
The SAMGrid Test Harness

CHEP 2004

Matthew Leslie

Fermilab



Overview

● Testing Methodologies
● Features of the Test Harness
● Operational testing example
● Performance tuning example
● Other testing software
● Conclusions



Testing Methodologies
● Unit Tests
– Tests an individual piece of code meets its 

specification
● Stress Tests
– Tests code under a controlled load
– Can reveal race conditions in multithreaded code

● Performance Tests
– Getting optimal performance from complex systems 

often requires tuning many parameters.



Design Goals

● Eliminate heterogeneous testing mechanisms 
● Allow all test types within a single framework
● Simple configuration
● Readable Output
● Easy to use 
● Easy to add new tests
● Well documented



Features for Unit Testing

● Test Options
– Required or Optional

● Test dependencies
– Run test B only if test A passed

● Run a command line program 
– Check return code
– Check stdout or stderr for a string



Features for Stress Testing

● Concurrent Tests
– Any test can be run in its own thread simply by 

setting the fork parameter in the configuration file
– Allows a unit test to become a stress test

● Looping over Tests
– You may run the tests in the suite several times 

● Tests automatically timed
– Check performance is still OK



Features for Performance Tuning

● Simulate real world load
– Randomized delays between tests

● Monitoring
– Register a 'performance monitor' object and have its 

output logged at regular intervals
– Performance information written with test report
– e.g. Plot load average while test is running



Simplifying Configuration

● Single XML configuration file with self 
explanatory syntax

● Details a suite of tests
● Each test configured by test option sub tags
● Harness checks that all required test options are 

set



Example Configuration



Easily Extended

● Inherit from test object.
● Provide runTest method
● Provide option 

descriptions
● ~10 lines of code

Test

+runTest(testOptions)
+getOutput()
+getDescription()
+getOptionDescriptions()
+isRunning()
+hasRun()

TestOptionDescription

+getDescription(self)
+getName(self)
+getDefault(self)
+getDefaultOption(self)
+getRequired(self)

TestOption

+getName(self)
+getValue(self)
+setValue(self, value)

TestOutput

+stdOut:
+stdErr:
+performanceInfo:
+testEnv:
+failMessage:
+testRan:
+testPassed:
+exception:
+startTime:
+stopTime:
+globalOptions:
+testOptions:
+testID:
+testNumber:
+testType:



Documentation

● Automatic!
– Introspective methods
– Check Configuration
– Generate 

Documentation



Readable Output

● Real time output 
– Output from parallel processes Interleaved 

● Color coded HTML report 
– Separates each processes output
– Tests color coded depending on success

● XML output
– Integrate with other tools or build scripts



Example Output



Operational testing

● Hourly health checks
● Output on web
● Help diagnose user 

problems



Performance tuning

● Optimize a 128 CPU compute farm
● SAM caches files on disk, many files stored on 

tape
● Minimize wait times for tape transfers
● Optimize 'max-transfers' parameter
– Controls how many files a node will transfer at once

● Try two extreme cases, 5 and 1 transfer.
● Harness starts 200 Projects



The number of projects running

● Track number running 
throughout test 

● With 5 Transfers, 8 hours 
mean

● With 1 Transfer, 10 hours 
mean



Project Duration



Process Wait Time



What is going on?



Conclusions

● Harness allows for Unit and Stress Testing 
● In use at Fermilab
● Has proved useful for performance tuning
● Helpful to day to day operation of a Grid


