StdHepC++

L. Garren

Fermi National Accelerator Laboratory, USA

Abstract

StdHepC++[1] isa proposed standard CLHEP Monte Carlo event class library which will
allow users a common interface to Monte Carlo event generators. The HEPEVT common
block, together with the StdHep Fortran interface, and the PDG particle numbering scheme
provide the current Fortran standard. The new classes will provide an object oriented inter-
face to the current functionality, as well as allowing for multiple collisions, tracing of parents
and daughters, and I/O in several standard formats.

Itishoped that thisclass can be used directly by the C++ event generators now being coded.
At minimum, methods will be available to fill the StdHepC++ classes from the informationin
Monte Carlo event generators. Theintent isto use these classes with detector simulators such
as Geant4 and other analysis routines.

Keywords: stdhep
1 Introduction

Asiswell known, every Monte Carlo generator hasits own interface and particle definitions. Yet
users need to process information from various generators in a standard way. This problem was
previoudy solved by use of the HEPEV T[2, 3] common block and the PDG standard particle num-
bering scheme[4].

As physicists move from Fortran to C++, it is necessary to provide C++ tools for analysis.
Also, anumber of generators are being written in or converted to C++[5]. Further, events and par-
ticles can be naturally described as objects.

We propose a standard event generator interface for C++: StdHepC++[1]. Thisinterface
will bein CLHEP[6]. Theintent is to create modules which can be used directly by Monte Carlo
generators so that specialized StdHep trand ation routines will no longer be needed.

Asalfirst step, aninterfaceto the existing Fortran HEPEV T common block has been created.
The StdHepC++ classlibrary will implement all functions currently in the Fortran StdHep library.
Some of thecurrent functionalityis: trandationbetween Monte Carlo generator output and StdHep;
tranglation of particle ID codesto a consistent set; translation from StdHep to simulator input (e.g.
GEANT); charge, name, and quark content of a particle; event specific properties, includinglistsof
descendants and ancestors; and platform independent I/O using X DR viathe implementation used
in the MCFast[7] simulation package.

2 TheCode

2.1 Classes

StdHepC++ uses 5 main classes in the StdHep namespace:

Particle

ParticleData

Callision

Event

Run

StdHep::ParticleData contains standard particle information for each type of particle (e.g.
70, 7/, etc.): particle D number[4], particle name, charge, mass, width, lifetime, spin, and isospin.
Thisisthe standard Particle Data Group information and can bereferenced viaparticle ID. Ideally,
this would also contain the particle decay table, however a general purpose access to such infor-
mation is outside the scope of this project.

StdHep::Particle containsthe volatile particleinformation: Particle ID, status code, mother,
second mother, anindex to thefirst daughter, anindex to thelast daughter, color, momentum CLHEP
L orentz vector, generated mass, helicity, creation vertex CLHEP Lorentz vector, and decay vertex
CLHEP Lorentz vector. The mother, second mother, and indicestofirst and last daughter are delib-
erately designedto be compatiblewiththeHEPEV T common block. StdHep::Particleal so contains
amethod to access the appropriate StdHep::ParticleData.

StdHep::Collision contains a vector of pointersto particles, a collision number, the number
of particles, and the input I/O stream. A collisionisasingleinteraction.

Because there may be severa interactionsin one beam crossing, an event is a collection of
collisions. StdHep::Event has a vector of pointersto collisions, an event number, and the number
of collisions.

StdHep::Run containsthe number of events to generate, the number of events actually gen-
erated, and event independent information, such asthe number of eventswrittento 1/0, the nominal
center of mass energy, the cross-section, and random number seeds. This class contains methods
for efficient I/O of events or portions of events.

2.2 Methods

Basic methodsinclude class constructors, copy constructors, and accessorsand modifiersfor every
element of the classes. There are also methodsto return various collectionsof descendentsand an-
cestors, e.g. StdHep::Descendants, StdHep:: StableDescendants, and StdHep: : ChargedStableDescendants.

The non-trivial methods in StdHepC++ center on platform independent 1/0. The StdHep
namespace hasInitReadX DR, OpenReadX DR, ReadX DR, InitWriteX DR, OpenWriteX DR, WriteX DR,
WriteEventXDR, and WriteEndXDR. The ReadXDR methods accept data and build the StdHep
classes. Simulationsand user analyses use these methodsto work with the datafrom arbitrary gen-
erators. The WriteXDR methods trandlate the class information into XDR C information. These
methods are used to output information in a portable format. StdHepC++ uses the MCFio XDR
implementation, which can be found in both M CFast and StdHep.

The 1/0 methods will also address other formats used in important HEP tools. The 1/O ap-
proach adopted by LHC++[8] will have direct support. Also, designsfor rapid 1/0 of subsets of
Particle propertieswill be developed in cooperation with the ROOT[9] team.

3 Directed Acyclic Graphs

We propose to put the Particles comprising a Collisioninto adirected acyclic graph (DAG) instead
of avector. A DAG isatemplated classwhich knowsthe parent/childrel ations, so the Particles can
be envisioned as associ ated with pointson agraph and these points can be connected to one another
by arcs representing therelationships. This providesa natural method for determining parent/child
relationshipsinthe particlelist, yet separatestherel ationship datafrom theintrinsic datadescribing

each Particle. Oncethe DAG isimplemented, the mother and daughter information can be removed
from the Particle class.

The DAG can contain arbitrary numbers of points, children, parents, and roots. Roots are
the points with no parents. Note that children can have multiple parents, and of course, parents
can have multiple children. However, there cannot be more than one arc between any two given
points. Also, there cannot at any time be a closed circlein the graph. Methodswhich add Particles
or assign relationshipswill enforce this.

A full description of thisproposal isavailable at
http://www-pat.fnal.gov/stdhep/c++/dag.txt.

4 Conclusion

Thereisastrong need for a C++ standard Monte Carlo generator interface. StdHepC++isanatural
object-oriented implementation of such aninterface. At present, we have working exampleswhich
integrate StdHepC++ with the Fortran versions of Herwig, Pythia, and |sgjet.

References

1 StdHepC++: http://www-pat.fnal.gov/stdhep/c++/.

2 T.§ostrandetal., in“Z physicsat LEP1”, CERN 89-08, vol. 3, p.327.

3 T. Sostrand, “Interfacing four-fermion generators with QCD generators’, Workshop on
Physicsat LEP2, (Jan. to Oct. 1995).

4 Particle Data Group: C. Caso et al., The European Physical Journal C3 (1998) 180

http://www-pdg.1lbl.gov/mc_particle_id_contents.html.

Pythia7: http://www.thep.lu.se/tf2/staff/leif/Pythia7/Welcome.html.

CLHEP: http://wwwinfo.cern.ch/asd/lhc++/clhep/.

MCFast: http://www-pat.fnal.gov/mcfast.html.

LHC++: http://wwwinfo.cern.ch/asd/lhc++/.

ROQOT: http://root.cern.ch/.

©O© 0o ~NO O

