
Python Best Practices
Written for CD/LSC/DBI/DBA by Randolph J Herber, Oct 9, 2008.

Abstract
This document tries to describe some of the issues involved in using the Python language
properly. Python has typed values instead of typed variables, which means the programmer
and code reviewer needs to assure that appropriate values are passed to functions and
methods. Python uses white space instead of punctuation or keywords to delimit boundaries
of program constructs, which means the programmer and code reviewer needs to assure that
only and all appropriate code is within such program constructs. When Python detects
programming errors, it usually is at execution time; therefore testing is required. Python
supports object oriented design and coding.

Friends, users and programmers of Python, lend me your attention.

1 Some aphorisms pertinent to programming
1. Let the computer do the work.
2. The price of quality is eternal vigilance: trust, but verify.
3. You can not test quality into something. You only can test that the quality may be there.
4. Write code so that it reads right. Do not write surprising code. Eschew obfuscation!
5. Detect errors as soon as possible: requirements, design, coding, testing, etc. Generally, the earlier an error is

detected, the cheaper and faster it is fixed.
6. Write functions and methods to do only one thing and do it well.
7. Do not repeat yourself. Refactor the code to make common code a function. Use classes or functions to pass

into that function commands.1
8. Keep the interfaces between sections of a program to a minimum. Ideally, interfaces should occur as public,

documented function, method or constructor calls only. One section should not reach into another section to
examine or tweak a value or use a private function or method in another section.

2 Some observations pertinent to programming
1. Understand the program specifications.
2. Verify that specifications mean the same thing to the customer, the programmer, the tester and the user.
3. Testing verifies proper output of the program for a given set of inputs delivered in a particular way to the

program. It is possible that the program generates the correct result for incorrect reasons.2

Practical testing is a sampling process. It is appropriate to test common cases of both correct and erroneous
input, boundary cases of correct and erroneous input and all cases of correct combinations of input where the
number of combinations is “small.” If the consequences of an error in a portion of the program is significant,
the testing of that portion of the program also should be significant. Testing does not put quality into a program,
find all defects in a program or guarantee that the program will be fixed correctly or at all.

4. Since Python supports object oriented design and coding, having knowlege of object oriented design patterns is
useful. One source of such knowlege is Design Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, (ISBN 0-201-63361-2). There are object oriented
design patterns which are not effective.3

1Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, ISBN 0-201-63361-2
2http://en.wikipedia.org/wiki/Halting_problem
3AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, William Brown, Raphael
Malveau, Skip McCormick, and Tom Mowbray, ISBN 0-471-19713-0. There are later editions.

3 Philosophy of Python
The philosophy of Python is described briefly by a document called “Zen of Python4.”

In Python, the types are associated with values and not variables.
Python uses white space and indentation to identify program structure. Code easily can move into and out of

control statements merely by changing indentation.
Python encourages the immediate writing of code and defers the detection of most error conditions to execution

time.
Python generally supplies only one implementation of a given data structure such as lists, sets and maps.
One person, Guido van Rossum5, is in control of the design and style of Python.

4 Issues with Python to consider while coding
1. Always check the Python documentation6 as you code to assure that you are using the proper method calls on an

object and that the arguments are in the correct order. The O’Reilly Python Essential Reference by David
Beazley7 is a useful guide to the Python language.

2. if statements have less execution cost than function or method calls.

Therefore, debugging code which is to be disabled in production should be protected from execution by an
inline if and not an if in a debugging function or method.

Do this (this is a long example):

import types

def isNumber(x):

 xType = type(x)

 for t in (types.FloatType,

 types.IntType,

 types.LongType):

 if type(x) == t:

 return 1

 return None

def toBeTested(self,arg):

 if DEBUG:

 if not isNumber(arg):

4http://www.python.org/dev/peps/pep-0020/
5http://www.python.org/uido/ and http://wiki.python.org/moin/BDFL
6http://www.python.org/doc/
7http://safari.oreilly.com/0672328623

 raise Exception(

 "toBeTested(%r) argument not numeric" %

 arg)

 print "in the place of more code"

Do not do this (this also is a long example):

import types

def isNumber(x):

 xType = type(x)

 for t in (types.FloatType,

 types.IntType,

 types.LongType):

 if type(x) == t:

 return 1

 return None

def debuggingTest(arg):

 if DEBUG:

 if not isNumber(arg):

 raise Exception(

 "toBeTested(%r) argument not numeric"

 % arg)

def toBeTested(arg):

 debuggingTest(arg)

 print "in the place of more code"

The important difference between the examples is the debuggingTest function and if within it.

3. Types are associated with values.

Therefore, variables may have different types of values at different locations in the program and the type may
be dependent on the execution path.

4. Functions and methods may return different types of values depending on the execution path through the
method or function.

5. Methods and functions should check for proper types and values of their arguments.

This argument validation should be turned off by if statements or removed only when their performance
impact becomes significant.

6. Python uses white space semantically. Indentation is used to define the boundaries of multiple line language
constructs.

Marking of the intended end of such a group of statements with a comment which names the statement it ends is
strongly recommended as Python does not have language constructs for that purpose.

Always run expand or equivalent to convert all white space to blanks so that one is not surprised by different
interpretations of tab characters by different editors, compilers and operating system.

By simply changing the identation of statements, code easily can be moved in error into or out of ’if’, ’while’,
’for’, ’def’ and ’class’ statements.

Be very vigilant about indentation. During code reviews, verify the correct end of multiple line language
constructs.

7. Python has several statements for the importation of entities from other packages.

According to the O’Reilly Python Essential Reference by David Beazley, from something import * is
required to be at the top of program at the outermost level of the code. In fact, experiments show that the
statement is accepted anywhere with a syntax warning. None the less, the The only proper location for from
something import * is at the top of the program.

import can be placed anywhere in the code. The only proper location for import statement is at the top of
the program with the from statements. Placing import statements elsewhere is surprising and can cause
varying effects depending on the execution path through the program.

8. Python has a “handy feature” to import all of the elements of a package: from xyz import *.

This “feature” should not be used. Python handles the importation of identically named elements of several
packages for you automatically. Python retains for you the last definition it receives. The results may be
surprising.

Another variant of the statement: from xyz import something.

This variant restricts the access to only those elements of the package named. This variant requires more work
on the part of the programmer to select only those parts of a package that actually are wanted from the module.
The advantage is that the programmer and the code reviewer knows what was imported. It is recommended that
the list of imported items be updated when an element is no longer needed.

Using import xyz and then xyz.something() requires extra coding in the body of the program.

This variant has several advantages. It shows exactly where an element of the package is used. If during
program maintenance the usage is removed, then the importation is automatically removed as well.

9. Python uses modifiable dictionaries (hash tables) to represent objects, classes, stack frames, modules and
dictionaries. This feature means that a program readily can add or remove fields, functions and methods from
any of these things, which allows for great flexibility in a program. The issue with this feature is that it causes
great surprises.

Do not do it at all!

Also, do not use modifiable dictionaries (hash tables) as a replacement for using class instances.

During code reviews, be vigilant for use of this “feature.”
10. Python, does not have pre- and post-increment operators, such as, ++a, –a, a– and a++.

The post-increment forms do not exist in Python and cause compile time errors.

Unfortunately, the pre-increment forms are not compile time errors in Python. They silently have no effect.

During code reviews, be vigilant for use of this “feature.”

>>> a=42

>>> ++a

42

>>> --a

42

11. Python helps a programmer pay attention to one problem at a time by, generally, presenting one compilation
time error message per compilation attempt.

12. As in most languages with a nesting block structure, Python is easier to read if a uniform indenting style is used.
An alternate way of handling multiple levels of indentation is to move the code of those higher levels of
indentation to their own separate functions placed elsewhere. This reduces the size of methods and the use of
indentation to show program structure resulting in more readable program.

13. As in most languages, Python code usually becomes more readable with appropriate white space around
operators and expressions.

14. As with most texts, code usually becomes more readable if the width of the text is not made too wide. Column
widths between 65 columns and 95 columns are recommended. Guido van Rossum’s Python style guide and the
commmon default terminal width suggests that the line width limit should be less than 80 characters. This is the
reason that newspapers and magazine have narrower columns than books; newspapers and magazines are
designed and intended to be read fast. Studies have shown similar effects on computer displays and web pages.8

15. Python treats strings as sequences of characters.

>>> for c in 'abe': print c

...

a

b

e

16. Python permits long variable names. These can be used to good effect to improve readability at the cost of
additional typing. Use distinct variable names so that one does not have to check the right hand end of name to
determine which variable it is.

With long variable names:

 status_unknown = 0

 status_good = 1

 status_bad = 3

 status_code_map = { status_unknown : "unknown",

 status_good : "good",

 status_bad : "bad" }

 if thingie.getStatus() == status_good:

8http://hid.fidelity.com/q31998/column.htm
http://edlab.tc.columbia.edu/files/eye-tracking%20article.pdf

 xyz.useThisThingie(thingie)

With short variable names:

 u=0

 g=1

 b=3

 sc = {0:"unknown",1:"good",3:"bad"}

 if t.st == g:

 xyz.doit(t)

17. Python does not have protected or private access to fields and methods.

The Python users community has a conventation that field, function and methods that start with an underscore
(_) are limited access elements of the class or instance object. Please, use this convention.

The use of getter and setter methods for all class fields is recommended strongly, particularly for fields marked
as intended as private. They permit the programmer to change the internal design of a class without having to
change the remainder of the program, to add constraints with verification or to prohibit the modification of a
field. It also can assist in debugging by permitting the easy insertion of debugging to look for setting to rare
values.

The issue being addressed by this recommendation is the minimumization of ”coupling” between sections of a
program.

18. Program class should be derived from some class. If not derived from any other class, then derive from
object.

 class Top(object):

19. All Python classes should have reasonable __init__, __str__ and __repr__ methods.
20. When logging a object value, use the %r format item and the value argument of the % operator always should

be a tuple. Use a trailing comma (,) in the tuple if there is one value to be logged.

 logString = "the value: %r" % ([1,2,3],)

21. If you need to change the behavior of a function or method, leave the old version alone (or remove it entirely)
and add a new version with a new name.

5 Useful Coding Tricks
See also: PEP 89.

Even though Guido van Rossum states in his style guide for Python, PEP 8, that “a foolish consistency is the
hobgoblin of little minds,” since most programmers generally do follow those guidelines, the principal of minimum
surprise means that you, the programmer, ought to follow the PEP 8 guidelines as well. These guidelines actually are
quite reasonable.

See also: PEP 25710.
This PEP describes docstrings, which a string immediately following a module, class, function or method

definition and is intended to document that entity.
Use consistent content in docstrings and other comments. Data to be included when pertinent are: purpose,

9http://www.python.org/dev/peps/pep-0008/
10http://www.python.org/dev/peps/pep-0257/

methodology, location of related documentation, expected argument types and their defaults and return types.
Use a logging package to report errors and programming events. During initial testing, the logging package can

write to terminal. Later, the use of a logging package will ease the redirection of logs to files or network connections or
the elimination of classes of log data. It is a design decision as whether to use a logging package to removing
debugging output or to use if statements.

1. Comments and code must agree. Fix whichever is in error. A bad comment is worse than no comment at all.
Explain why a less than obvious method was chosen (e.g., why the obvious method is wrong). If code is order-
dependent in some less-than-obvious way, then order dependency some be documented in the code comments.

2. Use library routines and base type methods instead of writing code.
(a) The code is more likely to be correct the first time.
(b) The code is likely to be compiled and not interpreted.
(c) The language documentation will explain what the code is doing.

3. Use in to check for the presence of a key in a map: if 6 in mapping: print "have a 6".

4. Use is to check the type of a value: if x is None. “None” is a singleton object (there is only one of this
value). is is a test on identity of an object (are these the same object) and not on equality (do these have the
same value by some definition). Generally identity tests are faster than equality tests.

5. Use xrange when the size of a range is large as range builds a list and then iterates over it and xrange is
an iterator which computes the next value as needed. This can be particularly efficient when search over a large
range and the search normally ends very early.

6. Use if __name__ == "__main__": to protect code that should only be executed if the program is used
as a main program.

7. Use a, b, c = b, c, a to rotate three values. Similar code can be used to rotate other order n-tuples.

8. Use a,b,c,d = values to unpack lists into named variables. In this example, values = [2,3,5,7]
Hint: this can be useful when the program wants to return more than one value from a function or method.
Make a list of the values, return [1, 17], and return that single value.

9. Use one or more blank lines to separate logical distinct sections of code in a method or function.
10. Try to keep functions or methods small.
11. Keep your code simple and direct. Use appropriate data structures and use classes to keep data that belongs

together together. Use complicated algorithms only when that portion of the program requires them for
performance. Donald Knuth’s The Art of Computer Programming11 is an excellent source of well discussed
algorithms. Another excellent source of algorithms is NIST’s Dictionary of Algorithms and Data Structures12.

12. Pay attention to resource leaks and ever-growing data structures. “Did you close that file when you were
finished with it? ” “Empty a data structure when you are done with it.”

13. When a variable is no longer meaningful, use the del on it. This permits more rapid garbage collections and
reduces the chances of incorrect usage of the old value.

(a) loop variable

 for x in [1,2,3]:

 pass

 del x

(b) a list

 x = [1,2,3]

 del x[:]

 del x

(c) a dictionary

11http://www-cs-staff.stanford.edu/ no/taocp.htmlũ
12http://www.nist.gov/dads/

 x = {1:'a',2:'b',3:'c'}

 x.clear()

 del x

(d) a class instance

 x = ABigClass()

 del x

14. Particularly for user input, when appropriate, use case independent comparisons for text strings. Since Python
supports Unicode and some languages do not have all the glyphs of the language in upper case or title case,
convert a copy of the input string to lower case for comparison. You want to keep the original input string intact
for error messages.

15. Parentheses are cheap. Use parenthesis whenever and wherever the priority of the operators in an expression
might be unclear to a reader of the code.

16. Use long expressions with white space and parentheses as needed rather than unnecessary temporary variables.
This is not a license to combine as many expressions as possible.

17. Validate inputs from outside of the control of the program. If the program is divided into major sections, then
treat those sections as separate programs and validate arguments passed between those major sections.

18. When feasible, use parentheses around a multi-line expression rather than using the Python back-slash (\\) line
continuation.

19. Use camel-casing for variable, function, method, class, etc. names. Use a upper case first letter for the first
letter of a name for a class name and a lower case first letter for everything else.

 exampleThingFactory = ExampleThingFactory()

 exampleThing = exampleThingFactory.makeThingie

20. Python sequences may indexed or sliced with negative values. Negative indices index from the high end of the
sequence. Extra viligance is needed when non-constant possibly negative expressions are used. Negative values
only should occur when intended and not as a result of a “one-off” or similar error.

21. Regardless of which programming language or languages are used to write a program, the implementation
language or language should not be visible to the user in the syntax of the input language.
Instead, use:

(a) a simple input design,
(b) a standard input language such as XML13 or
(c) a designed small language implemented using a parser and lexer pair or a compiler generator14.

22. Although code management systems encourage one to keep one’s changes small, freely rewrite bad code rather
than looking for a tiny version of the change.

23. If the code is not following the project’s style, then it needs to be rewritten to correct its style.
24. Design the input so that it is easy to generate correctly. If it is human generated input, then, even if it makes

more work for the programmer, design the input for the user.
25. Use configuration files and manifest constants. Configuration files, network data sources or configuration

classes should be read or processed as soon as possible in the program’s initialization. Other values related to
values in configuration data and values of manifest constants must be computed from those constants. Put all
non-operating-system file path names in the configuration data.
Consider using a separate package for the project’s manifest constants. The package should also compute
common derived values from the manifest constants during the packages initialization and make those values
available as well.

26. If an error is discovered in a configuration file, the error should be reported.

13http://www.rexx.com/kuhlman/pyxmlfaq.html
14http://www.lava.net/ñewsham/pyggy/

27. Beware of common programming mistakes such as failure to appropriately initialize variables, loops that are
one-off in their control, failure to test correctly for equality or “sameness”, failure in control when equality or
“sameness” occurs, handle the absence of input cleanly and clearly, failure to handle boundary conditions
correctly such as maximum negative numbers or stepping off the end of lists, etc.

28. If requirements writer, the designer, the programmer or the tester commonly makes certain errors, then then
look for those errors in the following stages of the program’s development.

29. If a new technology is used, then pay close attention to the portions of the program which use them.
30. Error messages and warnings should be as specific as practical. Include the argument name and value unless

security issues preclude providing these data. Suggest a solution to the problem. The log entry for the event
should include all applicable data unless security issues preclude providing these data.

31. In exception handling, use as specific as possible exceptions. Use multiple except clause if necessary. Name
subclass exceptions before superclass exceptions. If you need to catch and do nothing, then comment why
that is appropriate behavior. In most case, that is a program event that should be logged. E.g., a try block
around a file close to bypass a possible I/O exception should log that I/O exception.

32. Using super() in a instance initialization may be dangerous.15

33. A class instance should be usable as soon as it has been made by the class constructor.
If this is not possible, then use a factory method to make a class instance and then customize it.

6 Disclaimer
This document assumes that the requestor, analyst and programmer have good and sufficient reasons for wanting to use
the Python programming language and libraries. Many trademarks and logos are mentioned in this document. They
belong to their respective owners.

15http://fuhm.net/super-harmful/

