
“A Comprehensive Java-based
Simulation Environment for Particle

Physics”

Tony Johnson
SLAC
September 2006

What will I really talk about?
This is actually one of a series of talks/tutorials at
Fermilab this week

Computing Techniques Seminar
Software Framework for ILC detector simulation

(Java, C++, XML)
Emphasis on Computing Techniques

ILC R&D seminar (Wednesday, 11am)
Norman Graf will discuss the same framework, but with more
emphasis on detector technology studies and related physics

Hands on Tutorials
This afternoon, and tomorrow morning.

We will show how to install and use this software.

Contents
Goals
LCIO – Common IO for ILC detector studies
SLIC – Simulation Package
Geometry Description
org.lcsim – Reconstruction and Analysis
Package

Using org.lcsim with JAS3
Using org.lcsim with WIRED4
Using org.lcsim with “The Grid”

How to get involved

Goals
Enable full studies of ILC physics to optimize detector design and
eventual physics output

Use realistic detector geometries
Full simulation (in combination with fast parameterized MCs)
Full reconstruction

Simulate benchmark physics processes on different full detector
designs.
Encourage development of realistic analysis algorithms
See how these algorithms work with full detector simulations

Facilitate contribution from physicists in different locations with
various amounts of time available (normally not much!)

Software should be easy to install, learn, use
Goal is to allow software to be installed from CD with no external
dependencies
Support via web based forums, tutorials, meetings.

Goals
Use standard data formats, when possible.

Interoperate with other ILC software where
possible

Geometry, “Detector Concept” independent.

SiD GLD LDC

ILC software packages (circa 2004)
Description Detector Language IO-Format Region

Simdet fast Monte Carlo TeslaTDR Fortran StdHep/LCIO EU
SGV fast Monte Carlo simple Geometry, flexible Fortran None (LCIO) EU

Lelaps fast Monte Carlo SiD, flexible C++ SIO, LCIO US
Mokka full simulation â€“ Geant4 TeslaTDR, LDC, flexible C++ ASCI, LCIO EU

Brahms-Sim Geant3 â€“ full simulation TeslaTDR Fortran LCIO EU
SLIC full simulation â€“ Geant4 SiD, flexible C++ LCIO US

LCDG4 full simulation â€“ Geant4 SiD, flexible C++ SIO, LCIO US
Jupiter full simulation â€“ Geant4 JLD (GDL) C++ Root (LCIO) AS

Brahms-Reco TeslaTDR Fortran LCIO EU

Marlin Flexible C++ LCIO EU

hep.lcd reconstruction framework SiD (flexible) Java SIO US

org.lcsim SiD (flexible) Java LCIO US

Jupiter-Satelite reconstruction and analysis JLD (GDL) C++ Root AS
LCCD Conditions Data Toolkit All C++ MySQL, LCIO EU
GEAR Geometry description Flexible C++ (Java?) XML EU

LCIO Persistency and datamodel All - AS,EU,US

JAS3/WIRED Analysis Tool / Event Display All Java US,EU

reconstruction framework
(most complete)

reconstruction and analysis
application framework

reconstruction framework
 (under development)

Java, C++,
 Fortran

xml,stdhep,
heprep,LCIO,

LCIO
Object model and persistency

Events
Monte Carlo
Raw
Event and run metadata

Reconstruction
Parameters, relations, attributes,
arrays, generic objects, …

All the ILC simulators write LCIO
Enables cross-checks between
data from different simulators
Read/write LCIO from

Fast MC / Full Simulation
Different detectors
Different reconstruction tools

Overview: “ALCPG” Framework

StdHep
Events SLIC

LCDD
XML

LCIO
Events

Geom
Converter

Compact
XML

org.lcsim

JAS3

loads

loads

WIRED4

AIDA
implements

HepRep
XMLConditions

Software
Package

Data Format User Analysis
Drivers

loads

SLIC – Simulator for LInear Collider

StdHep
Physics
Events

LCDD
XML

Geometry

SLIC
Geant4

Simulator

LCIO
Output File

reads

writes

reads

Geant4/SLIC
Commands +

macros

reads

“One .exe to run them all”

Prototyping Detectors using Geant4
Traditional way to build Geant4 geometries is by writing C++ code

Positions sizes either hardwired into code or read from database or conditions framework
Advantages:

Most efficient way to define G4 geometries
Full access to G4 geometry features
Ideal for “fixed” geometry (e.g. LHC detector)

Disadvantages
Changes in geometry typically require recoding of C++
Access to geometry from other tools (visualization, reconstruction, analysis) difficult
Not ideal for prototyping detectors, test beams, thought experiments etc.

Alternative approach is to use XML to define G4 geometries
Human readable and editable
Quick development cycle

no recompilation for geometry changes
properties easily “tweaked”

Portable standard: easy to import/export/exchange data
High quality, standardized tools in C++ and Java, Python
Self-descriptive with schemas (XSD)

validating parser quickly identifies errors
Natural representation of structured hierarchies, i.e. detector geometries
No database to install or access at runtime

Easy to run on Grid

Linear Collider Detector Description (LCDD)
GDML (Geometry Description Markup Language)

Currently developed as part of LCG applications area
Tool available to generate GDML from any Geant4 program

LCDD
Format developed for International Linear Collider (ILC) simulations

but generally applicable
Extends GDML to define full detector description

GDMLLCDD
Expressions (CLHEP)
Materials
Solids
Volumes

Sensitive Detectors
Readouts
Regions
Physics Limits
Visualization Attributes
Magnetic Fields

LCDD Examples
LDC: ttbar SiD May05: 100 muons SiD Aug05: ttbar CDC Aug05: ttbar 6 jets

Calorimeter Testbeam GLD: ZHiggs; MH=120 GeVSiD Aug05: ttbar 6 jetsGLD: ttbar

org.lcsim: Compact Geometry Description
LCDD can describe essentially any detector

But very verbose
Changing e.g. # of layers in calorimeter can result in many
changes in LCDD file

org.lcsim uses “Comact Geometry Description” to
define detector

Simple XML format for describing ILC detectors
Handles typical ILC detector geometries

Range of detectors handled is extensible (by writing Java
modules)

Allows rapid prototyping of new detector geometries
Does not require network access or installation of
database software to run
Automatic generation of full Geant4 LCDD geometry for
full compatibility with SLIC

Detectors: Compact XML Example
Two layer stacks in an ECAL barrel

<detector id="2" name="EMBarrel" type="CylindricalBarrelCalorimeter"
readout="EcalBarrHits">

<dimensions inner_r = "150.1*cm" outer_z = "208.0*cm" />
<layer repeat="20">
<slice material = "Tungsten" thickness = "0.25*cm" />
<slice material = "G10" thickness = "0.068*cm" />
<slice material = "Silicon" thickness = "0.032*cm" sensitive = "yes" />
<slice material = "Air" thickness = "0.025*cm" />

</layer>
<layer repeat="10">
<slice material = "Tungsten" thickness = "0.50*cm" />
<slice material = "G10" thickness = "0.068*cm" />
<slice material = "Silicon" thickness = "0.032*cm" sensitive = "yes" />
<slice material = "Air" thickness = "0.025*cm" />

</layer>
</detector>

org.lcsim: Geometry Converter

Compact
Description

LCDD
(SLIC)

HepRep
(Wired)

org.lcsim
Analysis &

Reconstruction

GODL
(Lelaps)

Small Java program for converting
from compact description to a
variety of other formats

org.lcsim Conditions Data
Provide access to a extensible set of conditions for each detector
including:

Detector Geometry
Algorithm Specific Constants

E.g. FastMC smearing parameters
Doesn’t make assumptions about format of data
Doesn’t rely on internet access, or local database installation

Downloaded and cached on first use
Detector Constants stored in .zip file

Typically contains:
Compact geometry file
Set of (ascii) constants for standard algorithms

Can additionally contain:
Arbitrary files (xml, ascii, binary) needed by other algorithms
Other geometry formats (HepRep, LCDD)
Full fieldmap

To define a new detector just create a new .zip file.

Available Detector Descriptions
Although detector descriptions can live anywhere we
maintain a CVS repository of detector descriptions

Exported to lcsim.org web site for automatic download
40 detector variants as of July 2006
Many SiD variants, but also some GLD, LDC

Anyone can contribute more

http://lcsim.org/detectors/

org.lcsim Goals
“Second generation” ILC reconstruction/analysis framework

Builds on hep.lcd framework used since 1999
Full suite of reconstruction and analysis tools

Uses LCIO for IO and as basis for simulation, raw data and
reconstruction event formats

Isolate users from raw LCIO structures
Maintain full interoperability with other LCIO based packages

Detector Independence
Make package independent of detector, geometry assumptions so can
work with any detector
Read properties of detectors at runtime

Written using Java (1.5)
High-performance but simple, easy to learn, OO language
Enables us last 10 years of software developments in the “real world”

Ability to run standalone (command line or batch) or in JAS3 or IDE
such as Netbeans, Eclipse

Why Java?
Java is a pure Object Oriented Language

Simpler to learn and use than C++
Language design emphasizes ease-of-use over performance
Garbage collector takes care of freeing unused objects

Avoids distorting OO design by avoiding need for “ownership”
Very powerful standard library

Large number of open-source libraries including libraries for scientific computing
Platform independent, compile once just runs everywhere

Linux, Windows, Mac OSX)
Physicist gets to concentrate on writing clean OO code to perform analysis tasks

Not understanding core dumps and learning difference between a pointer and a reference.
Performance of Java code is close to that of C++

Dynamic (runtime) optimization can take into account actual usage patterns
not available to static optimizers used by Fortran, C++

Garbage collection often more efficient than user malloc/free (or new/delete)
Java is mainstream language

Taught in university courses
Used by majority of sourceforge “open-source” projects

Why Java?
Full access to runtime information makes interface to scripting languages easy

Jython, JRuby, Pnuts, …
Open-source Java is rapidly becoming a reality

gcj (GNU), Harmony (Apache), Sun
Wide availability of Tools

Several very powerful,free, IDE’s now available:
E.g. Netbeans, Eclipse, (IDEA)
Support editing, code completion, GUI building, debugging, performance profiling,
refactoring, version control (CVS, Subversion), etc…

Advanced tools such as maven (Apache) make project management easy
Maven is a Java based project management tool
After checking out code, single command “maven”

downloads dependencies,
Required libraries
Test Data

compiles code
runs test suite
deploys code

Maven can be integrated into IDE’s like Netbeans

Why Java? – Netbeans IDE

Why Java? – Maven project management

(After installing Java, cvs, maven)
cvs –d :pserver:anonymous@cvs.freehep.org:/cvs/lcsim co GeomConverter
cd GeomConverter
maven
cd ..
cvs –d :pserver:anonymous@cvs.freehep.org:/cvs/lcsim co lcsim
cd lcsim
maven jar:install jas:install

Org.lcsim Reconstruction
Reconstruction package includes:

Physics utilities:
Jet finders, event shape routines
Diagnostic event generator, stdhep reader/translator
Histogramming/Fitting/Plotting (AIDA based)
Event Display
Processor/Driver infrastructure

Fast MC
Directly reads stdhep events (or LCIO events)
Track/Cluster smearing
Produces ReconstructedParticles

Reconstruction
Cheaters (perfect reconstruction)
Detector Response

CCDSim, Digisim
Clustering Algorithms

Cheater, DirectedTree, NearestNeighbour, Cone
Tracking Finding/Fitting Algorithms

TRF, SLD Weight Matrix, Kalman filter
Muon Finding, Stepper
Vertex Finding (ZvTop)

org.lcsim: Contrib Area
Goal of org.lcsim is not to provide “A single reconstruction package” but
rather a framework into which reconstruction algorithms can be
plugged.
We encourage users to contribute code to the “contrib” area as soon as
possible.

Important to encourage collaboration, reuse, and as learning tool.
Contributions from: SLAC, Fermilab, Berkeley, NIU, Brown, Colorado,
Colorado State, Santa Cruz, Iowa, Kansas, Kansas State, Oregon,
Penn, Michigan, UT Arlington, …

Many contributions added in last year:
HMatrix cluster analysis
Vertex Fitter
Particle Flow (PFA) algorithms/template
SODTracker
Garfield Tracker
Calorimeter Cell Ganging
FastMC improvements
Tracking finding/fitting
MIP Finder
Minimum Spanning Tree Clustering

org.lcsim results (See Norman Graf’s talk tomorrow)

org.lcsim Contributors

SLAC, Fermilab, Berkeley, Santa Cruz, Iowa,
Kansas, Kansas State, Oregon, Penn,
Michigan, UT Arlington

Using org.lcsim with JAS3

The org.lcsim can be used standalone, with an IDE,
or inside JAS3. Same code can be used in all
modes, so easy to move back and forth

E.g. develop in IDE and run in JAS3
E.g. develop in JAS3 and run in batch

JAS3 org.lcsim plugin adds:
Example Analysis Code
org.lcim Event browser
Easy viewing of analysis plots
WIRED event display integration

org.lcsim: Examples

org.lcsim: Examples

org.lcsim: Plot Viewing

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Interoperability: Event Display

SiD GLD LDC

Z Higgs (MH=120 GeV) same simulator, three different full detector geometries

Using JAS3 and org.lcsim on the Grid

In collaboration with Tech-X we have
developed prototype “Interactive Parallel
Analysis” system.

Allows interactive analysis of (ilc) data using a
farm of machines to run analysis in parallel
Maintains full interactivity using JAS3

Sending Code and Merging Results

Analysis
Studio
(JAS3)

InternetInternet

Merged Results

Code

Resource
Manager
(GRAM)

Requests
Analysis
Engine Jobs

Data Store

Stage Data

Results

Start Jobs

worker

worker

worker

worker

Scheduler

Grid (Compute Element)

Interactive
Dataset
Analysis
Service

ConnectBrowse &
Search
Dataset
Catalog

Choose
Dataset

Stage
Code

Send
Analysis
Partial
Results

1. Download the dataset
from the repository

2. Split the dataset into
‘n’ chunks

3. Place them in the
Data Store

Secure Login + Catalog Browser

Catalog Service to Browse and Search
Datasets

Integrated Development Environment

Interactive Graphical Results in Seconds

Controls to Start/Stop
Analysis

Can change analysis code, clear
graphs, and restart

How hard is it to get started with
org.lcsim?

Works on Linux, MacOSX, Windows
Should take about 15 minutes to install JAS3 and
org.lcsim plugin.

Case Study: SLAC Summer student
2 semesters of Java experience

(no C++, Fortran etc)
Using tutorial on lcsim.org Wiki; installed software,
downloaded data, and got useful results in one day
(and fixed a few errors in the documentation along
the way).
Regular analysis updates have been appearing on
her blog ever since!

Even if you don’t have Java experience you can
get started almost as fast

(the only thing you will miss is the core dumps)
Start here:

https://confluence.slac.stanford.edu/display/ilc/lcsi
m+Getting+Started
Problems? Attend Tuesday afternoon “Simulation”
phone meeting or use discussion forum at
http://forum.linearcollider.org/

https://confluence.slac.stanford.edu/display/ilc/lcsim+Getting+Started
https://confluence.slac.stanford.edu/display/ilc/lcsim+Getting+Started
http://forum.linearcollider.org/
http://suli2006.blogspot.com/

LCIO: Data Samples
LCIO data samples available via anonymous FTP

http://www.lcsim.org/datasets/ftp.html
Data sets

ILC500
500 GeV machine parameters

ILC1000
1 TeV machine parameters

singleParticle
Single particle diagnostic events

Zpole
Zpole diagnostic events

Organization

http://www.lcsim.org/datasets/ftp.html

Becoming an org.lcsim developer
To get started you just need “Java”, “cvs”, “maven”

Maven is a Java based project management tool
Single command “maven”

downloads dependencies, compiles code, runs tests, deploys code
All code in CVS
To check-out and build all code:

set CVSROOT=“pserver:anonymous@cvs.freehep.org:/cvs/lcsim”
cvs co GeomConverter
cd GeomConverter
maven
cd ..
cvs co lcsim
cd lcsim
maven

Find more documentation at:
http://lcsim.org/
Read/Contribute to the Wiki at: https://confluence.slac.stanford.edu/display/ilc/Home
Discuss at: http://forum.linearcollider.org/

We strongly encourage developers to use IDE
Netbeans, Eclipse both free, easy to learn, very powerful
Use mevenide to teach IDEs about maven system
Instructions for installing Netbeans in out Wiki (confluence).

http://lcsim.org/
https://confluence.slac.stanford.edu/display/ilc/Home
http://forum.linearcollider.org/

Interoperability – Next Step
LCIO has been very successful in providing some interoperability
between disparate ILC tools
Obvious next step is to attempt “common geometry” system

org.lcsim and Marlin (GEAR) geometry already very similar
Will have small workshop at SLAC next week to discuss directions
Follow up workshop at DESY at beginning of November

Goal (ambitious) too have something to discuss/show at ECFA
workshop in Valencia in November

This might be a good area for someone interested in ILC software
to get involved.

Java -> C++ interoperability
Ability to call C++ (MarlinReco) modules from org.lcsim??

Some experimentation ongoing with using SWIG to build glue code
See somewhat related (pre-alpha) project G4Java

http://java.freehep.org/sandbox/G4Java/

http://java.freehep.org/sandbox/G4Java/

Links
lcsim.org - http://www.lcsim.org
Wiki - http://confluence.slac.stanford.edu/display/ilc/Home
org.lcsim - http://www.lcsim.org/software/lcsim
Software Index - http://www.lcsim.org/software
Detectors - http://www.lcsim.org/detectors
ILC Forum - http://forum.linearcollider.org
LCIO - http://lcio.desy.de
SLIC - http://www.lcsim.org/software/slic
LCDD - http://www.lcsim.org/software/lcdd
JAS3 - http://jas.freehep.org/jas3
AIDA - http://aida.freehep.org
WIRED - http://wired.freehep.org

http://www.lcsim.org/
http://confluence.slac.stanford.edu/display/ilc/Home
http://www.lcsim.org/software/lcsim
http://www.lcsim.org/software
http://www.lcsim.org/detectors
http://forum.linearcollider.org/
http://lcio.desy.de/
http://www.lcsim.org/software/slic
http://www.lcsim.org/software/lcdd
http://jas.freehep.org/jas3
http://aida.freehep.org/
http://wired.freehep.org/

Conclusion
SLIC + org.lcsim provide complete framework
for ILC detector studies

Many reconstruction algorithms exist
Plenty of work still to do done

Adding/improving algorithms
Performing physics studies and detector benchmarking

All software is developed using an “open-source” model
All code available in CVS (even before it is complete)

Anyone is welcome to become involved
Interoperability with other linear collider software
is provided by using LCIO

Work is ongoing to further improve interoperability

	“A Comprehensive Java-based Simulation Environment for Particle Physics”
	What will I really talk about?
	Contents
	Goals
	Goals
	ILC software packages (circa 2004)
	LCIO
	Overview: “ALCPG” Framework
	SLIC – Simulator for LInear Collider
	Prototyping Detectors using Geant4
	Linear Collider Detector Description (LCDD)
	LCDD Examples
	org.lcsim: Compact Geometry Description
	Detectors: Compact XML Example
	org.lcsim: Geometry Converter
	org.lcsim Conditions Data
	Available Detector Descriptions
	org.lcsim Goals
	Why Java?
	Why Java?
	Why Java? – Netbeans IDE
	Why Java? – Maven project management
	Org.lcsim Reconstruction
	org.lcsim: Contrib Area
	org.lcsim Contributors
	Using org.lcsim with JAS3
	org.lcsim: Examples
	org.lcsim: Examples
	org.lcsim: Plot Viewing
	Using org.lcsim with WIRED4
	Using org.lcsim with WIRED4
	Using org.lcsim with WIRED4
	Using org.lcsim with WIRED4
	Using org.lcsim with WIRED4
	Interoperability: Event Display
	Using JAS3 and org.lcsim on the Grid
	Sending Code and Merging Results
	Secure Login + Catalog Browser
	Catalog Service to Browse and Search Datasets
	Integrated Development Environment
	Interactive Graphical Results in Seconds
	How hard is it to get started with org.lcsim?
	LCIO: Data Samples
	Becoming an org.lcsim developer
	Interoperability – Next Step
	Links
	Conclusion

