components.

5.3.1. Job Handling Components

Middleware components do not satisfactorily report the reasons why jobs are in a certain
status. In particular, when jobs are “idle” waiting for resources, it is not clear what these
resources are. Another case is when jobs are “held” (or “failed” in SAM-Grid terminology).
Better diagnostic interfaces should be developed for all Grid middleware systems, in particular
for Condor and Globus.

A mitigation strategy could be for DZero operations to integrate queries to some status
inspection interfaces, e.g. using condor_q –analyze. However, users should be warned that this
command gives only partial information for the use cases of Condor-G. For example, only log
files can tell if no more jobs can be sent to a remote Globus Gatekeeper because the maximum
number of jobs at a single cluster has been reached5.

For production activities, users can use condor_q –analyze, querying remotely the forwarding
node with

condor_q <job_id> –pool osg-ress-1.fnal.gov –global –analyze

where <job_id> can be obtained from the web monitoring (http://samgrid.fnal.gov:8080) in
the following way. From the main page, click “submission”, then click the name of the queuing

5 For DZero production, this limit is set to 1250 jobs.

12

server that holds the grid job requests (e.g. samgrid2.fnal.gov); click on the status of the grid job
request of interest, then on “Remote Monitoring”. The page shows a list of <job_id> (e.g.
133025), their short status, and other metadata.

For analysis, one would query their local Condor-G installation with

condor_q –analyze <job_id>

Using Condor-G, typically the command does not help much for jobs in “idle” state. In this
case, we recommend the usage of condor_q –globus. This command allows to distinguish
between jobs idle in the Condor-G queue and idle in the remote batch system.

5.4. Timeliness

In large distributed systems, information delays are inherent with almost every architectures.
On the other hand, especially in complex systems, the ability to timely spot emerging trends in
system metrics is an effective tool in preventing disruption of service. In addition, timely
information helps with operations, giving users necessary feedback on what to do next.

For DZero production, users believe that a delay of 10 – 15 minutes in the propagation of
their job status is appropriate for their operations. For analysis, ideally this delay should be 5
minutes or less. When operations are not automated, humans need to wait for the information to
propagate before moving on to the next step in their operations: this makes timeliness of
information more pressing. In general, timely information is needed for monitoring dangerous
trends with the system.

Currently, information from the resources (GIP) is published every 5 minutes to BDII and
every 10 to ReSS. These publication times are configured at each site (CEMon configuration).
Shortening these times has the effect of increasing the load of the Computing Elements and of
the receiving servers. These times can be shortened if these machines are capable to handle the
increased information flow. In any case, when using Condor-G to submit jobs, the mechanism
with the shortest delay to know the status of the job is the command condor_q –globus (by
default, this is 5 minutes and is controlled by the condor configuration parameter
CONDOR_JOB_POLL_INTERVAL).

DZero users have reported delays of 30 minutes in the propagation of their job status through
the system. These delays make operations challenging. Having a system that bypasses the current
chain of status propagation may help in this case. A pilot-based workload management
infrastructure has this advantage (sec. 6).

13

6. Existing Mitigating Solutions – Input for DZero

Throughout this document, we have given recommendations to DZero users on how to
improve their monitoring experience on the Grid. In this section, we collect those
recommendations and discuss pros and cons of adopting a pilot-based workload management
system.

The immediate recommendations for analysis and production users are:

1. To improve resource monitoring and aggregate job status monitoring, we recommend
reevaluating the reliability of the information from the Generic Information Providers
(GIP), for example through ReSS (sec. 5.1.2). Potential bugs and site configuration
problems should obtain a good level of attention when reported through Grid Operation
Center (GOC) tickets.

2. To improve job status monitoring, in particular the reasons behind a job status, use
condor_q –analyze and condor_q –globus (sec. 5.3.1).

3. To improve job status monitoring, worker node monitoring, and internal status monitoring
of running jobs, we recommend the adoption of a pilot-based WMS technology (see 6.1).

4. To improve job status and resource monitoring, DZero should have a focused discussion
with OSG on using MonaLisa more widely at OSG sites. At this time, it is probable that
many sites will not provide MonaLisa services anymore (sec.5).

The recommendations applicable in about 6 months are:

5. To improve job status monitoring, Condor has improved the efficiency of the command
that provides aggregate job status information (e.g. number of jobs in a certain state). In
particular, Condor-G v7.3.x has improved the condor_status –globus command. We
recommend that this command be evaluated, as soon as Condor-G v7.3 becomes available
through VDT.

6. To improve the presentation of all information, DZero users should evaluate the MCAS
project in the near future.

6.1. Pilot-based Workload Management Systems (WMS)

The core idea of pilot-based Workload Management Systems consists in automatically
procuring Grid nodes and making them available to users as if they were part of a single batch
system.

In short, the system works as follows. Users submit their jobs to a VO queuing service. In
response, a pilot-based WMS component, sometimes called Pilot Factory, submits “pilot” jobs to

14

the Grid through the standard Grid Resource Gateways (e.g. Globus Gatekeepers). When
running, pilot jobs have three main responsibilities:

1. check the sanity of the remote execution environment on behalf of the VO;
2. register the resource with its characteristics to the VO resource pool;
3. receive a user job through internal reliable protocols (i.e. bypassing the standard Grid

channels) and run it.

We recommend the adoption of a pilot-based workload management system, such as GlideIn
WMS, to DZero Analysis first. For the use case of analysis, in fact, little or no integration of
GlideIn WMS with other systems is necessary. Analysis has also a smaller volume of jobs than
production and, therefore, requires a simpler system configuration. The use of a Pilot-based
WMS solution can then be transferred to the Production use cases as well. For production,
GlideIn WMS needs to be integrated in the SAM-Grid infrastructure. The effort required is
roughly estimated to 1 FTE month for development and start up operations.

Pilot-based WMS systems are currently used by several VOs, including Atlas (using the
Panda WMS), CMS, CDF, and Minos (all using GlideIn WMS). As reported by representatives
of these VOs, pilot-based WMS systems have several facilities to improve job and resource
monitoring. The rest of this section discusses them.

Benefits of Pilot-based WMS for Job Status Monitoring

• With a pilot-based WMS infrastructure, users are effectively isolated from most of the
Grid Middleware, including Computing Gateways and batch systems at sites. In the
experience of VOs adopting the technology, users do not need to track jobs through
several layers of Grid Middleware. User’s main concern is whether there are not enough
pilot jobs running, i.e. enough allocated resources, to run the user’s jobs.

• User’s job status is made available through robust mechanisms to the VO resource pool
system (e.g. Condor batch system). In GlideIn WMS, to (at least partially) understand the
reasons why a user job is in a certain state, users can run batch system status diagnostics
commands, such as condor_q –analyze. In this environment, the command works better
than for Condor-G.

• GlideIn WMS provides a fully integrated graphical diagnostics system for the health
status of pilot jobs. This system helps diagnose problems accessing the standard Grid
resource gateways.

15

Benefits of Pilot-based WMS for Resource Status Monitoring

• Once a Pilot job runs at a remote resource, it registers the node where it is running with
the VO resource pool. This registration includes dynamic information about the
characteristics of the Worker Node, such as available CPUs, Memory, System
Architecture, etc. Users can have detailed information about the allocated Grid nodes by
querying their resource pool servers.

Benefits of Pilot-based WMS for Monitoring Internal Status of Running Jobs

• GlideIn WMS allows for quasi-interactive execution of commands at remote nodes. This
feature allows running unix commands such as ls, ps, top, and cat. Effectively, these
commands are short monitoring jobs. These are dispatched to the same machine running
the user job through the same internal channels used for dispatching user jobs. This
feature can be useful to get the status of a user job, by looking at parts of a local log file.
In particular, this would fit well with the current DZero analysis use case. To provide an
integrated monitoring display, CMS is working on a Graphical User Interface to display
results of typical quasi-interactive commands (ls, top, etc.). This display is not yet
available for production usage.

Other Benefits

Besides monitoring, a pilot-based WMS infrastructure provides other operational benefits.
Many of these are discussed elsewhere [3]. This are the benefits explicitly mentioned by the VO
representatives interviewed:

• Failures of pilot jobs submission affect users operations only in the availability of
computing capacity. In other words, users do not need to resubmit / recover any of the
user’s jobs when pilot job submissions fail.

• Pilot jobs failures are arguably simpler to diagnose, because pilot jobs consists of
standard (typically) short code. VOs, such as Atlas, find that this simplicity encourages
help from site administrators.

• OSG and its facilities are discussing the possibility of delegating the maintenance of pilot
factories for various VOs to one OSG facility. This operational model is efficient because
support personnel are more experienced than normal users in tracking middleware
failures in (pilot) job handling. This operational model would lower the entry cost for a
VO for using Grid facilities. The representative of Atlas reported that this model is
successfully working for their operations.

16

7. Possible Infrastructural Improvements – Input for OSG

Throughout this document, we discuss how some monitoring problems could be addressed
with the involvement of OSG. This section collects this input and presents some more ideas for
improvements. This section should be considered as a set of recommendations that DZero can
bring up to the attention of the OSG Executive board.

• Some of the major monitoring problems reported by DZero are related to the low
reliability of the communication between Condor v7.0.5 and Globus v4.0.5 (sec. 5.1.1).
This may be related to multiple issues (see VDT Ticket #5009 / Globus Ticket #6688 for
one of them). We recommend that the OSG Software Tools Group facilitates the
interaction between the external software providers and the VO, to address this issue.

• DZero users are interested in graphical representations of job and resource status (sec.
5.2). These representations may include plots of number of jobs in a certain status
(running, idle, etc.) vs. time at each site or for the whole VO. These plots would be
helpful in spotting trends of the system before error conditions arise. Similar plots are
available for the Gratia accounting system, but only after jobs are finished. Metrics of
interest are already available from various OSG information systems (BDII, ReSS, etc.),
but no service accesses this information to create any display. We recommend that the
OSG Software Tools Group investigates possible technical solutions for this request.

• DZero users have reported that the monitoring information already available is often
scattered throughout several web pages (sec. 5.2). DZero would be interested in
composing relevant metrics in a single display. Recently, the Fermilab Computing
Division has started the MCAS project to address similar needs [1]. We recommend that
OSG investigates MCAS or a similar solution for its users.

• Many services of the OSG software stack do not provide sufficient diagnostic interfaces
for a user to understand (sec. 5.3.1):

o why a job is in a certain status;
o why a job has disappeared from the system;
o for how long a job still needs to wait to run.

Some software tools already provide limited diagnostic capabilities. For example, Condor
provides the condor_q –globus and condor_q –analyze commands. In particular,
condor_q –analyze works well for the condor batch system, but it could be much
improved for Condor-G. We recommend that the OSG Software Tools Group works with
the relevant External Software Providers to improve diagnostic interfaces.

• We observe that pilot-based infrastructures offer multiple benefits to users (sec. 6.1).
Some of these benefits overcome shortcomings of the OSG monitoring infrastructure:

o lack of information reliability through the standard resource gateways

17

o lack of support for reporting the status of a running application (previously
supported through MonaLisa)

o lack of diagnostics interfaces for the standard job handling Grid middleware
(Condor-G / Globus)

Instead of focusing on addressing some of these issues directly, OSG could give priority
to outsourcing the operations of a pilot-based infrastructure to a member facility, in order
to facilitate the usage of such technologies by OSG VOs.

• Some of the interviewed representatives find informative the EGEE GGUS messages on
the availability of individual services at sites. In general, GGUS messages are considered
more informative than the ones provided by the OSG GOC. The GOC informs registered
users of central services downtimes and of site downtimes. OSG could investigate what
messages users find most interesting in GGUS and improve GOC communications.

8. Experience from Other VOs

This section collects some the experience in job monitoring, which representatives from Atlas,
CMS, CDF, and OSG Engagement shared with us. This experience is not directly applicable to
the DZero use cases, but might still be of general interest. The experience that was applicable to
DZero has been already integrated with the sections above.

Job Status Monitoring from Grid Middleware

• USCMS job submission to the OSG is done differently from other VOs. USCMS submits
jobs to the OSG through an LCG gLite WMS (Resource Broker). This is possible because all
OSG sites are advertised to LCG thanks to the interoperability of the information systems.
This indirect job routing has the advantage that user of the gLite WMS can select resources
based on the presence of a dataset. Such data-driven resource selection is favored by most
users. Another advantage is the integration of all LCG and OSG resources under a single
interface. Also, when running on EGEE, the infrastructure provides additional job status
information through the Logging and Bookkeeping service. The disadvantage of such a
mechanism is an increased time lag in communication and a higher degree of complexity,
when debugging job handling problems. In the near future, this mechanism will change in
favor of using GlideIn WMS with both the analysis (CRAB) and production (ProdAgent)
infrastructures.

• The OSG Engagement VO depends less critically than other VOs on a job monitoring
infrastructure. In fact, all of their jobs consist of short-running jobs (a few hours); therefore,
when a job takes too long to run (> 10 hours), instead of trying to diagnose whether the status
is reported correctly, the system automatically kills it and resubmits it. From that moment on,
that resource will be penalized in future job / resource matches. This strategy works because

18

the VO only uses opportunistic resources from a pool of many OSG sites. During normal
operations, OSG Engagement users can access the status of their jobs through the
condor_grid_overview command. This is an in-house development that aggregates job status
from condor_q and condor_status commands.

Monitoring of the Characteristics of the Resource that Runs the Job

• CMS, Atlas, and VO Engagement users tend not to look at this information. All of these VOs
heavily rely on automated resource selection systems.

• CDF experienced problems in the past using this category of information to select resources.
In particular, their system would occasionally select a CPU so slow that their job (typically a
MonteCarlo) would surpass the eviction time limit. Integration with the new GlideIn WMS is
expected to address this problem.

Monitoring of the Internal Status of Running Jobs

• CMS instruments all of its analysis jobs with the MonaLisa libraries. These send messages
when the job reaches a milestone to a MonaLisa server, maintained by the VO. This
information is then displayed in the CMS dashboard.

• CDF has found that the pseudo-interactive monitoring provided by their pilot-based
infrastructure is adequate to address monitoring of running jobs.

• Atlas and OSG Engagement users are not particularly interested in this category of
monitoring.

9. Acknowledgments

This document could not have been written without the patience and availability of the users
that I have interviewed. Their input on their monitoring use cases has been of fundamental
relevance. In particular, I want to thank Mike Diesburg, Joel Snow, and Michael Wang from
DZero; Burt Holzman from CMS; Donatella Lucchesi from CDF; Maxim Potekhin from Atlas;
and Mats Rynge from OSG Engagement.

10. References

1. The MCAS Project: http://www.fnal.gov/docs/products/mcas/
2. MyOSG Project: http://myosg.grid.iu.edu/
3. Wuerthwein, F., “Arguments in favor of a ‘pull model’”, OSG document 93.

http://osg-docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=93
4. ReSS user interface examples

https://twiki.grid.iu.edu/bin/view/ResourceSelection/ReSSUserInterfaceTools

