IF Data Handling Layer Design

by Marc Mengel

on behalf of the REX Dept.

CS Document id 4669

version 2

2012-03-07

Overview

The data handling layer for the Intensity Frontier experiments needs to meet the various requirements in the Data Handling Requirements for Intensity Frontier Experiments. This document presents a design for tools to assist in that. As each component is discussed, the requirements it meets will be reviewed.

Rationale

We want to provide an easy migration path for IF experiments who currently operate in a mode where they run site-local batch jobs where their experiment data disks are visible via NFS and all of their data is on disk, to a mode where they run batch jobs OSG-wide, and possibly stage

to and from tape via intermediate disk with SAM. They should be able to do this in stages, where they:

· replace cp or cpn commands with ifdh commands;

· declare metadata for their files into SAM;

· use metadata queries to build data-sets for analysis

· use metadata/dataset project queries to get file locations

without interrupting or significantly changing their current work-flow.

Expected Usage

We expect users to

· declare datasets for their jobs to analyze, eiher with the web GUI or with ifdh define_dataset

· submit jobs with our DAG based jobs submit script

· in those jobs, obtain input files with a “ifdh next_file” call

· copy output files back to a staging area with “ifdh cp”

· Use the File Transfer Service to stage the output files to tape and/or semi-permanent disk storage

Packaging

The later versions of the data handling layer will be provided as two files: a small executable called ifdh and a shared library ifdh.so which will have the C++ and Python callable interfaces. Having it be only two files will facilitate it being transferred to Grid jobs so that they can be used to transfer other files. The library will use an https interface to contact a web service fronting the data handling service (i.e. SAM), to avoid the network firewall issues with the current SAM/Corba interface. Also, this simplified set of commands/functions should be sufficient for users submitting jobs, and be easier to learn than the full SAM suite of commands. Secondarily, these calls could be implemented in many cases without SAM, but by some other set of data handling tools.

Early (prototype) versions of the package may have only the command line tool impemented as a shell or python script.

Functional Specification

There will be several areas of functionality in this executable and library, described below. Each of these will be defined in terms of method calls to an ifdh object, but they will also be provided by the ifdh executable; so that

 ifdh.method(arg, arg,...)

in a C++ or Python program is equivalent of doing

 ifdh method arg arg ...

in a shell script. The command line wrapper will present results of function calls that return (lists of) strings by printing results to stdout. The command line tool will exit with an exit code of the return value of functions returning an integer status.

Logging

int ifdh.log(message)

log message to IF job logging service Also, all of the other commands/calls below will log suitable information to the IF job logging service. A zero return indicates success.

 int ifdh.enter_state(state)

 int ifdh.leave_state(state)

Maintains a stack of states which can be entered and left; each triggers log messages about what state we're now in.

File Transfer

These routines will use CPN or equivalent for copies from visible NFS mounted storage, or use srmcp to obtain files not visible via NFS. A zero return value indicates success.

int ifdh.cp(source/filename,destination)

This will copy a file from a known source to the local disk or vice versa, and make sure any underlying data handling system is made aware.

string ifdh.fetch_input(string src_uri)

Gets an input file from src_uri (as returned from getNextFile)

 and stages the file to local scratch disk, returning the full path to the local file.

 int ifdh.add_output_file(string filename)

 int idfh.copy_back_output(string dest_dir)

These routines build up a list of output files, and then copy them back to the destination directory specified.

Metadata/Datasets

In this scenario, jobs do not deal with metadata directly; the File Transfer Service stores files with metadata, and jobs do not themselves declare metadata to the data handing service. They are expected to put metadata into files (ART framework) or next to files.

(i.e. file.metadata.py) However, outside of jobs, scripts may need to do some metadata related work. So in a later release, the following calls will simply pass through to the SAM web interface.

int ifdh.createDefinition(string baseuri, name, dimensionstring, username)

int ifdh.deleteDefinition(baseuri. name)

string ifdh.describeDefinition(baseuri.name)

list<string> ifdh.translateConstraints(baseuri. dimensionstring)

string ifdh.locateFile(baseuri.filename)

string ifdf.getMetaData(baseuri.filename)

Also in a later release we may support the following to allow automated job submission tools:

ifdh.recoveryFileset(baseuri.projectname, datasetname)

Makes a fileset of files not completed in project projectname.

Projects

string ifdh.startProject(projectname, station, datsetname, userstring [,group])

Starts a project to deliver the files in filesetname in some order. Returns a URL handle for the project.

string findProject(string baseuri, string name, string station)

Returns the URL that startProject did for that name and station.

string ifdh.establishProcess(projectname,appname, appversion, deliverylocation,user)

Joins a project as a conusmer process, returns your project consumer url string.

string ifdh.getNextFile(process_url)

Returns the location of the next file in the project, suitable for use with ifdh.cp().

ifdh.updateFileStatus(process_url, filename, status)

Declares you've finished reading the file, and whether it went ok.

int ifdh.setStatus(process_url, int status_ok)

Indicate you're done working on a project, and whether your handling of all files went ok.

Status should be “transferred”, “consumed”, or “skipped”

Sample Job wrapper script

 # values from invocation
 projectname=...

 # join project, get consumer process url
 cpurl=`ifdh establishProcess $instance_uri \
 $projectname myapp v1 $hostname`
 # say we're done on exit or kill signal
 trap "ifdh setStatus $cpurl failed" 0 1 2 3 4 5 6 11 15
 while :
 do
 fname=`ifdh getNextFile $cpurl`
 if [“x$fname” = “x”]
 then
 # no more files...
 break
 fi

 Inputfilename=`ifdf fetchInput $fname`

 if [x$Inputfilename = x]

 then
 ifdh setFileStatus $cpurl $fname skipped

 continue

 fi
 ifdh setFileStatus $cpurl $fname transferred

 # process it
 if executable arg1 arg2 …

 then
 ifdh setFileStatus $cpurl $fname consumed

 else
 ifdh setFileStatus $cpurl $fname skipped

 fi

 # copy output file to staging area for FTS to file

 ifdh addOutputFile $outputfile

 # if we have an external metadata file, copy it out , too

 ifdh addOutputFile $outputfile.metadata

 done

 ifdh copyOutputFiles /destination/stage/dir

 ifdh setStatus $cpurl ok

