
Performance and Numerical Stability

Fermilab’s Geant4 Performance Subgroup:
Mark Fischler Jim Kowalkowski Marc Paterno

14 September 2007

MF,JBK,MP



Profiling tools
We used our own SimpleProfiler to collect data

We have implemented a sampling profiler, because we
believe that is the best way to obtain unbiased
measurements of the program of interest
100 times per second, we capture:

the address of the current function, and
the address of each function in the call stack

It thus collects full call path information, not provided by
other tools (e.g. gprof, when obtaining sampling
information).
In post-processing, we determine the function names and
library location for each function we observed
We load all the information into an SQLite3 database
We also have scripts to create Graphviz plots summarizing
the function call information

MF,JBK,MP

http://www.sqlite.org
http://www.graphviz.org


Profiling results
We have completed two profiling studies, using the full
CMS simulation (and QGSP_EMV physics lists) as a
vehicle for measurements. We’ve reported on these
previously, so here we’ll only summarize.
Each resulted in suggested changes to Geant4 source
code; in each case similar (but not identical) modifications
were implemented.
(Using G4 8.2p1) In G4ParticleDefinition and
G4HadronicProcess, we suggested refactoring that
improved code speed ∼ 4%. Code changes went into
G4 8.3.
(Using G4 8.3, pre-release patch) In G4QNucleus, we
suggested the removal of needless memory allocations;
such removal improved code speed ∼ 1.5%. Code
changes went into G4 9.0

MF,JBK,MP



Reproducibility of timing studies
To compare the timing of different program configurations
(e.g. physics lists or code changes) we need to know the
magnitude of the uncertainties involved in timing a single
program execution.
Measurements showed execution times were not
reproducible: repeated runs of the same event differed.

processing time (s)

ev
en

t i
d

1
2
3
4
5

150 200 250

●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●

●● ●● ●●●●●● ●●●● ● ●●● ● ●● ●●●● ●●●● ● ●● ●● ●

● ●●● ●● ●●●●● ●● ●● ●● ●●● ●●●●● ● ●●● ● ●●● ●

● ●●● ●● ● ●● ● ●● ●● ●● ●● ● ●●● ●● ● ●● ●● ● ●

●● ●● ● ●●●● ●● ●●● ● ●● ●●●●●● ●●● ●● ●●

●

●

●

●

●

●

● ●

● ●

● ●

black dot = median

blue box = central 50%

MF,JBK,MP



Improved timing reproducibility
< 1% timing comparisions needed improved reproducibility.
We found that the version of HepMC used by CMS
(2.00.02) was the major source of timing irreproducibility
Moving to HepMC (2.01.06) reduced the spread to ∼ 1%.

processing time (s)

ev
en

t i
d

1
2
3
4
5

150 200 250

●

●

●

●

●

●

● ●

● ●

● ●

old

150 200 250

●

●

●

●

●

new

MF,JBK,MP



Magnetic field caching
We have studied the effect of magnetic field caching.
Measured the time taken for a sequence of 10 function
calls in particle tracking code.

Reproducible timing results gives us the ability to compare
between runs.

The following plot shows number of profiling samples
obtained for each of the 10 functions—proportional to
cumulative function time.

We show cumulative function time, i.e. time taken by a
function and all functions it calls,
compare two runs of the program, one with with field
caching on, the other with it off.

MF,JBK,MP



Timing: field cache “on” vs. “off”

thousands of samples
in function + children

MagGeometry::fieldInTesla
VolumeBasedMagneticField::inTesla

sim::Field::GetFieldValue
G4ClassicalRK4::DumbStepper

G4MagErrorStepper::Stepper
sim::FieldStepper::Stepper

G4MagInt_Driver::QuickAdvance
G4ChordFinder::FindNextChord

G4ChordFinder::AdvanceChordLimited
G4PropagatorInField::ComputeStep

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

on

off

MF,JBK,MP



Field caching observations
For Geant4 team: it would be valuable to have a stepper
that is optimized with the expectation of having a fast field
calculation (which can be obtained through caching)—or, if
one already exists, to advertise it as such to the users.
For Geant4 users: careful field caching can dramatically
speed up your program with negligible physics impact.

MF,JBK,MP



Effort on numerical stability
The floating-point unit can generate invalid operand faults
to signal illegal data supplied for an operation, e.g.

√
−1.

The default behavior under these circumstances is to
generate a NaN.
Using a modified version of our profiling tool, we are able
to identify each such case, and determine the call path that
lead to it.
We have uncovered a problem in G4Torus that resulted in
the calculation of square roots of negative numbers.

Problem recently communicated to Tatiana Nikitina,
maintainer of this code.
She’s working on a patch for us to test.

After removing the use of G4Torus from the CMS
simulation, we find neither invalid operand faults, nor divide
by zero faults, nor overflows, in processing 50 events.

MF,JBK,MP



Conclusion
In further profiling efforts we will move to G4 9.0.
We will continue to concentrate our profiling efforts on
functions taking 1-5% of total program time.
Previous difficulties with NaN generation may be solved.

Further study is required.

MF,JBK,MP


