
1

Idle virtual machine detection in FermiCloud
Giovanni Franzini

Fermi National Accelerator Laboratory

Scientific Computing Division

Grid and Cloud Computing

Abstract—FermiCloud is a private cloud providing
Infrastructure-as-a-service services to Fermilab employ-
ees and users, to manage dynamically allocated ser-
vices, interactive and batch processing. At Fermilab,
this distributed computing system can share resources
with FermiGrid, a distributed campus infrastructure that
manages, conversely, statically allocated compute and
storage resources for batch processing. In particular Fer-
miGrid is used to run compute-intensive jobs related to
experiments conducted here at Fermilab. The FermiGrid
resources can be extended launching Virtual Machines
configured as "batch nodes" running on FermiCloud.
A VM mimics a physical computer in all its features.
In order to maximize available computing cycles both
for FermiCloud and FermiGrid, optimization of their
individual utilization is required.

This work is focused on identifying and minimizing
idle virtual machines in FermiCloud. An idle virtual
machine is a machine that is not currently providing
computing services. To increase the overall batch capacity
of FermiCloud, these virtual machine can be retired
and substituted with "batch nodes" VM accessible by
FermiGrid.

To detect idle virtual machines, a set of indexes were
created, to monitor and expose the activity of a virtual
machine. After that, a rule to identify the status of the
machine was defined. This last point was supported by
experimental data coming from tests on real working vir-
tual machines in FermiCloud. All the VMs in FermiCloud
run Unix-like operative system.

I. INDEXES FOR IDLE DETECTION

In order to identify an idle virtual machine, some
of its components and activities must be monitored
periodically. Keyboard usage is among the most im-
portant activities. If someone is using the keyboard,
we will be quite sure that the machine is currently
in use. But when the keyboard has not been used
for a long time (e.g. one hour), other indicators are

needed to understand if the machine is really pro-
viding computing services or not. The CPU idleness
is a good parameter to figure out if there is some
compute-intensive job running. A low value of this
parameter suggests an active usage of the CPU by
one or more process. But sometimes the CPU is idle
because a process in execution is waiting for data
coming from an I/O interface, or for gaining access
to a file locked by someone else. The iowait index
shows its potentialities in these cases. Iowait is one of
the possible Unix machine status. A virtual machine
enters into this status when the CPU is idle and
there is at least one I/O operation in progress (it can
involve both local disk and remotely mounted disk).
Furthermore, parameters about virtual memory activity
can be used to understand the degree of idleness of a
machine. In particular, context switches and memory
paging activity can tell us if the machine is loading
memory pages for a new process, or other programs are
resuming their execution. A virtual machine could also
provide services to the network, it can be for example
a web server. So, network activity of the VM must be
observed, to properly define the status of the machine.

These considerations lead to the definition of six in-
dexes (actually eight) for idle detection:

1) CPU idleness.
2) Keyboard / pseudo-terminal idle time.
3) Bytes received and transmitted by the VM’s

network interface.
4) Iowait ticks.
5) Context switches.
6) Memory paging in/out.

For all of them but one, keyboard / pty index, an
exponential moving average (EMA) is computed. It is

2

a special weighted average defined as follows

S1 = I1

Sn = (1 − α) · In + α · Sn−1 , n > 1

where Sn is the EMA and In is the index value, at
step n. Generally α < 0.5 in order to give more
importance to the new index value. This average keeps
track of its old values, influencing the current measure.
In this way we try to do not miss activity occurred
before the sampling instant. As a matter of fact, a
value taken at the sampling instant, give us information
about that activity in that specific instant. Otherwise,
a weighted average that associates an heavier weight
to current measure, like the EMA, is influenced by the
old values of the index, taking in account past activity.
How much the old values affect the average depends
on the coefficient α. During the test it was set α = 0.3,
with a sampling period T = 60 s.

The defined indexes are discussed in the following
sections.

A. CPU idle

The CPU idle index relies on the uptime Unix file
(which can be usually found into the /proc directory).
This file contains two values:

1) the total number of seconds the system has been
up (totaln);

2) how much of that time the machine has spent
idle (idlen).

Starting from these information, it is quite simple to
compute a percentage (actually, a number between 0

and 1) of system idleness, during a sample period.

∆idlen = idlen − idlen−1

∆totaln = totaln − totaln−1

idlePercn = ∆idlen/∆totaln

After these steps, the EMA of idlePerc is computed.
A note about the idle time and the uptime file.
Some Unix distributions (like Scientific Linux Fermi
5) intend this value as the amount of time the machine
has spent idle. Thus, the idle time is always less than
the total time. Other distributions (e.g. Scientific Linux

Fermi 6) count the idle time of every single CPU,
and then put the sum of all of these into the uptime’s
idle time field. In this case, the idle time could be
greater than the total time. Therefore it is necessary to
know how the VM’s operative system implements this
counter.

B. Iowait, context switches and memory paged in/out

The Unix command vmstat -s shows to the user
a series of counters updated by the kernel. Within
this list, we can find information about the number
of paging in and out, context switches and iowait
ticks (i.e. the number of ticks the system has spent
in the iowait status). A tick is an arbitrary unit for
measuring internal system time. In Linux, the num-
ber of clock ticks per second can be obtained using
sysconf(_SC_CLK_TCK).

From the counters values, four of the eight indexes are
computed. Context switches, paging in and out share
the same formula. They are computed as the difference
between the new and the old value at every sampling
time. In this way we know how many context switches
(or paging in and out) occurred in the previous period.

The iowait index needs a preliminary conversion of
the sample period in ticks. After that, the percentage
of time the machine spent in iowait status is computed
(again, a number between 0 and 1). Let iowaitn be
the number of iowait ticks reported by the vmstat

command at step n, and Tticks the index sample
period in ticks. Then the iowait index (iowaitPerc)
is evaluated as follows.

∆iowaitn = iowaitn − iowaitn−1

iowaitPercn = ∆iowaitn/Tticks

C. Keyboard / pty idle time

To obtain the amount of time since the
keyboard was last used, some pieces of
Condor source code were reused (in particular
src/condor_sysyapi/idle_time.cpp).
Condor is a workload management system for
compute-intensive jobs. During the first phase of this

3

work, its possible use for performing the VM idle
detection was investigated. It turned out that only the
keyboard / pty idle time mechanism was useful for
our purpose.

The extracted code uses the utmp file to obtain the
number of seconds since the last activity detected
from a keyboard or one of the pseudo-terminal (pty)
associated to logged in users. In this way we know the
instant of last detected interactive activity. If no one is
logged in, the index value will be −1. For this index
EMA is not computed.

D. Network activity

Network activity of the VM is monitored using the
information stored into /proc/net/dev file. Two
indexes were created to count the number of bytes
transmitted and received during a sample period, by
the VM’s network interface (usually eth0).

II. IDLENESS RULES

The VM status is defined processing the indexes values
periodically. This period is different from the index
sample period, as long as we can perform the idle
detection test on a longer time scale (e.g. every hour).
The idleness test is based on the evaluation of a logical
rule (or a set of them) that can return only two values:
idle or not idle. This rule may be very simple, and may
be different from VM to VM, according to their tasks.

In order to write an “idleness rule”, thresholds for the
indexes must be defined. These thresholds should be
related to typical indexes values when the VM is idle.
Two possible ways to obtain them are:

1) experimentally, running 24 hours tests on VM
where usage time are known (we know in every
moment if the machine is idle or not);

2) training a neural network, in particular an ANFIS
(Adaptive Network Fuzzy Interference System).

Both the solutions need data from VMs in use. The
second one needs a good knowledge of the status of
the machine in every moment, in order to perform a
good training of the network. The trained network can

be used in two ways. The first one as an idle detector,
implementing it in C++ for example. The second way
need an extraction of the network weights in order
to obtain the wanted thresholds. As a matter of fact,
some of the parameters of the network, tuned during
the training phase, are just the thresholds needed to
evaluate the idleness rule. So after a first training of
the network, these values may give an idea of the final
“idle” threshold for the detector.

During this work, the first solution was chosen. A pool
of friendly users working at the Fermilab Computing
Division marked down when they use their VMs, while
the detector was recording index values. Logs from
these VMs were processed to obtain a first set of
thresholds. The processing of these data consisted in
computing an average of the indexes values recorded
while the machine was idle. The results are shown in
Table I. Data coming from 30 FermiCloud VMs were
used. Keyboard / pty idle time threshold was set at 1
hour.

Table I
IDLE THRESHOLDS OBTAINED PROCESSING TESTS RESULTS.

Average Std. Deviation
CPU idle 0.996 0.0053

Keyboard / pty idle time 3600 ~

Bytes tx per period 2089906.54 4147777.63

Bytes rx per period 408922.42 2151731.32

iowait 0.0026 0.0015

Context switches per period 3012.74 3378.73

Paging in per period 62.43 313.01

Paging out per period 449.19 454.68

As we can see, these values are characterized by an
high standard deviation, pointing out the difference of
values recorded among the different VMs. These lead
me to the definition of a simple idleness rule, that
uses only few indexes. In particular, observing some
of the collected logs, the paging in index has a value
different from zero when the user starts the execution
of a process on his virtual machine. Otherwise its value
is always zero, except in some isolated cases where
was found a periodic pattern (periodically the paging
in index showed a value different from zero).

The algorithm used to implement the idle detection test
is the following.

4

SOMEONE_LOGGED = (keyboard_pty != -1);

KEYBOARD_USED = (SOMEONE_LOGGED &&

keyboard_pty < th_keyboard_pty);

CPU_IDLE = (cpu_idle > th_cpu_idle);

IOWAIT_IDLE = (iowait < th_iowait);

PI_IDLE = (paging_in < th_paging_in);

rule_A = (SOMEONE_LOGGED &&

!KEYBOARD_USED && CPU_IDLE && IOWAIT_IDLE

&& PI_IDLE);

rule_B = (!SOMEONE_LOGGED && CPU_IDLE &&

IOWAIT_IDLE && PI_IDLE);

vm_status = (rule_A || rule_B) ? IDLE :

NOT_IDLE;

The thresholds used for the tests are listed in Table II.
They were obtained combining the data contained into
the logs coming from the 24 hours tests, and the index
average values when the VM is idle, shown before.
The rules were evaluated every 1 hour.

Table II
THRESHOLDS FOR TEST PHASE

th_keyboard_pty 3600
th_cpu_idle 0.96
th_iowait 0.01

The rule is actually divided into two sub-rules, to
differentiate cases when someone is actively using
the machine (keyboard activity is detected) from case
where there is no interactive activity. After that, CPU
idleness, iowait ticks and memory paging in are con-
sidered.

III. TEST RESULTS AND CONCLUSIONS

Test results are shown in Table III. As we can see the
idle detector identifies correctly the VM status 90% of
the time.

Table III
IDLE DETECTOR TEST RESULTS.

VM hostname Hit
fermicloud010 16/27
fermicloud049 25/27
fermicloud053 26/27
fermicloud064 25/27
fermicloud089 26/27
fermicloud092 25/27
fermicloud101 25/27
fermicloud108 25/27
fermicloud130 25/27
fermicloud141 26/27

However, several things must be pointed out. The
majority of the machine used for these tests were
always idle. Only for a few number of virtual ma-
chines, detailed information about their usage time
were available. Therefore, further tests are required,
in order to understand the real performance of this
algorithm.

A series of new tests may also be useful to better
define “idle” thresholds. In particular a pool of virtual
machine with different tasks could be an useful test
group to understand the difference between the index
values recorded on different machines. In this way,
different rules for different kind of machines might be
defined.

Moreover, the index values may be processed in a
different way. In particular, instead of compute the
EMA at every sampling time, index values may be
recorded in a log file. Then, when it is needed to
perform the idleness test for the virtual machine, data
collected into this file may be processed to foresee
the machine activity in the future, or to understand
what the machine did during the previous period. So
different use of these indexes is possible.

All tests use α = 0.3 as coefficient for the EMA.
Further tests could be performed to tune this parameter
to satisfy different requirements. Different values for α
changes the behavior of the index average, increasing
or reducing its “decadence” time.

	Indexes for idle detection
	CPU idle
	Iowait, context switches and memory paged in/out
	Keyboard / pty idle time
	Network activity

	Idleness rules
	Test results and conclusions

