Migration: Surfing on the Wave of Technological Evolution
- An ENSTORE Story

C.-H. Huang, W. Baisley, J. Bakken, D. Berg, E. Berman, T. Jones, D. Litvintsev, A. Moibenko,
G. Oleynik, D. Petravick, G. Szmuksta, M. Zalokar FNAL, Batavia, IL 60510, USA

Abstract

ENSTORE is a very successful petabyte-scale mass
storage system developed at Fermilab. Since its inception
in the late 1990s, ENSTORE has been serving the
Fermilab community, as well as its collaborators, and
now holds more than 3.5 petabytes of data on tape. New
dataisarriving at an ever increasing rate.

One practical issue that we are confronted with is:
storage technologies have been evolving at an ever faster
pace. New drives and media have been brought to the
market constantly with larger capacity, better
performance, and lower price. It is not cost effective for
aforward looking system to stick with older technologies.
In order to keep up with this technological evolution,
ENSTORE was in need of a mechanism to migrate data
onto newer media.

Migrating large quantities of datain a highly available
mass storage system does present a technical challenge.
An auto-migration scheme was developed in ENSTORE
that carries out this task seamlessly, behind the scenes,
and without interrupting service nor requiring much
operationa attention. After two years in service, auto-
migration has lived up to its expectations and ENSTORE
has gone through several generations of drives and media.
In addition, migration can be used in media copying,
media consolidation, and data compaction.

In this paper, we are going to present the conceptual
design of ENSTORE, the issues in data migration in a
highly available mass storage system, the implementation
of auto-migration in ENSTORE, our experience and its
extended applications.

INTRODUCTION

ENSTORE is a petabyte scale, highly available tape
based permanent storage system developed by and
installed at Fermilab. When data size is huge, tape based
systems provide the best price/capacity ratio with
reasonable performance.

Being a tape based system, its total capacity depends
on the number of media, its online capacity further

depends on the size of the media library, and, its maximal
performance depends on the performance of the library,
the number of drives and the aggregation of their
individual performance within the capability of the
library and communication channels.

In theory, a tape based storage system is easily
scalable without a pre-set limit. In reality, it is limited by
the physical space that houses the system and the media,
the infrastructure (media libraries, drives, ... etc.) to
support its operation and the operational cost to run the
infrastructure. Every thing is further constrained by
capital. In fact, the total capacity has a lower bond
because that is the amount of the space where the data are
to be stored and such space is needed and is the whole
purpose of having a storage system in the first place.

It is obvious to see, if the density of the media is
increased, the capacity of the system is proportionally
increased without increasing the infrastructure, the
physical space, nor the operational cost. Similarly, if the
performance of individual drives are increased, the
performance of the whole system is increased without
increasing the physical space nor the operational cost. The
increase of the cost of infrastructure can be offset by the
benefit from the performance and, very likely, the
capacity increase. To replace a drive by another kind, it
almost always means media change, either physically,
such as the form factor, or logically, such as the format.

The reality 1is, technologies have not stopped
reinventing themselves. The lower price/capacity media
and better price/performance drives are brought to the
market at an increasing pace. Experience has taught us
that it costs more to stick with an aging technology than
to take price/capacity and price/performance advantages
of the newer ones. To a storage system, it means
migrating data from existing media to the new kind.

A typical example is 9940A to 9940B migration. The
media are physically identical. Due to different recording
format, 9940B has three times capacity, 200 GB vs.
60GB. By migrating data from 9940A media to 9940B
and reformat 9940A media to become 9940B, we

increased the capacity of the system by a factor of three
within the same physical and fiscal constraints.

Migrating data is not intellectually difficult. What is
difficult is to migrate huge amounts of data in a highly
available and fully utilized system, such as ENSTORE,
without interrupting services. About three years ago,
ENSTORE started the data migration project. Now on its
second generation, migration has become part of routine
operation, and ENSTORE has retired several older
generations of drives and media.

ENSTORE

To illustrate how migration works in ENSTORE, let's
briefly present one conceptual view of the system. For
this purpose, ENSTORE can be viewed as two parts, the
back end storage system and the front end name space.
See Figure 1. The back end storage system maintains
complete metadata regarding the files and volumes. That
is, with a single universally unique file id, the system is
able to locate the file on tape and transfer its content. The
front end name space provides a file system like interface
for the users. Users interact with the files in the storage
system as if they are dealing with a normal file system.
The name space is loosely coupled with the back end
storage system. In each file entry in the front end name
space, it remembers the unique file id in the storage
system. Currently, ENSTORE is using pnfs for the front
end name space.

Front end name space

PNFS

Figure 1: Conceptual View of ENSTORE

Back end storage system

FILEDB

—}i filerecord ‘
»‘ filerecord ‘

v

files on tapes

In ENSTORE, for data integrity reasons, the metadata
of the files are kept in two places, the file database, in the
back end storage system, and the layers in pnfs. If one is
lost, it can be recovered from the other. Keeping metadata
in front end name space speeds up gathering information
about the file without actually accessing the back end
storage system. Keeping the metadata in the back end
storage system, does keep the information in case where

the file entry is removed from the front end name space,
allowing deleted files to be restored.

Due to the inherited nature of sequentially accessed
media, it is unrealistic to reuse the tape space occupied by
deleted files. If the file layout requires contiguous
allocation, as of most formats, internal fragmentation will
prevent such space from being reused efficiently. Even if
a format allows non-contiguous allocation, the
fragmented file will prevent the data transfer from
progressing at its top rate. As long as non-contiguous
allocation is allowed, eventually the files will be
fragmented. In ENSTORE, a deleted file is only marked
deleted in its metadata without being removed from tape
unless the tape is recycled. Another advantage is that, if a
user deletes a file by mistake, ENSTORE is able to restore
the file to its original state at any time before the tape is
recycled, reused and the first byte is written. The space
occupied by deleted files that are confirmed to be no
longer needed can be reclaimed by a process called
compaction. Compaction can be naturally done through
migration.

MIGRATION

The requirement and design considerations for
migration process are as follows:

* File based migration — the minimal migration unit is
a file. The other aggregations can be implemented on
top of it. The most requested migration is batched
migration based on volumes, which is implemented
in terms of file migration.

» All files are always available during migration. Since
ENSTORE is a highly available and heavily used
system, all files have to be available even during the
time when migration is taking place.

* Migration is transparent to the users. The users
should not notice any difference before, during, and
after the migration while accessing the files through
the standard interface. No change is required to the
user programs that are reading the files. To achieve
this, it means reuse front end name space entry.

* No special resources are reserved for migration — all
data movement for migration purposes compete with
other data transfers in the system. Reserving
resources for special purpose may prevent them from
being used for general services hence reducing their
utilization.

* Minimal impact to the system performance.
Migration is not the most important task of
ENSTORE. While competing with other transfers for
resources, it should not affect the system. Since the
files are always available before, during and after the

migration, how long it takes to migrate a file is not
very critical. Migration in ENSTORE takes the
lowest priority and takes advantage of system
resources when they are idle.

e Progress history is kept in a persistent store. Since
migration is a long running process taking lower
priority in the system, anything may happen to it in
its life time. Keeping progress history allows the
migration process to be restarted with exactly the
same conditions and it will skip what has already
been done. In its implementation, a RDBM is used to
keep all process history in every verifiable stage.

* Minimal administrator attention. It would be nice if
the whole system is fully automatic without human
interaction. However, in reality, in a storage system,
any task that changes data is critical and is potentially
a threat of data loss. Therefore, in operation, we still
keep a person in the loop. Every thing can be
prepared for that person to decide whether to kick off
a migration process. Once a migration process starts,
it does everything, including verification, to the end.
To accomplish this, the key is a smarter error
recognition and handling scheme.

e Concurrent migrations. Should there be a need to
increase migration throughput, multiple migration
processes can be launched at the same time withoutt
interfering with each other.

e Migration is reversible — in case there is a need, every
file can revert to its original state before the
migration. Since every stage of the migration is
logged and nothing is actually deleted in the
migration process, everything can be restored.

The operational models of migration are as follows:

* User requested migration. Users request migration by
specifying a list of files or a list of volumes and the
administrator ~ launches migration process(es)
according to the requests.

* Routine migration by system — system recognizes
conditions of certain volumes and puts them through
migration. Examples of such conditions are, volumes
with excessive mounts, deteriorated media, media
conversion and so on. Currently, this is done through
monitoring cron jobs that constantly analyse the
volumes in the system and make recommendations.

IMPLEMENTATION

A file migration is done in the following 3 steps:
copying the file, swapping the meta data, and verification.
To illustrate how migration works, let's assume a file has a
pnfs entry pl which points to file record fl which
contains all metadata that is necessary to access the
content of the file on tape tl. pl is the only information

visible to users. See Figure 2. f1 also has a pointer back to
pl which is not shown.

PNFS FILEDB
t1l
e a0

Figure 2: A file
Step 1: copying the file.

The file, having pnfs entry pl pointing to file record f1
accessing data on tape tl, is copied to disk then to a
destination tape t2, creating pnfs entry p2 and file record
2. See Figure 3.

PNFS FILE DB
t1

— Q9|
t2

Figure 3: Copying file

fl and f2 are two distinct files that have the same content.
During copying, the read and write streams are handled
by two parallel threads to increase the throughput. In each
stage, the file's integrity is checked and the progress is
recorded. If integrity check fails, an error is logged and
reported, and migration for this file aborts.

Step 2: swapping metadata.
Let pl point to f2. See Figure 4.

PNFS FILE DB
t1l
a0
t2

p2 ®

Figure 4: swapping metadata

User till sees the file as pl. Even though it is caled
“swapping”, the metadata are not actually “swapped”. It
isonly apair of one way copies. The pointer to f2 in p2 is

copied to pl and the back pointer to plin f1 is copied to
f2. In case of retrying, if it is repeatedly applied any
number of times, the metadata always end up in a known
and correct state. The status is recorded, too.

Step 3: verification.

The file is read back through pl, in exactly the same way
as the users would do, to verify its content. See Figure 5.
Once the file is successfully read back, migration of this
file is completed and the status is recorded and f1 is
treated as a deleted file in ENSTORE. During the entire
migration process, f1 is never changed and still points to
the content on tl1. If the verification fails, access can
always be restored to f1.

PNFS

SNOSY)

t2

—»Q0|

FILEDB

Figure 5: verification

In volume migration mode, each file goes through the
same steps except the verification is deferred until the
destination tape is full or until human intervention. On
one hand, it is much more efficient to read through a tape
sequentially than read after each write. On the other hand,
every write is a potential threat to destroy the content on
tape. Therefore, the fina scan of the files after the tape is
no longer writeable is an added assurance to the migration
process. Once the verification, for single file migration, or
the final scan, for volume migration, succeeds, the
migration is done. When all files on the original tape are
marked deleted, the tape can be recycled or removed from
the ENSTORE system. In volume migration mode, any
single file migration error will be logged and reported but
the migration process will continue to work on the next
file. A batch migration with any error will be left in an
incomplete state until all the problems are resolved.

In the current implementation, deleted files may be
optionally migrated. All deleted files will be migrated to a
set “zombie” media which may later be restored or
removed all together.

ADDITIONAL APPLICATIONS OF
MIGRATION

In addition to media/format change, migration can also
accomplish the following:

® media cloning. When a tape is exceeding its life time,
its content needs to be copied to another tape.
Traditionally, tape cloning involves reserving two
drives dedicated for copying service. Media cloning
can be done easily through migration without
dedicated resources or human attention.

® media compaction. As mentioned, deleted files are
only marked deleted in the system and the space is not
reclaimed. To reclaim the space and render it in a
meaningful (contiguous) way, the files need to be
“repacked”. This can be naturally done through
migration.

® media consolidation. Similar to media compaction,
partialy filled tapes may be combined on fewer tapes.

EXPERIENCE AND CONCLUDING
REMARKS

ENSTORE has been running migration for more than
two years. In 2004, 4557 60GB 9940A tapes have been
migrated to 200GB 9940B tapes. The migration increased
the capacity of the tape library by afactor of three and the
media were reusable. In 2005, 1240 Eagle tapes were
migrated to 9940B tapes, freeing up 1000 needed dlots in
the tape library. Now, migration has become a routine
process in ENSTORE operations. Through migration,
ENSTORE keeps surfing on the wave of technological
evolution.

REFERENCES

[1] G. Oleynik and others, “Fermilab Multi-Petabyte
Scalable Mass Storage System”, Proceedings of the
227 |EEE/13" NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST 2005).

[2] A. Moibenko and others, “Status of Fermilab
ENSTORE Data Storage System”, CHEP 04.

[3] E. Berman and others, “Monitoring a Petabyte Scale
Storage System”, CHEP 04.

[4] J. Bakken and others, “The Fermilab Data Storage
Infrastructure”, IEEE Symposium on Mass Storage
System, 2003.

[5] D. Petravick and others, “ENSTORE - an Alternate
Data Storage System”, CHEP 98

