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Abstract

The computing models for high-energy physics experiments are becoming ever more globally distributed and grid-based, both for
technical reasons (e.g., to place computational and data resources near each other and the demand) and for strategic reasons (e.g., to
leverage equipment investments). To support such computing models, the network and end systems, computing and storage, face unprec-
edented challenges. One of the biggest challenges is to transfer scientific data sets – now in the multi-petabyte (1015 bytes) range and
expected to grow to exabytes within a decade – reliably and efficiently among facilities and computation centers scattered around the
world. Both the network and end systems should be able to provide the capabilities to support high bandwidth, sustained, end-to-
end data transmission. Recent trends in technology are showing that although the raw transmission speeds used in networks are increas-
ing rapidly, the rate of advancement of microprocessor technology has slowed down. Therefore, network protocol-processing overheads
have risen sharply in comparison with the time spent in packet transmission, resulting in degraded throughput for networked applica-
tions. More and more, it is the network end system, instead of the network, that is responsible for degraded performance of network
applications. In this paper, the Linux system’s packet receive process is studied from NIC to application. We develop a mathematical
model to characterize the Linux packet receiving process. Key factors that affect Linux systems’ network performance are analyzed.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The computing models for high-energy physics (HEP)
experiments are becoming ever more globally distributed
and grid-based, both for technical reasons (e.g., to place
computational and data resources near each other and
the demand) and for strategic reasons (e.g., to leverage
equipment investments). To support such computing mod-
els, the network and end systems, computing and storage,
face unprecedented challenges. One of the biggest challeng-
es is to transfer physics data sets – now in the multi-peta-
byte (1015 bytes) range and expected to grow to exabytes
within a decade – reliably and efficiently among facilities

and computation centers scattered around the world. Both
the network and end systems should be able to provide the
capabilities to support high bandwidth, sustained, end-to-
end data transmission [1,2]. Recent trends in technology
are showing that although the raw transmission speeds
used in networks are increasing rapidly, the rate of
advancement of microprocessor technology has slowed
down [3,4]. Therefore, network protocol-processing over-
heads have risen sharply in comparison with the time spent
in packet transmission, resulting in the degraded through-
put for networked applications. More and more, it is the
network end system, instead of the network, that is respon-
sible for degraded performance of network applications.

Linux-based network end systems have been widely
deployed in the HEP communities (e.g., CERN, DESY,
Fermilab, SLAC). In Fermilab, thousands of network
end systems are running Linux operating systems; these
include computational farms, trigger processing farms,
servers, and desktop workstations. From a network
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performance perspective, Linux represents an opportunity
since it is amenable to optimization and tuning due to its
open source support and projects such as web100 and
net100 that enable tuning of network stack parameters
[5,6]. In this paper, the Linux network end system’s packet
receive process is studied from NIC to application. We work
with mature technologies rather than ‘‘bleeding-edge’’ hard-
ware in order to focus on the end-system phenomena that
stand between reasonable performance expectations and
their fulfillment. Our analysis is based on Linux kernel
2.6.12. The network technology at layers 1 and 2 assumes
an Ethernet medium, since it is the most widespread and rep-
resentative LAN technology. Also, it is assumed that the
Ethernet device driver makes use of Linux’s ‘‘New API,’’
or NAPI [7,8], which reduces the interrupt load on the
CPUs. The contributions of the paper are as follows: (1)
We systematically study the current packet handling in the
Linux kernel. (2) We develop a mathematical model to char-
acterize the Linux packet receive process. Key factors that
affect Linux systems’ network performance are analyzed.
Through our mathematical analysis, we abstract and simpli-
fy the complicated kernel protocol processing into three
stages, revolving around the ring buffer at the NIC driver
level and sockets’ receive buffer at the transport layer of
the protocol stack. (3) Our experiments have confirmed
and complemented our mathematical analysis.

The remainder of the paper is organized as follows: in
Section 2 the Linux packet receiving process is presented.
Section 3 presents a mathematical model to characterize
the Linux packet receiving process. Key factors that affect
Linux systems’ network performance are analyzed. In Sec-
tion 4, we show the experiment results that test and com-
plement our model and further analyze the packet
receiving process. Section 5 summarizes our conclusions.

2. Packet receiving process

Fig. 1 demonstrates generally the trip of a packet from
its ingress into a Linux end system to its final delivery to
the application [7,9,10]. In general, the packet’s trip can
be classified into three stages:

• Packet is transferred from network interface card (NIC)
to ring buffer. The NIC and device driver manage and
control this process.

• Packet is transferred from ring buffer to a socket receive
buffer, driven by a software interrupt request (softirq)
[9,11,12]. The kernel protocol stack handles this stage.

• Packet data is copied from the socket receive buffer to
the application, which we will term the Data Receiving

Process.

In the following sections, we detail these three stages.

2.1. NIC and device driver processing

The NIC and its device driver perform the layer 1 and 2
functions of the OSI 7-layer network model: packets are
received and transformed from raw physical signals, and
placed into system memory, ready for higher layer process-
ing. The Linux kernel uses a structure sk_buff [7,9] to hold
any single packet up to the MTU (Maximum Transfer
Unit) of the network. The device driver maintains a ‘‘ring’’
of these packet buffers, known as a ‘‘ring buffer’’, for pack-
et reception (and a separate ring for transmission). A ring
buffer consists of a device- and driver-dependent number
of packet descriptors. To be able to receive a packet, a
packet descriptor should be in ‘‘ready’’ state, which means
it has been initialized and pre-allocated with an empty
sk_buff which has been memory-mapped into address space
accessible by the NIC over the system I/O bus. When a
packet comes, one of the ready packet descriptors in the
receive ring will be used, the packet will be transferred by
DMA [13] into the pre-allocated sk_buff, and the descriptor
will be marked as used. A used packet descriptor should be
reinitialized and refilled with an empty sk_buff as soon as
possible for further incoming packets. If a packet arrives
and there is no ready packet descriptor in the receive ring,
it will be discarded. Once a packet is transferred into the
main memory, during subsequent processing in the net-
work stack, the packet remains at the same kernel memory
location.

Fig. 2 shows a general packet receiving process at NIC
and device driver level. When a packet is received, it is
transferred into main memory and an interrupt is raised
only after the packet is accessible to the kernel. When
CPU responds to the interrupt, the driver’s interrupt han-

dler is called, within which the softirq is scheduled. It puts
a reference to the device into the poll queue of the interrupt-
ed CPU. The interrupt handler also disables the NIC’s

Fig. 1. Linux networking subsystem: packet receiving process.
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receive interrupt till the packets in its ring buffer are
processed.

The softirq is serviced shortly afterward. The CPU polls
each device in its poll queue to get the received packets from
the ring buffer by calling the poll method of the device driv-

er. Each received packet is passed upwards for further pro-
tocol processing. After a received packet is dequeued from
its receive ring buffer for further processing, its correspond-
ing packet descriptor in the receive ring buffer needs to be
reinitialized and refilled.

2.2. Kernel protocol stack

2.2.1. IP processing

The IP protocol receive function is called during the pro-
cessing of a softirq for each IP packet that is dequeued
from the ring buffer. This function performs initial checks
on the IP packet, which mainly involve verifying its integ-
rity, applying firewall rules, and disposing the packet for
forwarding or local delivery to a higher level protocol.
For each transport layer protocol, a corresponding handler
function is defined: tcp_v4_rcv() and udp_rcv() are two
examples.

2.2.2. TCP processing

When a packet is handed upwards for TCP process-
ing, the function tcp_v4_rcv() first performs the TCP
header processing. Then the socket associated with the
packet is determined, and the packet dropped if none
exists. A socket has a lock structure to protect it from
un-synchronized access. If the socket is locked, the pack-
et waits on the backlog queue before being processed
further. If the socket is not locked, and its Data Receiv-

ing Process is sleeping for data, the packet is added to

the socket’s prequeue and will be processed in batch in
the process context, instead of the interrupt context
[11,12]. Placing the first packet in the prequeue will wake
up the sleeping data receiving process. If the prequeue
mechanism does not accept the packet, which means that
the socket is not locked and no process is waiting for
input on it, the packet must be processed immediately
by a call to tcp_v4_do_rcv(). The same function also is
called to drain the backlog queue and prequeue. Those
queues (except in the case of prequeue overflow) are
drained in the process context, not the interrupt context

of the softirq. In the case of prequeue overflow, which
means that packets within the prequeue reach/exceed
the socket’s receive buffer quota, those packets should
be processed as soon as possible, even in the interrupt

context.
tcp_v4_do_rcv() in turn calls other functions for actual

TCP processing, depending on the TCP state of the connec-
tion. If the connection is in tcp_established state,
tcp_rcv_established() is called; otherwise, tcp_rcv_state_pro-

cess() or other measures would be performed.
tcp_rcv_established() performs key TCP actions: e.g.,
sequence number checking, DupACK sending, RTT esti-
mation, ACKing, and data packet processing. Here, we
focus on the data packet processing.

In tcp_rcv_established(), when a data packet is han-
dled on the fast path, it will be checked whether it
can be delivered to the user space directly, instead of
being added to the receive queue. The data’s destination
in user space is indicated by an iovec structure provided
to the kernel by the data receiving process through
system calls such as sys_recvmsg. The conditions of
checking whether to deliver the data packet to the user
space are as follow:

...

Packet Packet

Packe
t

Packet
Descriptor

Ring Buffer

...

DMA

1
24 3

8

7

6
5

...

NIC Interrupt 
Handler
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x

N
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Interrupt
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4
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Fig. 2. NIC and device driver packet receiving.
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• The socket belongs to the currently active process;
• The current packet is the next in sequence for the socket;
• The packet will entirely fit into the application-supplied

memory location;

When a data packet is handled on the slow path it will
be checked whether the data is in sequence (fills in the
beginning of a hole in the received stream). Similar to the
fast path, an in-sequence packet will be copied to user space
if possible; otherwise, it is added to the receive queue. Out
of sequence packets are added to the socket’s out-of-

sequence queue and an appropriate TCP response is sched-
uled. Unlike the backlog queue, prequeue and out-of-se-

quence queue, packets in the receive queue are guaranteed
to be in order, already acked, and contain no holes. Packets
in out-of-sequence queue would be moved to receive queue

when incoming packets fill the preceding holes in the data
stream. Fig. 3 shows the TCP processing flow chart within
the interrupt context.

As previously mentioned, the backlog and prequeue are
generally drained in the process context. The socket’s data

receiving process obtains data from the socket through
socket-related receive system calls. For TCP, all such sys-
tem calls result in the final calling of tcp_recvmsg(), which
is the top end of the TCP transport receive mechanism. As
shown in Fig. 4, when tcp_recvmsg() is called, it first locks
the socket. Then it checks the receive queue. Since packets
in the receive queue are guaranteed in order, acked, and
without holes, data in receive queue is copied to user space
directly. After that, tcp_recvmsg() will process the prequeue

and backlog queue, respectively, if they are not empty. Both
result in the calling of tcp_v4_do_rcv(). Afterward, pro-
cessing similar to that in the interrupt context is performed.
tcp_recvmsg() may need to fetch a certain amount of data
before it returns to user code; if the required amount is not
present, sk_wait_data() will be called to put the data
receiving process to sleep, waiting for new data to come.
The amount of data is set by the data receiving process.
Before tcp_recvmsg() returns to user space or the data
receiving process is put to sleep, the lock on the socket will
be released. As shown in Fig. 4, when the data receiving
process wakes up from the sleep state, it needs to relock
the socket again.

Fig. 3. TCP processing – interrupt context.
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Fig. 4. TCP processing – process context.
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2.2.3. The UDP processing

When a UDP packet arrives from the IP layer, it is
passed on to udp_rcv(). udp_rcv()’s mission is to verify
the integrity of the UDP packet and to queue one or more
copies for delivery to multicast and broadcast sockets and
exactly one copy to unicast sockets. When queuing the
received packet in the receive queue of the matching socket,
if there is insufficient space in the receive buffer quota of the
socket, the packet may be discarded. Data within the sock-
et’s receive buffer are ready for delivery to the user space.

2.3. Data receiving process

Packet data is finally copied from the socket’s receive
buffer to user space by data receiving process through
socket-related receive system calls. The receiving process
supplies a memory address and number of bytes to be
transferred, either in a struct iovec, or as two parameters
gathered into such a struct by the kernel. As mentioned
above, all the TCP socket-related receive system calls result
in the final calling of tcp_recvmsg(), which will copy packet
data from socket’s buffers (receive queue, prequeue, backlog
queue) through iovec. For UDP, all the socket-related
receiving system calls result in the final calling of udp_rec-

vmsg(). When udp_recvmsg() is called, data inside receive

queue is copied through iovec to user space directly.

3. Performance analysis

Based on the packet receiving process described in Sec-
tion 2, the packet receiving process can be described by the
model in Fig. 5. In the mathematical model, the NIC and
device driver receiving process can be represented by the
token bucket algorithm [14], accepting a packet if a ready
packet descriptor is available in the ring buffer and discard-
ing it if not. The rest of the packet receiving processes are
modeled as queuing processes [15].

We assume several incoming data streams are arriving
and define the following symbols:

• RT (t), RT 0 ðtÞ: Offered and accepted total packet rate
(Packets/Time Unit);

• Ri(t), Ri0 ðtÞ: Offered and accepted packet rate for data
stream i (Packets/Time Unit);

• Rr(t): Refill rate for used packet descriptor at time t

(Packets/Time Unit);
• D: The total number of packet descriptors in the receiv-

ing ring buffer;
• A (t): The number of packet descriptors in the ready

state at time t;
• smin: The minimum time interval between a packet’s

ingress into the system and its first being serviced by a
softirq;

• Rmax: NIC’s maximum packet receive rate (Packets/
Time Unit);

• Rs (t): Kernel protocol packet service rate (Packets/Time
Unit);

• Rsi (t): Softirq packet service rate for stream i (Packets/
Time Unit);

• Rdi (t): Data receiving process’ packet service rate for
stream i (Packets/Time Unit);

• Bi (t): Socket i’s receive buffer size at time t (Bytes);
• QBi: Socket i’s receive buffer quota (Bytes);
• N: The number of runnable processes during the packet

reception period;
• P1, . . .,PN: N runnable processes during the packet

reception period;
• Pi: Data receiving process for data stream i;

The Token Bucket algorithm is a surprisingly good fit to
the NIC and device driver receiving process. In our model,
the receive ring buffer is represented as a token bucket with
a depth of D tokens. Each packet descriptor in the ready
state is a token, granting the ability to accept one incoming
packet. The tokens are regenerated only when used packet
descriptors are reinitialized and refilled. If there is no token
in the bucket, incoming packets will be discarded.

Then, it has:

8t > 0; RT 0 ðtÞ ¼
RT ðtÞ; AðtÞ > 0

0; AðtÞ ¼ 0

�
ð1Þ

Therefore, to admit packets into the system without dis-
carding, the system should meet the condition:

8t > 0; AðtÞ > 0 ð2Þ

Also, it can be derived that:

Ring Buffer

Refill Rate R r

T

T

Socket i
RCV Buffer

3 12

RT Rs Rdi

Total Number of 
Packet Descriptors 

D

2
Packet
Discard

Number of Packet 
Descriptors in Ready State

A

3 1

Ri

RT’

Ri’

Rsi

To other sockets

Fig. 5. Packet receiving process – mathematical model.
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AðtÞ ¼ D�
Z t

0

RT 0 ðsÞdsþ
Z t

0

RrðsÞds; 8t > 0 ð3Þ

It can be seen from (1) and (3) that in order to avoid or
minimize packet drops by the NIC, the system needs either
to raise its Rr(t) and/or D, or to effectively decrease RT(t).

Since a used packet descriptor can be reinitialized and
refilled after its corresponding packet is dequeued from
the receive ring buffer for further processing, the rate of
Rr(t) depends on the following two factors: (1) Protocol
packet service rate Rs(t). To raise the protocol kernel pack-
et service rate, approaches of optimizing or offloading the
kernel packet processing in the system’s protocol kernel
have been proposed. For example, TCP/IP offloading tech-
nology [16–20] aims to free the CPU of some packet pro-
cessing by shifting tasks to the NIC or storage device. (2)
The system memory allocation status. When the system is
in memory pressure, allocation of new packet buffers is
prone to failure. In that case, the used packet descriptor
cannot be refilled; the rate of Rr(t) is actually decreased.
When all packet descriptors in the ready state are used
up, further incoming packets will be dropped by the
NIC. Experiments in Section 4.1 will confirm this point.
In the absence of memory shortage, it can be assumed that
Rs(t) = Rr(t).

D is a design parameter for the NIC and driver. A larger
D implies increased cost for the NIC. For a NAPI driver, D

should be big enough to hold further incoming packets
before the received packets in the NIC receive ring buffer
are dequeued and the corresponding packet descriptors in
the receive ring buffer are reinitialized and refilled. In that
case, D should at least meet the following condition to
avoid unnecessary packet drops:

D > smin � Rmax ð4Þ

Here, smin is the minimum time interval between a packet’s
ingress into the system and its first being serviced by a sof-
tirq. In general, smin includes the following components
[12,21]:

• NIC interrupt dispatch time (NIDT): when an NIC
interrupt occurs, a system must save all registers and
other system execution context before calling the NIC
packet-receive interrupt service routine to handle it.

• NIC interrupt service time (NIST): the time used by the
NIC interrupt service routine to retrieve information
from the NIC and schedule the packet-receive softirq.

Among them, NIDT has nearly constant value given a
hardware configuration. However, NIST depends on the
length of the NIC interrupt handler. A poorly designed
NIC device driver may impose a long NIST value and
cause an unacceptably large smin. With a given D, a poorly
designed NIC device driver can even cause packet drops in
the receive ring buffer.

RT(t) is the offered total packet rate. Usually, one tries
to increase RT(t) in order to maximize the incoming

throughput. In order to avoid or minimize packet drops
by the NIC, to decrease RT(t)seems to be an unacceptable
approach. However, use of jumbo frames1 [22–24] helps
maintain the incoming byte rate while reducing RT(t) to
avoid packet drops at the NIC. Using jumbo frames at
1Gb/s reduces the maximum packet rate from over
80,000 per second to under 14,000 per second. Since jumbo
frames decrease Rmax, it can be seen from (4) that the
requirements for D might be lowered with jumbo frames.

The rest of the packet receiving processes are modeled as
queuing processes. In the model, socket i’s receive buffer is
a queue of size QBi. The packets are put into the queue by
softirq with a rate of Rsi(t), and are moved out of the queue
by the data receiving process with a rate of Rdi(t).

For stream i, based on the packet receiving process, it
has:

Ri0 ðtÞ 6 RiðtÞ and RsiðtÞ 6 RsðtÞ ð5Þ

Similarity, it can be derived that:

BiðtÞ ¼
Z t

0

RsiðsÞds�
Z t

0

RdiðsÞds ð6Þ

In transport layer protocol operations Bi(t) plays a key
role. For UDP, when Bi(t) P QBi, all the incoming packets
for socket i will be discarded. In that case, all the protocol
processing effort over the dropped packet would be wasted.
From both the network end system and network applica-
tion’s perspective, this is the condition we try to avoid.

TCP does not drop packets at the socket level as UDP
does when the receive buffer is full. Instead, it advertises
QBi-Bi(t) to the sender to perform flow control. However,
when a TCP socket’s receive buffer is approaching full,
the small window QBi-Bi (t) advertised to the sender side
will throttle the sender’s data sending rate, resulting in
degraded TCP transmission performance [25].

From both UDP and TCP’s perspectives, it is desirable
to raise the value of QBi-Bi(t), which is:

QBi �
Z t

0

RsiðsÞdsþ
Z t

0

RdiðsÞds ð7Þ

Clearly it is not desirable to reduce Rsi(t) to achieve the
goal. But the goal can be achieved by raising QBi and/or
Rdi(t). For most operating systems, QBi is configurable.
For Linux 2.6, QBi is configurable through /proc/net/
ipv4/tcp_rmem, which is an array of three elements, giving
the minimum, default, and maximum values for the size of
the receive buffer.

To maximize TCP throughput, the rule of thumb for
configuring TCP QBi is to set it to the Bandwidth*Delay
Product (BDP) of the end-to-end path (the TCP send
socket buffer size is set the same way). Here Bandwidth
means the available bandwidth of the end-to-end path;

1 IEEE 802.3 Ethernet imposes a Maximum Transmission Unit (MTU)
of 1500 bytes. But many Gigabit Ethernet vendors have followed a
proposal by Alteon Networks to support Jumbo frame sizes over 9000
bytes.
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and Delay is the round trip time. According to the above
rules, for long, high-bandwidth connections, QBi would
be set high. IA-32 Linux systems usually adopt a 3G/1G
virtual address layout, 3GB virtual memory for user space
and 1GB for kernel space [12,26,27]. Due to this virtual
address partition scheme, the kernel can at most directly
map 896MB physical memory into its kernel space. This
part of memory is called Lowmem. The kernel code and
its data structures must reside in Lowmem, and they are
not swappable. However, the memory allocated for QBis

(and the send socket buffers) also has to reside within Low-
mem, and is also not swappable. In that case, if QBi is set
high (say, 5MB or 10MB) and the system has a large num-
ber of TCP connections (say, hundreds), it will soon run
out of Lowmem. ‘‘Bad things happen when you’re out of
Lowmem’’ [12,26,27]. For example, one direct consequence
is to cause packet drops at the NIC: due to memory short-
age in Lowmem, the used packet descriptor cannot be
refilled; when all packet descriptors in the ready state are
used up, further incoming packets will be dropped at the
NIC. To prevent TCP from overusing the system memory
in Lowmem, the Linux TCP implementation has a control
variable - sysctl_tcp_mem to bound the total amount of
memory used by TCP for the entire system. Sys-

ctl_tcp_mem is configurable through /proc/net/ipv4/
tcp_mem, which is an array of three elements, giving the
minimum, memory pressure point, and high number of pages
allowed for queuing by all TCP sockets. For IA-32 Linux
systems, if QBi would be set high, the sysctl_tcp_mem

should be correspondingly configured to prevent system
from running out of Lowmem. For IA-64 Linux systems
Lowmem is not so limited, and all installed physical mem-
ory belongs to Lowmem. But configuring QBi and sys-

ctl_tcp_mem is still subject to physical memory limit.
Rdi(t) is contingent on the data receiving process itself

and the offered system load. The offered system load
includes the offered interrupt load and offered process load.
Here, the offered interrupt load means all the interrupt-re-
lated processing and handling (e.g., NIC interrupt handler
processing, packet receiving softirq processing). In an inter-
rupt-driven operating system like Linux, since interrupts
have higher priority than processes, when the offered inter-
rupt load exceeds some threshold, the user-level processes
could be starved for CPU cycles, resulting in decreased
Rdi(t). In the extreme, when the user-level processes were
totally preempted by interrupts, Rdi(t) would drop to zero.
For example, in the condition of receive livelock [8], when
non-flow-controlled packets arrive too fast, the system will
spend all of its time processing receiver interrupts. It will
therefore have no CPU resources left to support delivery
of the arriving packets to data receiving process, with Rdi(t)
dropping to zero. With heavy network loads, the following
approaches are usually taken to reduce the offered inter-
rupt load and save CPU cycles for network applications:
(1) Interrupt coalescing (NAPI) [8], which reduces the cost
of packet receive interrupts by processing several packets
for each interrupt. (2) Jumbo frames [22–24]. As stated

above, jumbo frames can effectively reduce the incoming
packet rate, hence the interrupt rate and the interrupt load.
Specifically, jumbo frames will reduce network stack pro-
cessing (softirq processing) overhead incurred per byte. A
significant reduction of CPU utilization can be obtained.
(3) TCP/IP offloading [17,18].

In the following sections, we discuss Rdi(t) from the
offered process load’s perspective, assuming the system is
not overloaded.

Linux 2.6 is a preemptive multi-processing operating sys-
tem. Processes (tasks) are scheduled to run in a way of pri-

oritized round robin [11,12,28]. As shown in Fig. 6, the
whole process scheduling is based on a data structure called
runqueue. Essentially, a runqueue keeps track of all runna-
ble tasks assigned to a particular CPU. As such, one run-
queue is created and maintained for each CPU in a
system. Each runqueue contains two priority arrays: active

priority array and expired priority array. Each priority
array contains one queue of runnable processes per priority
level. Higher priority processes are scheduled to run first.
Within a given priority, processes are scheduled round rob-
in. All tasks on a CPU begin in the active priority array.
Each process’ time slice is calculated based on its nice val-
ue; as a process in the active priority array run out of its
time slice, the process is considered expired. An expired
process is moved to the expired priority array.2 During
the move, a new time slice and priority is calculated. When
there are no more runnable tasks in the active priority
array, it is simply swapped with the expired priority array.

Let’s assume that during the period of data reception,
the system process load is stable. There are N running pro-
cesses: P1, . . .,PN; and Pi is the data receiving process for

...

Active Priority Array

Priority

Task: (Priority, Time Slice)

(3, Ts1)

(139, Ts2 ) (139, Ts3)

CPU

0

1

2

3

138

139

Task 1

Task 2 Task 3

Expired priority Array

...

(Ts1', 2)

0

1

2

3

138

139

Task 1'

Task 1

Running

Task 1

Task Time slice runs out

Recalculate Priority, Time Slice

x

RUNQUEUE

Priority

Fig. 6. Linux process scheduling.

2 To improve system responsiveness, an interactive process is moved
back to the active priority array.
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data stream i. Pi’s packet service rate is constant k when the
process is running. Each process will not sleep (e.g., waiting
for I/O) or a sleeping process is waking up soon compared
with its time slice. As such, data receiving process Pi’s run-
ning model can be modeled as shown in Fig. 7. Interrupts
might happen when a process runs. Since interrupt process
time is not charged upon processes, we do not consider
interrupts here.

Further, the running cycle of Pi can be derived as
follows:

XN

j¼1

TimesliceðP jÞ ð8Þ

In the model, process Pi’s running period is Timeslice (Pi),
and the expired period is:

XN

j¼1

TimesliceðP jÞ � TimesliceðP iÞ ð9Þ

From a process’ perspective, process Pi’s relative CPU
share is:

TimesliceðP iÞ=
XN

j¼1

TimesliceðP jÞ ð10Þ

From (8)–(10), it can be seen that when process’ nice values
are relatively fixed (e.g., in Linux, the default nice value is
0), the number of N will dictate Pi’s running frequency.

For the cycle n in Fig. 7, we have:

RdiðtÞ ¼
k; 0 < t < t1

0; t1 < t < t2

�
ð11Þ

Therefore, to raise the rate of Rdi (t) requires increasing the
data receiving process’ CPU share: either increase data
receiving process’ time slice/nice value, or reduce the sys-
tem load by decreasing N to increase data receiving pro-
cess’ running frequency. Experiment results in Section 4.3
will confirm this point.

Another approach to raise the rate of Rdi (t) is to
increase the packet service rate k. From a programmers’
perspective, the following optimizations could be taken to
maximize k: (1) Buffer alignments [29,30]; (2) Asynchro-
nous I/O [30].

4. Results and analysis

We run the data transmission experiments upon Fermi’s
sub-networks. In the experiments, we run iperf [31] to send
data in one direction between two computer systems. iperf

in the receiver is the data receiving process. As shown in
Fig. 8, the sender and the receiver are connected to two Cis-
co 6509 switches, respectively. The corresponding connec-
tion’s bandwidth is as labeled. The sender and receiver’s
features are as shown in Table 1.

In order to study the detailed packet receiving process,
we have added instrumentation within the Linux packet
receiving path. Also, to study the system’s reception perfor-
mance at various system loads, we are compiling the Linux
Kernel as background system load by running make -nj

[11]. The different value of n corresponds to different levels
of background system load, e.g., make -4j. For simplicity,
they are termed as ‘‘BLn’’. The background system load
implies load on both CPU and system memory.

We run ping to obtain the round trip time between Sender
and Receiver. The maximum RTT is around 0.5 ms. The
BDP of the end-to-end path is around 625 KB. When TCP
sockets’ receive buffer sizes are configured larger than
BDP, the TCP performance won’t be limited by the TCP flow
control mechanism (Small TCP sockets’ receive buffer size
would limit the end-to-end performance, readers could refer
to [25,32]). To verify this point, we run experiments with var-
ious receiver buffer sizes equal or greater than 1MB: sender
transmits one TCP stream to receiver for 100 s, all the pro-
cesses run with a nice value of 0. The experiment results are
as shown in Table 2. It can be seen that: when the TCP sock-
ets’ receive buffer sizes are greater than BDP, similar results
(End-to-End Throughputs) have been obtained.

In the following experiments, unless otherwise specified,
all the processes are running with a nice value of 0; and
iperf’s receive buffer is set to 40MB. From the system level,
the sysctl_tcp_mem is configured as: ‘‘49152 65536 98304’’.
We choose a relatively large receiver buffer based on the
following considerations: (1) In the real world, system
administrators often configure /proc/net/ipv4/tcp_rmem
high to accommodate high BDP connections. (2) We want
to demonstrate the potential dangers brought to the Linux
systems when configuring /proc/net/ipv4/tcp_rmem high.

4.1. Receive ring buffer

The total number of packet descriptors in the receive
ring buffer of the receiver’s NIC is 384. As it has been
put in Section 3, the receive ring buffer might be a potential
bottleneck for packet receiving. Our experiments have con-
firmed this point. In the experiments, Sender transmits 1
TCP stream to Receiver with the transmission duration
of 25 s. The experiment results are as shown in Fig. 9:

Cycle n

Running
expired

0 t1 t2

Running
expired

t3 t4

Cycle n+1

Fig. 7. Data receiving process running model.

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G
1G

Fig. 8. Experiment network and topology.
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• Normally, only a small portion of the packet descriptors
in the receive ring buffer are used, and the used descrip-
tors are reinitialized and refilled in time.

• Surprisingly it can be seen that on a few occasions
(@2.25 s, @2.62 s, @2.72 s) with the load of BL10,
all 384 packet descriptors in the receive ring buffer
were used. At these times further incoming packets
are dropped until the used descriptors are reinitialized
and refilled. Upon careful investigation, it was deter-
mined that with BL10,the system is in high memory
pressure. In this condition attempts to allocate new
packet buffers to refill used descriptors fail and the
rate of Rr (t) is actually decreased; soon the receive
ring buffer runs out of ready descriptors and packets

are dropped. Those failed-to-be-refilled used descrip-
tors can only be refilled after the Page Frame
Reclaiming Algorithm (PFRA) of the Linux kernel
refills the lists of free blocks of the buddy system,
for example, by shrinking cache or by reclaiming page
frames from User Mode processes [12].

In the real world, packet loss is generally blamed on the
network, especially for TCP traffic. Few people are conscious
that packets drops might commonly occur at the NIC.

4.2. TCP & UDP

In the TCP experiments, sender transmits one TCP
stream to receiver for 25 s. Figs. 10 and 11 show obser-
vations at background loads (BL) of 0 and 10,
respectively.

• Normally, prequeue and out-of-sequence queue are
empty. The backlog queue is usually not empty. Packets
are not dropped or reordered in the test network. How-
ever, when packets are dropped by the NIC (Fig. 9) or
temporarily stored in the backlog queue, subsequent
packets may go to the out-of-sequence queue.

Table 2
TCP throughput with various socket receive buffer sizes

Experiment results: end-to-end throughput (Mbps)

Receive buffer size 1M 10M 20M 40M 80M

BL0 310 309 310 309 308
BL4 64.7 63.7 63.9 65.2 65.5
BL10 30.7 31 31.4 31.9 31.9

Fig. 9. Used packet descriptors in the receiving ring buffer.

Table 1
Sender and receiver features

Sender Receivera

CPU Two Intel Xeon CPUs (3.0 GHz) One Intel Pentium II CPU (350 MHz)
System Memory 3829MB 256 MB
NIC Tigon, 64 bit-PCI bus slot at 66 MHz, 1 Gbps/s, twisted pair Syskonnect, 32 bit-PCI bus slot at 33 MHz, 1 Gbps/s, twisted pair
OS Linux 2.6.12 (3G/1G virtual address layout) Linux 2.6.12 (3G/1G virtual address layout)

a We ran experiments on different versions of Linux receivers, and similar results were obtained.
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• The receive queue is approaching full. In our experi-

ment, since the sender is more powerful than the receiv-
er, the receiver controls the flow rate. The experiment
results have confirmed this point.

• In contrast with Fig. 10, the backlog and receive queues
in Fig. 11 show some kind of periodicity. The periodicity
matches the data receiving process’ running cycle. In
Fig. 10, with BL0, the data receiving process runs almost
continuously, but at BL10, it runs in a prioritized round-
robin manner.

In the UDP experiments, sender transmits one UDP
stream to receiver for 25 s. The experiments are run with
three different cases: (1) Sending rate: 200Mb/s, Receiver’s
background load: 0; (2) Sending rate: 200Mb/s, Receiver’s
background load: 10; (3) Sending rate: 400Mb/s, Receiver’s
background load: 0. Figs. 12 and 13 show the results for
UDP transmissions.

• Both cases (1) and (2) are within receiver’s handling
limit. The receive buffer is generally empty.

• In case (3), the receive buffer remains full. Case (3)
exhibits receive-livelock problems [8]. Packets are
dropped in the socket level. The effective data rate in
case (3) is 88.1Mbits, with a packet drop rate of
670612/862066 (78%) at the socket.

The above experiments have shown that when the send-
er is faster than the receiver, TCP (or UDP) receiver buffers
are approaching full. When the socket receive buffer size is
set high, a lot of memory will be occupied by the full
receive buffers (the same for the socket send buffer, which
is beyond the topic of this paper). To verify this point,
we run the experiments as follows: sender transmits one
TCP stream to receiver for 100 s, all the processes run with
a nice value of 0. We record the Linux system’s MemFree,
Buffers, Cached as shown in /proc/meminfo at the 50 s
point (based on the above experiments, the receive buffer
is approaching full at 50 s). Here, MemFree is the size of
the total available free memory in the system. Buffers and
Cached are the sizes of the in-memory buffer cache and page

cache, respectively. When the system is in memory pres-
sure, the page frames allocated for the buffer cache and
the page cache will be reclaimed by the PFRA [12,27].
Also, please note that: (1) since the total system memory
is 256MB, all of them belong to Lowmem. (2) sys-

ctl_tcp_mem is configured as ‘‘49152 65536 98304’’, which
means that the maximum TCP memory is allowed to reach
as high as 384MB,3 if possible.

Fig. 10. Various TCP receive buffer queues – background load 0.

3 A page is 4K.
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The experiment results are as shown in Table 3. It can be
seen that with increased socket receive buffer size, the sys-
tem’s free memory clearly decreases. Specifically, when the
socket receive buffer size is set as 170MB, both the buffer
cache and the page cache are shrunk. The page frames

allocated for the buffer cache and the page cache are
reclaimed by PFRA to save memory for TCP. It can be
contemplated that if the socket receive buffer is set high
and there are multiple simultaneous connections, the sys-
tem can easily run out of memory. When the memory is

Fig. 11. Various TCP receive buffer queues – background load 10.

Fig. 12. UDP receive buffer queues at various conditions.
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below some threshold and the PFRA cannot reclaim page
frames any more, the out of memory (OOM) killer [12]
starts to work and selects processes to kill to free page
frames. To the extreme, the system might even crash. To
verify this point, we set the socket receive buffer size to
80MB, and run five TCP connections simultaneously to
the receiver, the receiver soon ran out of memory and killed
the iperf process.

Clearly, for a system with 256MB memory, allowing the
overall TCP memory to reach as high as 384MB is wrong.
To fix the problem, we reconfigure the sysctl_tcp_mem as
‘‘40960 40960 40960’’ (the maximum TCP memory is
allowed to reach at most 160MB). Again, we set the socket
receive buffer size to 80MB, and repeat the above experi-
ments. No matter how many TCP connections are simulta-
neously streamed to the receiver, both iperf process and the
receiver work well.

The above experiments have shown that when /proc/
net/ipv4/tcp_rmem (or /proc/net/ipv4/tcp_wmem) is set
high, the /proc/net/ipv4/tcp_mem should be correspond-
ingly configured to prevent system from running out of
Lowmem. For IA-32 architecture Linux network systems
with memory larger than 1G, we suggest to limit the overall
TCP memory to 600MB at most. As said in Section 3, this
is due to the facts that: the IA-32 architecture Linux

network systems usually adopt the 3G/1G virtual address
layout, and the kennel can at most have 896MB of Low-
mem; the kernel code and its data structures must reside
in Lowmem, and they are not swappable; the memory allo-
cated for socket receive buffers (and send buffers) also have
to reside within Lowmem, and they are also not swappable.
When the socket receive buffer size is set high and there are
multiple simultaneous connections, the system can easily
run out of Lowmem. The overall TCP memory must be
limited.

4.3. Data receiving process

The object of the next experiment is to study the overall
receiving performance when the data receiving process’
CPU share is varied. In the experiments, sender transmits
one TCP stream to receiver with the transmission duration
of 25 s. In the receiver, both data receiving process’ nice
value and the background load are varied. The nice values
used in the experiments are: 0, �10, and �15.

A Linux process’ nice value (static priority) ranges from
�20 to +19 with a default of zero. Nineteen is the lowest
and �20 is the highest priority. The nice value is not chan-
ged by the kernel. A Linux process’ time slice is calculated
purely based on its nice value. The higher a process’

Fig. 13. UDP receive buffer committed memory.

Table 3
Linux system’s free memory with various receive buffer size

Experiment results

Receive buffer size 1M 10M 40M 80M 160M 170M

MemFree (KB) 200764 189108 149056 95612 3688 3440
Buffers (KB) 7300 7316 7384 7400 7448 2832
Cached (KB) 28060 28044 28112 28096 14444 6756
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pypriority, the more time slice it receives per round of execu-
tion, which implies a greater CPU share. Table 4 shows the
time slices for various nice values.

The experiment results in Fig. 14 have shown:

• The higher a data receiving process’ priority, the more
CPU time it receives per round of execution. The higher
CPU share entails the relative higher actual packet ser-
vice rate from the socket’s receive buffer, resulting in
improved end-to-end data transmission.

• The greater the background load, the longer each com-
plete round of execution takes. This reduces the running
frequency of data receiving process and its overall CPU
share. When the data receiving process is less scheduled
to run, data inside the receive buffer is less frequently
serviced. Then TCP flow control mechanism will take
effect to throttle the sending rate, resulting in degraded
end-to-end data transmission rate.

Experiment results confirm and complement our mathe-
matical analysis in Section 3.

5. Conclusion

In this paper, the Linux system’s packet receive process
is studied in detail from NIC to application. We develop a
mathematical model to characterize and analyze the Linux
packet receive process. In the mathematical model, the
NIC and device driver receiving process is represented by

the token bucket algorithm; and the rest of the packet
receiving processes are modeled as queuing processes.

Experiments and analysis have shown that incoming
packets might be dropped by the NIC when there is no ready
packet descriptor in the receive ring buffer. In overloaded
systems, memory pressure usually is the main reason that
causes packet drops at the NIC: due to memory shortage
in Lowmem, the used packet descriptor cannot be refilled;
when all packet descriptors in the ready state are used up,
further incoming packets will be dropped by the NIC.

Experiments and analysis have also shown that the
data receiving process’ CPU share is another influential
factor for the network application’s performance. Before
consumed by the data receiving process, the received
packets are put into sockets’ receive buffers. For UDP,
when a socket’s receive buffer is full, all the incoming
packets for the socket will be discarded. In that case, all
the protocol processing effort over the dropped packet
would be wasted. For TCP, a full receive buffer will throt-
tle the sender’s data sending rate, resulting in degraded
TCP transmission performance. To raise the data receiv-
ing process’ CPU share, the following approaches could
be taken: interrupt coalescing, jumbo frames, TCP/IP off-
loading, reducing the offered system load, lowering the
data receiving process’ nice value etc.

For the IA-32 architecture Linux network systems, more
attention should be paid when enabling big socket receive
(send) buffer size: configuring /proc/net/ipv4/tcp_rmem
(or /proc/net/ipv4/tcp_wmem) high is good to the perfor-
mance of high BDP connections, but the system might
run out of Lowmem. Therefore, the /proc/net/ipv4/
tcp_mem should be correspondingly configured to prevent
system from running out of Lowmem.

We studied systems with network and CPU speeds that
are moderate by today’s standards in order to deal with
mature overall system design. We expect our results to hold
as all parts of the system scale up in speed, until and unless
some fundamental changes are made to the packet receiv-
ing process.

Table 4
Nice value vs. time slice

Nice value Time slice (ms)

+19 5
0 100

�10 600
�15 700
�20 800

Fig. 14. TCP data rate at various conditions.
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