Performance and Numerical Stability

Fermilab’s Geant4 Performance Subgroup:
Mark Fischler Jim Kowalkowski Marc Paterno

14 September 2007

MFJBK,MP

Profiling tools

@ We used our own SimpleProfiler to collect data
e We have implemented a sampling profiler, because we
believe that is the best way to obtain unbiased
measurements of the program of interest
e 100 times per second, we capture:
@ the address of the current function, and
@ the address of each function in the call stack
o It thus collects full call path information, not provided by
other tools (e.g. gprof, when obtaining sampling
information).
e In post-processing, we determine the function names and
library location for each function we observed
e We load all the information into an SQLite3 database
e We also have scripts to create Graphviz plots summarizing
the function call information

MFJBK,MP

http://www.sqlite.org
http://www.graphviz.org

Profiling results

@ We have completed two profiling studies, using the full
CMS simulation (and QGSP_EMV physics lists) as a
vehicle for measurements. We’ve reported on these
previously, so here we’ll only summarize.

@ Each resulted in suggested changes to Geant4 source
code; in each case similar (but not identical) modifications
were implemented.

@ (Using G4 8.2p1) In G4ParticleDefinition and
G4HadronicProcess, we suggested refactoring that
improved code speed ~ 4%. Code changes went into
G4 8.3.

@ (Using G4 8.3, pre-release patch) In G4QNucleus, we
suggested the removal of needless memory allocations;
such removal improved code speed ~ 1.5%. Code
changes went into G4 9.0

MFJBK,MP

Reproducibility of timing studies

@ To compare the timing of different program configurations
(e.g. physics lists or code changes) we need to know the
magnitude of the uncertainties involved in timing a single
program execution.

@ Measurements showed execution times were not
reproducible: repeated runs of the same event differed.
l l l
rofoe « black dot = median
¢ enpowede — —ot o o
o temfmmdme a0 blue box = central 50%
tonechoc e wey o o
wh e
T T T
150 200 250

event id
P N W b O

processing time (s)

Improved timing reproducibility

@ < 1% timing comparisions needed improved reproducibility.

@ We found that the version of HepMC used by CMS
(2.00.02) was the major source of timing irreproducibility

@ Moving to HepMC (2.01.06) reduced the spread to ~ 1%.

150 200 250
| | | | | |

old new
5| &t #
E 4 r Lo} -jo0o0 oh
% 3o i1t 0 &
5 2 rfot - o0 #
1 #o #

processing time (s)

MFJBK,MP

Magnetic field caching

@ We have studied the effect of magnetic field caching.

@ Measured the time taken for a sequence of 10 function
calls in particle tracking code.
e Reproducible timing results gives us the ability to compare
between runs.

@ The following plot shows number of profiling samples
obtained for each of the 10 functions—proportional to
cumulative function time.

e We show cumulative function time, i.e. time taken by a
function and all functions it calls,

e compare two runs of the program, one with with field
caching on, the other with it off.

MFJBK,MP

Timing: field cache “on” vs. “off”

G4PropagatorinField::ComputeStep o A
G4ChordFinder::AdvanceChordLimited o A
G4ChordFinder::FindNextChord ° A
G4Magint_Driver::QuickAdvance o
sim::FieldStepper::Stepper o 0
G4MagErrorStepper::Stepper o
G4ClassicalRK4::DumbStepper o
sim::Field::GetFieldValue o ON
VolumeBasedMagneticField::inTesla | o A
MagGeometry::fieldinTesla | o A

thousands of samples
in function + children

MFJBK,MP

Field caching observations

@ For Geant4 team: it would be valuable to have a stepper
that is optimized with the expectation of having a fast field
calculation (which can be obtained through caching)—or, if
one already exists, to advertise it as such to the users.

@ For Geant4 users: careful field caching can dramatically
speed up your program with negligible physics impact.

MFJBK,MP

Effort on numerical stability

@ The floating-point unit can generate invalid operand faults
to signal illegal data supplied for an operation, e.g. v—1.

@ The default behavior under these circumstances is to
generate a NaN.

@ Using a modified version of our profiling tool, we are able
to identify each such case, and determine the call path that
lead to it.

@ We have uncovered a problem in G4Torus that resulted in
the calculation of square roots of negative numbers.

e Problem recently communicated to Tatiana Nikitina,
maintainer of this code.
@ She’s working on a patch for us to test.

@ After removing the use of G4Torus from the CMS
simulation, we find neither invalid operand faults, nor divide
by zero faults, nor overflows, in processing 50 events.

MFJBK,MP

Conclusion

@ In further profiling efforts we will move to G4 9.0.

@ We will continue to concentrate our profiling efforts on
functions taking 1-5% of total program time.
@ Previous difficulties with NaN generation may be solved.
e Further study is required.

MFJBK,MP

