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General Problem Overview:

Particle Accelerator Modeling

Typical problem: model behavior of

O(1012) particles

Through 100's of elements

100's-1000's-more revolutions in a circular 
accelerator

Each particle has six degrees of freedom 
(x,p

x
,y,p

y
,z,p

z
)

(Bad News)
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Single-Particle Dynamics

In many situations, particle-particle 
interactions are negligible

Need only to track single particles

Linear approximation

6d-state transformation due to single step 
reduces to multiplication by 6x6 matrix (map)

Symplectic = Stable
Errors do not grow with number of steps

(Good News)
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Multi-Particle Dynamics

Particle-particle interactions are important 
in many current problems

Space Charge (issue for Booster)

Interaction of the beam with itself
Our current interest

Others

Beam-beam (issue for Tevatron)

Electron cloud (issue for LHC)

(Bad News Returns)
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Multi-particle, cont.

Use particle-in-cell (PIC) techniques

Macro particles

Solve continuous equations on discrete grid

65 x 65 x 65 grid typical size

Need ~3,000,000 particles in order to have 
an average of 10 particles per cell 

Parallel computers are necessary

See performance...
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More problems in 

particle accelerator modeling

Accelerators are complicated devices

Simulations have complicated inputs, 
complicated running conditions

Analysis of simulations come in many forms

Multi-particle analyses are more complex than 
single-particle analyses

Problems are not simply numerical
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Tevatron lattice description

E0DOGLEGM:LINE = ( DDOGEND1, E0DOGM, DDOGEND1 )
E0DOGLEGP:LINE = ( DDOGEND1, E0DOGP, DDOGEND1 )
E0COLL2:  LINE = ( DR2COLLEND, ME02UHCL, ME02UVCL, DR2COLL2, E02HCL, & 
                   E02VCL, DR2COLL2, ME02DHCL, ME02DVCL, DR2COLLEND )
E0COLL3:  LINE = ( DR2COLLEND, ME03UHCL, ME03UVCL, DR2COLL2, E03HCL, &
                   E03VCL, DR2COLL2, ME03DHCL, ME03DVCL, DR2COLLEND )

E0DAMPK:  LINE = ( DPHDAMPK, D3IN, DPVDAMPK, D3IN, DPBHDAMPK, D3IN, DPBVDAMPK )
E0DAMPPU: LINE = ( DHDAMPPU, D3IN, DVDAMPPU ) 
LSTRE0DR2:LINE = ( E0DOGMP2, DDOGEND1, DE0SP6, E0DAMPK, DE0SP7, &
                   DBELL7A, E0COLL2, DBELL7A, E0COLL3, DBELL7A, &
                   E0DAMPPU, DE0SP8, DGV4, DE0SP9, DTAB, D3IN )

QUADE0D:  LINE = ( DQUAD1END, HQUAD1F, DQUAD1END )
COLDBYP1: LINE = ( DCOLD1 )
STRAIGHTE0D:  LINE = ( DE11END, HFWE11, DE11MID, VFWE11, DE11END )
COLDBYP2: LINE = ( DCOLD2 )
E0DOWN:   LINE = ( ME0, LONGSTRE0D, QUADE0D, COLDBYP1, STRAIGHTE0D, COLDBYP2 )
E0DOWNR2: LINE = ( ME0, LSTRE0DR2,  QUADE0D, COLDBYP1, STRAIGHTE0D, COLDBYP2 )
QUADE11:  LINE = ( DBPMIN, HBPME11, DBPMOUT, HQUAD2D, DQOUT1 )
PACKE11:  LINE = (DBPMIN1,VBPME11,DBPMOUT1,DHQUADC,TSQE0,HDE11,VDE11,&
           DHQUADC, DPACKOUT1 )
DIPOLE:   LINE = ( DBENDEND, BENDQ, BEND, BENDQ, DBENDEND )
E11:      LINE = ( ME11, QUADE11, PACKE11, 4*DIPOLE )
QUADE12:  LINE = ( DBPMIN, VBPME12, DBPMOUT, HQUAD3D, DQOUT )
PACKE12:  LINE = ( DPACKIN, DHQUADC, TSX, TQX, VDE12, DHQUADC, &
           DPACKU2D, DPACKOUT )
E12:      LINE = ( ME12, QUADE12, PACKE12, 4*DIPOLE )
QUADE13:  LINE = ( DBPMIN, HBPME13, DBPMOUT, HQUADF, DQOUT )
PACKE13:  LINE = ( DPACKIN, TQFA4, TSF, HDE13, DPACKU2D, TSQ, DPACKOUT )
PACKE13R2:LINE = ( DPACKIN, TQFE1, TSF, HDE13, DPACKU2D, TSQ, DPACKOUT )

Full description is 3574 lines

! 
! constants
! 

NBENDS := 774.0
BANGLE := TWOPI / NBENDS ! approx. 8.12 mrad
HANGLE =     3.87625450E-03     ! From N. Gelfand file
LAMBBANGLE = 1.83577060E-03     ! From N. Gelfand file
CMAGBANGLE = 1.48790000E-03     ! Changed slightly to make 
! 2*HANGLE + 3*LAMBANGLE + 2*CMAGANGLE = 2*BANGLE = 0.016235621
DOGANGLE = 3.272764E-3

LBFIELD  = 6.1214
LHBFIELD = 2.921        ! half dipole length according to Norm G.
LLAMB    = 5.521706     ! C0 abort lambertson
LCMAG    = 3.73888      ! C0 C-magnet
LDOGBEND = 6.0706       ! 239 inches
LSEPTA   = 3.5433

! -----------------------------
! main dipoles
! -----------------------------

! Next 4 are defined but never used. They are the magnetic fields in Tesla. 
BENDFIELD  = BANGLE*BRHO/LBFIELD
HBENDFIELD = HANGLE*BRHO/LHBFIELD
LAMBFIELD  = LAMBBANGLE*BRHO/LLAMB
CMAGFIELD  = CMAGBANGLE*BRHO/LCMAG

BEND:      SBEND, L = LBFIELD,  ANGLE = BANGLE
BENDQ:     MULTIPOLE, K1L = KBENDQ
HBEND:     SBEND, L = LHBFIELD, ANGLE = HANGLE
LAMBBEND:  SBEND, L = LLAMB,    ANGLE = LAMBBANGLE
CMAGBEND:  SBEND, L = LCMAG,    ANGLE = CMAGBANGLE

! Next bends are added for fixed target
!  They are the dogleg at D0 around the extraction septa and are on 
!  the Tevatron Main Bus. 
!  The distance between the upstream DOGPBEND, DOGMBEND is about 4 cm
!    different from the distance between the downstream DOGPBEND, DOGMBEND.
!    As a result, when these are on, the closure of the Tevatron is 
!    changed slightly. (This can only be seen in the results of a survey
!    command.) The D0BUMPK1 and D0BUMPK2 are probably intended to 
!    be used as small adjustments to close this bump, but I have not
!    ever used them for this.        ppb
DOGPBEND:  SBEND, L = LDOGBEND, ANGLE =  DOGANGLE
DOGMBEND:  SBEND, L = LDOGBEND, ANGLE = -DOGANGLE

! E0DOGP and E0DOGM are for the proton removal insert in E0. 
! They have their own power supply, the Transrex that used to be used for
!   the E0 Lambertsons. 
!  Most of the time these will be off. When they are turned on, they 
!   will bend the beams by DOGANGLE (see above)
! E0DOGBEND :=  3.272764E-3  
!  Notice that E0DOGP has a kick of -E0DOGBEND.
!    A positive kick is the same sign as the main bends. 
!    The E0 dogleg should displace the beam to the radial OUTSIDE.
!  I've chosen to put them in as closed orbit correctors to make it
!   easy to see how much they move the beam. (If I put them in as regular
!   bends, I would have to do a survey and figure out how much it moves.)
!     ppb   9/12/97
E0DOGBEND := 0.0
E0DOGP:    HKICKER, L=LDOGBEND, KICK = -E0DOGBEND
E0DOGM:    HKICKER, L=LDOGBEND, KICK =  E0DOGBEND...

...

...
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Existing software

Mature single-
particle tracking 
codes are available

Some multi-particle 
codes available

Most written from 
scratch to address 
specific problems

“Just enough” single-
particle code

We have decided to combine the best available
existing codes
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The Synergia approach

Take the best of existing codes

Single-particle

Multi-particle

Create a framework

Extensible

Solve practical problems in addition to 
numerical problems

Project funded by SciDAC
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SciDAC Accelerator Modeling Project

Project funded by the 
SciDAC DOE program:
$3M in years; FNAL 
$.35M 

Members of a multi-
institution 
collaboration.  The charge :
develop the next generation
of parallel computing beam 
dynamics and accelerator 
modeling tools
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Accelerator Modeling Collaboration

FNAL
Software Integration, Lie 
methods, space charge in 
rings, FNAL Booster 
sim/expt

UCLA
Parallel PIC 
Frameworks

UC Davis
Visualization, 
multi-resolution 
techniques

SLAC
Ellectromagnetic component 
modeling

LBNL
Beam-beam modeling, 
space charge in  linacs & 
rings, parallel Poisson 
solvers, collisions

U. Maryland
 Lie Methods in 

Accelerator 
Physics, MaryLie

LANL
 High order optics, 

beam expts, collisions, 
multi-language support, 

statistical methods

M=e:f2: e:f3: e:f4:…
N=A-1 M A

BNL
Wakefield effects,
Space charge in rings,
BNL Booster 
simulation
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Synergia Overview

Synergia is a 
combination of IMPACT, 
mxyzptlk/beamline, glue 
code and a wrapper

IMPACT 

program flow

space charge

mxyzptlk/beamline 

mad parser

linear maps
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IMPACT (Multi-particle code)

Ji Qiang, Robert Ryne and Salman Habib

Developed at LANL, 2/3 now at LBNL

Originally designed for linear accelerators

Fortran 90

Fully parallel
Single-particle tracking

Space charge calculation

Full 3D space charge
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Split-Operator Methods

H=Hext H=Hsc

M=Mext
M=Msc

H=Hext+Hsc

 M(t)= Mext(t/2) Msc(t) Mext(t/2) + O(t3)

Magnetic
Optics

Multi-Particle
Simulation

Space Charge in IMPACT

Solve Poisson-Vlasov Equation
– particle-in-cell (PIC)

Split Operator Method
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Parallel Support in IMPACT

Particle Manager

Distributes particles 
among processors

Re-distributes 
particles after they 
have moved

Poisson-Vlasov 
solver

Distributes grid 
across all processors

Requires global 
communication
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mxyzptlk/beamline library suite

(single-particle code)

Leo Michelotti & Francois Ostiguy, FNAL

C++

first C++ library for accelerator physics

Flexible libraries

Many features

Provides linear maps with arbitrary splittings

MAD file parser
Existing standard for lattice description

Much, much more...
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mxyzptlk/beamline libraries

basic_toolkit
– Useful utility 

classes: Vector, 
Matrix...

mxyzptlk
– Automatic 

differentiation and 
differential algebra

beamline
– Objects for 

modeling 
elements of a 
beamline

physics_toolkit
– analysis and 

computation

Machines
– FNAL models
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Language mixing

Mixing F90 and C++ can be done

Requires some glue

Always platform/compiler-dependent
Macros for general code

Compiling and linking
see configuration management

We have to be very careful to ensure that 
our hybrid code is portable to multiple 
platforms

... particularly the platforms of interest
Including supercomputers with “interesting” characteristics
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Glue in Synergia

Added a new element to IMPACT, 
“external”
– F90 modifications to IMPACT
– New skeleton F90 module

Created a C++ class, External_class, to 
get maps from a MAD file using 
beamline

“F90 module” really C++ code that 
talks to External_class
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Configuration Management

Building and installing code is not 
glamorous
– In a mixed-language environment it is also 

not trivial

Configuration management can rapidly 
become a bottleneck

GNU Autotools
– “The worst possible choice, except for all 

the others”
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Building Synergia with 

GNU Autotools

First principle: no editing of source or build 
files should be necessary

Record known solutions
Not “the autotools way”

In principle

Get mxyzptlk/beamline libraries
./configure && make && make install

Get IMPACT
./configure && make 

In practice, there are more decisions to 
make...
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In practice

> ./configure --help
<snip>
  --with-glib-prefix=PFX   Prefix where GLIB is installed (optional)
  --with-glib-exec-prefix=PFX Exec prefix where GLIB is installed (optional)
  --with-mxyzptlk-prefix=<dir> Prefix directory for mxyzptlk.

Default is to search /usr/local, \$HOME, \$HOME/opt, \$HOME/mxyzptlk
  --with-mpi-prefix=<dir> Prefix directory for MPI.
  --with-mpi-include-dir=<dir> MPI include directory.

Default is -I\$MPI_PREFIX/include
  --with-mpi-ldflags=<flags> LDFLAGS for linking with MPI.
  --with-mpi-libs=<libs> Libraries for linking with MPI.
  --with-hdf5-prefix=<dir>      Prefix directory for HDF5.

Some influential environment variables:
  CXX         C++ compiler command
  CXXFLAGS    C++ compiler flags
  LDFLAGS     linker flags, e.g. -L<lib dir> if you have libraries in a
              nonstandard directory <lib dir>
  CPPFLAGS    C/C++ preprocessor flags, e.g. -I<include dir> if you have
              headers in a nonstandard directory <include dir>
  F77         Fortran 77 compiler command
  FFLAGS      Fortran 77 compiler flags
  CC          C compiler command
  CFLAGS      C compiler flags
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Synergia Build System

Default choices are stored in installation 
scripts (configure.in)

This is the “not the autotools way” part

Compile-time choices are recorded 
(config.status)

No source-code changes needed for 
configuration choices (preprocessor 
macros)

New platforms are anticipated (Autotools)
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Synergia Interface

The program flow in 
Synergia is controlled 
by IMPACT
– IMPACT's interface is 

something less than 
human-friendly

● See next slide

Synergia wraps 
IMPACT with a 
Python Layer
– Unit conversions
– Defaults
– Full power of Python
– Job creation/ 

submission
● Extensive features
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IMPACT Interface Example

16 4
6 2746880 1 0 1
65 65 65 4 0.04 0.04 1.51692
2 0 0
0.00268186, 0.000106579, 0 1.000000 1.000000 0.000000 0.000000
0.00268186, 0.000106579, 0 1.000000 1.000000 0.000000 0.000000
0.0940268, 0.000427895, 0 1.000000 1.000000 0.000000 0.000000
0.042 4e+08 9.38272e+08 1.000000 2.01e+08 0.000000
  0 0 81 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 83 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 84 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 85 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 86 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 87 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 88 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 89 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 90 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 91 -2 270.000000/
  474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
  0 0 92 -2 270.000000/
  0 0 82 -2 270.000000/

Computational parameters

Input distribution
(in IMPACT's private
system of units)

Lattice description
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Synergia Interface Example

myopts = options.Options("booster_test3")
myopts.add("numturns",10,"Number of turns",int)
myopts.add("xwidth",0.004,"horizontal width (m)",float)
myopts.add("dpop",3.0e-4,"(delta p)/p",float)

myopts.add_suboptions(impact_parameters.options)
myopts.add_suboptions(synergia.options)
myopts.parse_argv(sys.argv)

ip = impact_parameters.Impact_parameters(impact_parameters.options
                                         .get_value("sampleperiod"))
ip.apply_options(impact_parameters.options)
pz = ip.gamma() * ip.beta() * ip.mass_GeV
madfile = "booster_sliced.mad"
(D_x, D_y) = madcalc.dispersion_initial(madfile,"bcelinj",
                                        myopts.get_value("energy"))
(alpha_x, beta_x, alpha_y, beta_y) = madcalc.twiss_initial(madfile,
                                                           "bcelinj")
width_x = myopts.get_value("xwidth")
(width_xprime,r_x,emittance) = 
                  matching.match_twiss_width(width_x,alpha_x,beta_x)
ip.x_params(sigma = width_x, lam = width_xprime * pz)
booster = impact_elements.External_element(kicks=100, steps=1,
                                           radius=ipradius,
                                           mad_file_name=madfile)
numturns = myopts.get_value("numturns")
for turn in range(1,numturns+1):
    ip.add(booster)
    if turn != numturns:
        ip.add(impact_elements.Output_element("turn%02d.dat" % turn,
                                              sample_period))

User options and 
prepackaged options

Direct access to
lattice functions
from MAD files

Full access to python

Obvious names,
physical units
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How Synergia manages job complexity

Separates descriptions

MAD files for lattices

Python script for job

Full power of Python

Easier to use

Easier to maintain

Manages history and details

booster_test3.py*  description        pack*             wrappedxmain*
cleanup*           external_ble.mad@  synergia-pbs.sh*  xmain@
command            mad_mapping.table  test.in

Job directory includes batch script, utilities and history:

Accelerator 
simulation 
problems are 
not simply 
numerical



Συ
ν

ερ
γε

ια
Documentation

Documentation is in 
the form of web pages

Examples

API

New external users 
are starting to help us 
refine the 
documentation

First applications

FNAL Booster

A0 Photoinjector
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API Documentation

Documentation 
is automatically 
generated from 
source

always 
accurate

extensible

takes 
advantage of 
the power of 
Python
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API Documentation, cont.

Methods have 
descriptive names

optional text

Variables have 
descriptive names

including units
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Performance and Parallelism

Ran benchmarks on 
five machines
– abacus

● my 800 MHz laptop

– heimdall (FNAL)
● 32 dual 1.4 GHz 

Athlons, 100 Mbit/s 
and Gigabit 
interfaces

– alvarez (NERSC)
● 80 dual 866 MHz 

PIII, Myrinet

– Seaborg (NERSC)
● 6,000+ 375 MHz 

POWER3 
processors

– Lattice QCD 
(FNAL)

● 128 dual 2.4 GHz 
Xeons, Myrinet
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Results with space charge
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But... are the answers correct?

Validation

Envelope equations: coupled differential equations 
describing the evolution of the 2nd moments of the beam 
distribution including space charge

FODO channel, KV beam Booster cell, Gaussian beam
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Particle Manager Performance

An example of a 
known issue

Terminology

Matched beam
Periodically returns 
to same state

Mismatched beam
Rotates in phase 
space

Oscillates in width

Mismatched beam 
can lead to a factor 
of 3 disparity in 
distribution of 
particles among 
processors

(see particle 
manager 
visualization)
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Next steps in development

Synergia development to date has been 
driven by FNAL Booster applications

Further applications will be easier if the 
program flow is made more flexible

Adding new physics can be made much easier

This is work in progress
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Current Scheme

cons, cont.

interfaces pass through 
text file

...and must be parsed 
by Fortran code

IMPACT features (parallelism, 
SC) not exportable

Human Interface
Python

test.in
text file

Program Flow
Fortran 90

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

Particle
Propagation

Space Charge

..
.

..
.

M
P

I

pros

simple to implement

minimal platform-related 
problems

cons

difficult to extend for 
new physics

must extend IMPACT 
object system with N2 
connections



Συ
ν

ερ
γε

ια
Next Step

program flow split into 
modules

still limited by text 
file

still bound by IMPACT 
object system

no additional 
platform-dependent 
problems 

Human Interface
Python

test.in
text file

Program Flow
Fortran 90

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

M
P

I

Space Charge
Fortran90

Propagation
Fortran90
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Final Goal

Human Interface
Program Flow

Python

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

M
P

I

Space Charge
Fortran90

Propagation
Fortran90

pros

greatly enhanced 
flexibility

new physics modules 
can be trivially added

beam-beam
etc.

dynamic loading 
possible

better interface 
definition

cons

platform-dependent 
problems increased

Python MPI

Calls between Python, 
Fortran 90 and C++
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Alternate Plan

pros

interface between Python and 
other languages limited

does not rely on Python MPI

cons

requires more complex Python-
C++ program flow interface

easier than doing same in 
Fortran90

Human Interface
Python

Program Flow
C++

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

M
P

I

Space Charge
Fortran90

Propagation
Fortran90
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Visualization

Two-dimensional plotting tools are 
inadequate for analyzing data in many 
dimensions

Horizontal phase space (x,p
x
)
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OpenDX

OpenDX is a multi-
dimensional visualization 
package

Originally IBM's DX ($$$$)

Very powerful

Very steep initial learning 
curve

Visual programming
Also has a scripting language

Animation is easy
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OpenDX Example
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A more complex example


