IPv6 at Fermilab

Keith Chadwick
Fermilab

Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359
Outline

- Introduction
- OMB IPv6 Mandate
- Fermilab IPv6 Program
- Current Status
- 2014
- Scientific Computing
Introduction

• I am reporting on the work to deploy IPv6 at Fermilab,

• This work is driven by the mandate that our public facing services (defined as external DNS, central web server and email) must be IPv6 capable by 30-Sep-2012:
 – external DNS servers - ns1.fnal.gov and ns2.fnal.gov
 – www.fnal.gov
 – email.fnal.gov

• This work is being done by the personnel in the Network and Virtual Services Department and the Enterprise Services Operations Department in the Core Computing Division,
 – Please credit them with all the hard work and accomplishments,
 – Please blame me for any errors or misunderstandings in this presentation.

• The Grid and Cloud Computing Department is using the IPv6 testbed deployment as a vehicle to understand the implications of IPv6 for Scientific Computing,
 – We are in the process of connecting the FermiGrid and FermiCloud test systems to the IPv6 testbed network.
OMB IPv6 Mandate

• External/public-facing servers & services to support native IPv6 by end of FY2012
 – For DOE, this means e-mail, DNS, & web services
 – “Public-facing” interpreted as “intended for the general public”

• Internal client systems to support IPv6 by the end of FY2014
 – Essentially, this means all desktops

• No IPv6 transition mandate for all systems
 – Scientific computing systems are not within scope

• “Mandate” lacks enforcement element
 – NIST dashboard for agency compliance
 – DOE dashboard for Department compliance
 • Not clear yet whether there’ll be a Lab dashboard
2012 Implications for Fermilab

• 2012 mandates achievable with modest effort

• 2012 scope is very limited & well defined:
 – We define ‘web services intended for general public’ = www.fnal.gov

• Will lay a foundation for 2014 deliverables:
 – Build IPv6 knowledge base
 – Leads to development IPv6-capability in basic tools
2014 Implications for Fermilab

- 2014 mandates much more difficult to achieve:
 - Campus-wide scope,
 - Technically, much more difficult & complex
 - Major issues will need to be addressed:
 - Auto-configuration options & neighbor discovery concerns
 - Security concerns with tunneling, IPv6 address agility, etc
 - Undoubtedly, lots of other things
Fermilab IPv6 Working Group

- Fermilab IPv6 working group formed in late 2010
 - Initial membership = network support staff
 - Expanded participation in 2011:
 - Quadrant (now division) management,
 - Computer security
 - Essential services (e-mail, web services)
 - Grid and Cloud Computing
 - Focus has been on 2012 milestones & deliverables

- Level of effort:
 - Biweekly 1 hour meetings
 - ~2-4 hours effort / week / person outside of meetings
 - Personnel effort has been opportunity cost
 - Not budgeted in FY11; varies by Dept/Group in FY12
IPv6 for Fermilab Scientific Computing

- Scientific computing systems not within scope of OMB mandates for either 2012 or 2014.
 - But I expect that there will be a growing call for IPv6 by scientific stakeholders

- The Grid and Cloud Computing Department (GCC) is investing effort to understand the IPv6 technology implications
 - And get ahead of our stakeholders requirements...

- This is part of the ongoing GCC “fabric” investigations:
 - Virtualized MPI over IB, IPv6, NFS v4.1, 100Gb/s WAN, SAN, etc.
FNAL IPv6 Planning: Strategic view

• What you see shouldn’t sink your ship…

• What you don’t see might…
IPv6 Network Infrastructure Deployment at FNAL

• IPv6 test bed:
 – Deployed as place to test & evaluation IPv6 services
 – Includes load-balancer, firewall, & DNS/IPAM system
 – Some capability to move production systems into test environment

• Computing Sector user subnet has been (quietly...) supporting IPv6 for ~5 years
 – Early testers of local & off-site IPv6 services
 – Currently using Stateless Auto-configuration:
 • Any system configured for IPv6 will receive an address
 • This may not be the permanent addressing model
Status of IPv6 Services (6-Apr-2012)

- External DNS servers are now IPv6-accessible,
- Central web:
 - Personnel slot with IPv6 support responsibilities open
 - Central web development systems now IPv6 enabled
- Email gateway support involves externally contracted service,
 - Current deployment estimate is ~60 days.
- External (DMZ) IPv6 test system in place for testing external access.
Monitoring of IPv6-enabled services

Networking is investigating monitoring options for IPv6 DNS service:

- **Permanent solution will be integration into current networking IPv4-based service monitoring capability,**
 - Working on determining the effort needed to facilitate that (assumed to be significant...)
 - Investigating simple IPv6 monitoring tools in test bed for interim coverage

- **NGOP currently used to monitor e-mail service, but no development seen likely there,**
 - Azeleos monitors e-mail, so this needs to be specified in new contract to include IPv6,
 - SolarWinds might be usable as an email monitoring tool,
 - further investigation needed.

- **Currently, web service monitoring is left to the web page owners,**
 - Not clear this would be sufficient in a dual-stack environment,
 - further discussion expected.
Framework for 2014 Planning

- Networking is starting to look toward the 2014 deliverables
 - Preliminary framework for planning components drafted
 - Doesn't include client system support perspective (desktop support or service desk)

- Central computing services may not have additional 2014 requirements
 - But its considered desirable to continue to enhance IPv6 support as a general practice
 - Not clear whether or how needs to be involved in 2014 IPv6 deliverables planning

- Desktop & service desk support will need to become engaged in 2014 planning (within next 2-3 months)
2014 IPv6 framework from a network perspective

- IPv6 routing support across campus infrastructure
- IPv6 address allocation and support services
- IPv6 network management & monitoring capabilities
- IPv6 network services (NTP, VPN, <what else?>)
- IPv6 network security issues
- IPv6 dual-stack host configuration considerations
- Scientific Computing IPv6 requirements & implications
Grid and Cloud Computing
IPv6 Plans

• Survey IPv6 Compatibility & Readiness:
 – Scientific Linux (Fermi) on “bare metal”, virtualization (Xen, KVM) & other tools (IPtables, NFS, LVS, MySQL, etc.),
 – Grid middleware and applications (Globus, VOMS, GUMS, SAZ, Squid, MyProxy, etc.),
 – Batch systems (Condor, PBS, SGE, etc.),
 – Client tools (voms-proxy-init, globus-job-run, globus-url-copy, etc.)
 – Hardware (BlueArc, etc.),
 – Network performance (IPv4 only, dual stack, IPv6 only),
 • Does “IPv6 only” break anything?

• Participate in the HEPiX IPv6 testbed,
 – Unfortunately we had a departure of a staff member and as a consequence are running shorthanded, so this will be delayed.
Thank You!

Any Questions?