
C)

-~
'J

:- ./-,
-.J ""_~)

m Fermilab
Computing Division

MISCOMP

Developers Documentation

Version 0.5

Edition 1.0

This manual is as complete as possible as of this date. Additional sections are in
preparation. Please suggest additions, corrections, etc. via Email to MISCOMP@FNAL.GOY.
Revisions will be distributed as soon as they are available.

September, 1994

Table of Contents

o MISCQMP EQUIPMENT DATABASE

Version 0.5

Developers Documentation

Table of Contents

1. Overview

Systems & Technologies
Systems........................ I - 2
Databases.. I - 2
Interface Technologies... I - 2

Design Overview
Abstract/Overview .. I - 4
Database Design... I - 6

(J Application Architecture.. I - 13
Package Architecture .. 1 - 16
Diagrams.............................. I - 19

2. Development Standards

Developers Standards
Forms4 .. 2 - 2
List of V alues... 2 - 6

Report Standards.. 2 - 16

3. Documentation Standards

Impact Analysis Techniques 3 _ 2

~~:!~~~:::::::::::: :::::::: ::::::::::: :::::: :: ::::..... 3 - 3

Release Notes 3 _ 7

~~:!~~~::...... 3 - 8

(J
MISCOMP: Equipment Database Table oj Contenti- 1

Table of Contents

C) 4. Configuration Management

Database & Application Configuration... 4 - 2

Report Configuration for Immediate Release , 4 - 21

C)

)

MISCOMP: Equipment Database Table of Contents - 2

Overview

() MISCOMP EQUIPMENT DATABASE

Version 0.5

Developers Documentation

1. Overview

.-.--.....
',-)

J

MISCOMP Equipment Database 1-1

,~
J

()

iJ"""
"""

Overview

Systems & Technologies,

Systems

The Equipment Database and the corresponding development tools reside on the fncdu cluster.
The cluster consists of other machines used by the DB&I group for other MISCOMP functions
as well. A list of ail systems in the cluster and their current usage is below.

fncdu cluster components:
Machine Description
fncdua SPARC II

fncdub
fncduc
fncdud
fncdue
fncduf

SLC
SLC
ELC
ELC
SPARC 1+

Usage
Development & Integration Oracle software; Development
database files; database backup area; other software (Cadre,
NCD, WWW, gnu, 00 software); developers' horne area;
developer login
Also, currently, but to be moved to fncduh: Application
software under development; boot server; file server; NIS
master
developer login
developer login
developer login
developer login
Integration database files; integration backup area

Loosely coupled to the fncdu cluster:
fncdug SPARC 1000 Production software (Oracle); user login; NIS slave

Additional machine, to be added to the fncdu cluster in September:
fncduh SPARCserver20 Application software under development; document

management software; document management data files; boot
server; file server; NIS master

Databases

The Equipment Database has three database environments: Development, Integration Test, and
Production. Each of these databases can be accessed from any node on the fncd cluster. To
point to any of them use the commands shown below:

Database
Development:
Integration test:
Production:

Setup Command
setup -d equipmenCdb
setup -t equipmencdb
setup equipmenCdb

Horne Machine
fncdua
fncduf
fncduf

Each ofthese environments is described in more detail in the Configuration Managementsection
of this document.

MI8COMP Equipment Database I ~ ~

(\ ,_J

(-)
'--

J

Overview

Interface Technologies

The Equipment Database screens were all built using the Oracle Forms product. The EQUIPDB
screens were built using the Oracle Forms Version 3.0 character mode interface builder. The
MISCOMP screens for System Managers, Network Services and general query access were built
using the Oracle Forms Version 4 GUI interface builder.

Canned reports, accessible from the Report Submission utility, were all built using Oracle
Reports Version 1.1.

Business Objects, a flexible, end user driven query tool has been deployed to certain Equipment
Database users.

MISCOMP Equipment Database I - 3

C)

(J

\-)

Overview

MISCOMP EQUIPMENT .DATABASE VO DESIGN DOCUMENT

ABSTRACT

This documents the design decisions made while implementing the MISCOMP Equipment
Database VO system (MEDO). It is intended to provide an overview of the design decisions,
without explaining every specific design detail. This document is separated into three parts. The
first part describes the design of the MEDO database. The second part describes the client-server
architecture implemented using SQL *Forrns V3.0 and the ORACLE7 database. The third part
describes the use of packages in the ORACLE7 database, more specifically how we utilized
object-oriented concepts to maximize code reuse and lessen future maintenance costs.
Throughout this document we will describe what we perceive to be flaws in our design decisions
and how these weaknesses may be overcome.

OVERVIEW

The initial MEDO development resulted in the creation of the following number of database and
application objects:

TABLES 21
VIEWS 45
SEQUENCES 14
INDEXES 51
DB TRIGGERS 4
PACKAGES 56
SQL *Forrns 42
SQL *ReportWriter Reports 4+
SQL*Menus 1

The bulk of the development time was spent coding packages and SQL *Forrns using Oracle's
proprietary procedural language extension to SQL, PL/SQL. The design and coding stages of the
MEDO system lasted approximately 4 months, with the full utilization of 2 developers. There
were other people employed to support the MEDO development effort, but they were not central
to the design and coding aspects addressed in this document.

MISCOMP Equipment Database 1-4

C)

()

:. ..)
-."

Overview

The MEDO system was initiated to address the following goals:

1. Provide a proof of concept and/or feasibility study for the ongoing MISCOMP analysis
effort's business models.

2. Exploration/implementation of leading edge application architecture concepts such as object
orientation and distributed functionality client-server.

3. Support for the computing division's equipment inventory process.

4. Support for data communications' network service request business processes.

This document will concentrate on describing how the fIrst two goals were addressed.

MISCOMP Equipment Database 1-5

(-j
'--

=)

,.)-'
" ..

Overview

I. DATABASE DESIGN

The design of the MEDO database was based on the entity relationship diagrams (ERDs) from
the MISCOMP analysis. Diagrams I and 2 display an ERD that depicts the logical data model
from which we designed our database. You should notice symmetries between the relationships
of the subentities. We discovered that if you were to build tables based on the superentities, the
implementation of the symmetric relationships became simplified from a database perspective.
One foreign key in the database can account for multiple relationships in the ERD. But, this begs
the question of how do we make sure that we are upholding the business rules depicted by the
more specialized relationships in the ERD? The answer to this question lies in the use of
packages for data manipulation and business rule enforcement. How this is done will be
described in the next two sections of this document. But for now, let's discuss the table design
depicted in the Table Diagram (TD) in Diagram 3.

If you compare the two diagrams you will notice that most of the superentities in the ERD are
mapped to tables in the TD (actor maps to actors, claim maps to claims, provision maps to
provisions, etc ...). You will also notice that the symmetric relationships of the ERD are
generalized into singular relationships in the TD. We chose to map superentities to tables in our
database for several reasons:

* Easier queries to display information of objects that are of differing subtypes. For example,
we can now query information about system managers, owners. users, and other claim subtypes
with a single table query.

* If a redesign is needed in the future, it will be easier to break tables apart than to concatenate
them.

* In general, we hope to provide simplification of business objects by enforcing symmetries
through table design. By creating fewer tables, we may help provide a clearer picture of the
similarities between objects that in the past have become too complex and divergent.

Looking at the TD and ERDs further. you will notice new tables in the TD that have no apparent
mapping to any entity in the ERD (objecCtypes, configuration_elements, configuration_items,
id_tags, attributes, attribute_values. requescdetaiChistory). These tables were created to support
the following issues.

* Typing of differing objects stored in the same table.

* Data driven extensibility of object configurations.

* Data driven extensibility of object attributes.

* Auditing of object changes through time.

The next few sections will discuss the reasons and ramifications for implementing such a table
design.

MI8COMP Equipment Database 1 - 6

Overview

(~
'_) A. TYPE TABLES

(J '-

'/J'-
"

One of the primary problems of mapping multiple entities into a single table is determining the
type of each row in that table. A common solution to this problem is to add a column to the table
that defines the type of the row. We expanded upon this concept in our design by not only
adding a column, but by making that column reference a validation table that can provide a valid
list of types. In the TD, there are two tables defrned for this purpose: objecuypes and
provision_classes. The provision_classes table provides typing of rows for the provisions table
and the objecUypes table provides typing for rows in all other tables where typing is necessary.

But, we did not stop expanding this typing architecture with just a simple validation table. We
provided the capability for hierarchical typing schemes by making the provision_classes and
objecCtypes tables recursive. Let's look at a few examples of these type hierarchies:

ACTOR
INDIVIDUAL

EXTERNAL PERSON
APPLICANT

FERMILAB PERSON
EMPLOYEE
VISITOR
CONTRACTOR

GROUP
PERSISTENT GROUP

UNIVERSITY
COMPANY
FERMILAB GROUP

AFFILIATION
EXPERIMENT GROUP
LABORATORY GROUP

CLAIM
OWNER
USER
SYSTEM MANAGER
SENSITIVE ITEM TRUSTEE
LOCATION OCCUPANT
etc ...

These type hierarchies are encoded within the objecctypes table and are referenced by the actors
and claims tables to type each of their rows. A similar hierarchy is encoded within the
provision_classes table and is used strictly to type the provisions table. We have separated the
provision_classes table from the objecctypes table for several implementation reasons including
performance, ease of coding, and other differing aspects that will be discussed later. Our use of
type tables has several ramifrcations:

Pros:

* Types are data driven. Thus, if a new type of actor, claim, provision, request, etc ... is
discovered, we can account for this by adding a new row into the type table.

* Hierarchic typing provides "roll-up" summations. This implies that I can query all rows from a
table that belong to a particular type or any of its subtypes in a fairly straightforward fashion.
For example, I could gather information about all employees from the actor table by frnding all
rows with a type of employee. Likewise, I could frnd all Fermilab people in the actor table by
finding all rows that have a type of Fermilab person or one of Fermilab persons subtypes.

MISCOMP Equipment Database 1·7

Overview

i~ Cons:

(~)
\'--

J

* Hierarchic type tables may make ad hoc queries more complex to write. This is due to our
normalized implementation of the type tables. This normalization forces queries to make use of
a "tree walk" algorithm to check for subtypes. A denormalized hierarchic structure could
alleviate this problem if query performance is poor or future development would be too complex.
A second possibility may be to break a single table into mUltiple tables, thus grouping major
subtypes by physically isolating the data. An example of this might be to break the provisions
table into locations, jobs, fixed_assets, physical_systems, nodes, logical_networks, etc ...

* Hierarchic type tables do not provide a complete solution for implementing multiple entity
subtypes in a single table. There is still a need to enforce rules for different attributes,
relationships, functionality, etc ... based on an object's (row's) type.

This last issue is of primary importance within our design. The next two sections will describe
how the database has been designed to support different relationships and attributes. Parts II and
III will discuss how code was written to support the integrity of these data structures and the
differing functionality and business rules that each subtype may need.

B. DYNAMIC CONFIGURATION OF INSTRUMENTS

On Diagram 1, you should notice all of the relationships between instruments (a subtype of
provision). You should also notice that none of these relationships are depicted in the TD. This
is because they have been implemented via an elaborate configuration scheme utilizing the
configuration_elements and configuration_items tables. We are using a dynamic configuration
scheme primarily because we do not feel confident in our ability to completely predict or obtain
all of the interrelationships between instruments. Thus, we need a mechanism to allow us to add
new relationships, or configuration rules, with minimal impact to our data structures. The
dynamic configuration scheme provides this capability.

The dynamic configuration scheme is based on two concepts: rule definition and rule
enforcement. We store rule definitions in the configuration_elements table. Thus, each row in
this table may be referred to as a rule. Rules are initially derived from the relationships between
instruments in Diagram I. Thus, the relationship between physical instrument and node is a rule.
So is the relationship between physical network segment and logical network. And so is the
recursive relationship on physical instruments that is defining physical instrument composition or
structure.

Once all ofthese rules are defined (there are 9 of them depicted in Diagram I) in the
configuration_elements table, we may begin enforcing them through the insertion/deletion of
configuration_items. The configuration_items table stores actual instances of the rules defined in
the configuration_elements table. Thus if a computer system with system tag # S00123 contains
a mouse with FNAL# 056789, there would be a row in the configuration_items table that related
to the computer system as the parent and the mouse as the child. This configuration_item row
would also be related to the row/rule in the-configuration_elements table that represents the
recursive relationship defining physical instrument construction.

Another example of a configuration_item row would be the representation of the fact that the
system with tag#SOOl23 played the role of an IP NODE with address 131.225.9.1. In this case,
the configuration item would relate to the system and the node records in the provisions table and
would be related to the row/rule in the configuration_elements table that defines that physical
instruments may be communicating as nodes.

MISCOMP Equipment Database r--s

''')

(-)
\~

,J

Overview

A third example of a configuration_item rew would be the representation of the fact that the
DECNET phase 4 area network with address 57 runs on physical network segment ABC. In this
case, the configuration item would be related to the DECNET network and physical network
segment rows in the provisions table and would be related to the row/rule in the
configuration_elements table that defines that logical networks run on physical network
segments.

Our implementation of dynamic configurations contains another concept which we call
guidelines. A guideline is a configuration element that is defmed as a specialization of a rule.
For example, we have a rule that states that a physical instrument can contain many other
physical instruments, but in turn may be contained *within* one and only one other physical
instrument. This basic construction rule must be met by all configuration items that define a
physical instrument's composition. And, we want to define only one general rule for
construction, at this point, because we do not know or want to know the rules for construction of
every single type of physical instrument.

However, having one general construction rule does present a problem if we desire to help the
user defme how physical instruments are to be constructed. Thus, guidelines were invented to
provide a mechanism that suggests to a user how a particular type of physical instrument should
be constructed, without forcing the user to construct it that way. For example, we may want to
provide guidelines to users on the construction of computer systems that state that a computer
system is usually composed of a CPU box, a mouitor, a keyboard, a mouse, etc... When we
define these guidelines, the system is then able to use them to help suggest to the user what
components should be placed within a computer system. And, the system is also able to wam the
user if she defines a component that is not enumerated in the list of guidelines. Again, a guideline
is not strictly enforced like rules. So, a user can place an oscilloscope within our computer
system, even if this would break the present set of guidelines for computer systems.

The use of dynamic instrument configurations has many ramifications, some of which are
enumerated below:

Pros:

* System maintenance time should be decreased since new configurations should not cause
database structure changes.

* A common data driven algorithm can be used to validate instrument configurations. (In other
words, we will not have to write new validation code every time we define a new configuration
rule.)

* Configuration rules can be inherited by subclasses of instruments.

Cons:

* Complex queries are needed to incorporate configuration of instruments with the instruments
themselves.

* The common data driven algorithm for validating configurations is extremely complex. Any
enhancements to this algorithm (and there will pe, since MEDO only defmed and implemented
parts of it) will require extraordinary expertise.

MISCOMP Equipment Database I - 9

CJ
Overview

* Database performance may be affected as configurations of objects are stored as rows instead
of columns. In other words, a change of an instrument's configuration will not be a simple row
update with automatic validation, but may require the insertion and/or deletion of records and an
algorithmic validation routine.

C. DYNAMIC ATTRIBUTES OF PROVISIONS

An attribute is a data item that is held by an object that is not validated through direct reference
to another object. More simply, attributes are typically not validated. Usually, attributes are
mapped to a column in the table based on the object they are defined for. We chose to
implement attributes differently based on the following reasons.

* Since our design houses many different types of objects in single tables, extremely wide tables
could occur if we attempted to make a column for every attribute. (RAM Memory, Disk
Capacity, etc)

* Since MEDO was designed without a complete analysis of all potential attributes for a given
object type, we needed a mechanism to add new attributes without having to affect the database
structure and causing application maintenance. (Inventory Sheet #, etc ...)

* Since MEDO does not completely implement all of Computing Division's business, but will be
used to replace some of CDs existing systems, we needed a means to capture existing data that
may be useful in future MISCOMP implementations. (PO #, PO Date, etc ...)

/'-) In order to implement dynamic attributes, we created two tables: attributes and attribute_values.
""" The attribute table defines which attributes are available for a given provision class, and all of its

subclasses. The attribute_values table houses actual attribute values for a given provision. Thus,
if we decide that we need a new attribute for fixed assets, "Color", we would add a row in the
attributes table that specified Color as an attribute of fixed assets. And, the applications would
then be able to gather and display the color of any type of fixed asset.

J

This implementation of dynamic attributes has several ramifications, enumerated below:

Pros:

* Quick response to changing data capture needs.

* Simple to implement

* Easy to eliminate data that is no longer needed.

* Attributes can be inherited by subtypes of classes for which they are defined.

Cons:

* Difficult to query objects based on a dynamic attribute value.

* No validation of dynamic attribute values. (At present all dynamic attributes are of character
format.)

MISCOMP Equipment Database 1 -10

Overview

\') * Database perfonnance will be affected since the creation of an object with dynamic attributes
, will require more than one insert. In fact it will require an insert for the base object and one

insert for each additional attribute. Likewise, the deletion of an object will require several
deletes.

:')"
'.

\~

Lessons Learned:

* We have to be careful not to allow new attributes to be introduced without guidance.
Sometimes, there is already a mechanism in place to hold the infonnation that a potential new
attribute may contain.

D. REQUEST STATUS AUDITING

The business of network service requests requires that request details that are submitted for work
to the data communications group endure a life cycle of statuses until they are eventually
completed or canceled. This life cycle is depicted below.

UNSUBMITTED ~MPLE~

REJECTED
CANCELLED

PENDING

A request detail is originally created with an unsubmitted status by the requester. Then, the
requestor submits the request to data communications. Data communications has four options:
reject the request and allow the requester to re-submit it with changes, complete the request,
cancel the request without allowing the requester to re-submit with changes, or pend the request
until the requester supplies more infonnation.

Once the request is submitted, the requester does not have the ability to edit the request, unless it
is rejected or pended. Thus it is important for the requester to be able to see what is happening to
her request. So, we have implemented the capability to audit status or status comment changes
on a request detail. The requescdetaiLhistory table houses these audited records.

The requesCdetaiLhistory table stores the request detail's id, new status, new status comment,
the rejecting person if the new status is rejected. and the date the change occurred. Records are
created in this table through the use of a database trigger on the requesCdetail table that checks
for a change in status or status_comment on the request detaiL If it finds one, a history record is
created.

The use of this auditing scheme has several ramifications.

MI8COMP Equipment Database I -11

()

,/-,
J

r)"
.~

Overview

Pros:

* Simple to implement the history record creation trigger.

* Archival of old requesCdetaiLhistories will be easier.

* History records do not interfere with active records, thus not impacting active record query
performance.

Cons:

* Referential integrity constraints cannot be declare between requesCdetails and
requesCdetail_history tables due to the nature of the create history record trigger on
requescdetails. Thus, referential integrity must be handled procedurally via triggers (i.e. cascade
delete is handled via another trigger on requesCdetails).

* Keeping histories may consume large quantities of disk space if an archival procedure is not in
place.

* A status update will be slower, since a record will have to be inserted in addition to the original
update.

MISCOMP Equipment Database 1 - I2

Overview

() II. APPLICATION ARCIllTECTURE·

The MEDO application architecture is a distributed functionality fonn of client - server
computing. However, it is not loosely coupled, since the server database must be up and running
in order for the client application to function. The basic premise behind this architecture was to
hide the structure of the data from the client applications. In order to do this, we had to address
the following functions for which SQL *Fonns V3 provided default logic: query, locking, insert,
update, and delete of data. We will group the insert, update and delete functions into one
category called data manipulation. Throughout this discussion it may be helpful to refer to
diagraru4.

A.QUERYING

The default query logic that SQL *Forms V3 provides was not extremely amenable to change. It
is based on the assumption that each block in the fonn is based on a table or view and that fields
that are defined as "base table" fields are columns in the table or view. Further, any parameters
that are placed in a base table field at query time would be applied to the column in the where
clause ofthe generated select statement. We chose not to override this functionality within
SQL *Fonns V3. An extended query technique within SQL *Forms V3 allows for query within
"non-base table" fields. We utilized this technique to provide query capability on some non-base
table fields. Thus, our code does have some knowledge of the table structures within the
database. The following is a comparison of the pros and cons for using the default query
functionality with extended techniques for non-base table fields.

(~ Pros:

,:J

* Generatable from CASE.

* Simple and standardly used techniques.

* No need to change default locking functionality.

Cons:

* No insulation from database structure changes.

* Extra logic required to allow query on non-base table fields.

* Non-base table fields need to be "looked up" for each record returned. This could cause an
increase of network traffic between the client and the server.

As development progressed, we discovered various ways to mitigate this dependency on the table
structures within our code. The best solution to date was to use multi-table views. The views
would include "non-base table" fields as columns. Thus, those fields would become base table
fields. Also, through the use of views, we,would provide better encapsulation on our table
structure. However, due to time constraints, we did not implement this technique in all fonns.
The following is a summation of the pros and cons of this technique.

MISCOMP Equipment Database 1 - 13

Overview

() Pros:

o

;~J~~-

,

* Better encapsulation from database changes.

* No extra logic needed for "look up" fields as they can be incorporated into the view.

* No extra calls to retrieve lookup fields.

Cons:

* If the view becomes a multi-table view, then the default locking logic within SQL *Forms V3
will have to be overwritten.

* Since the view may be complex, the initial query may take longer, especially if the query is
based on an obscure column in the view.

*If a "look-up" column may be null, then an outer join condition will occur in the view and any
queries based on the look-up column may not be optimized as desired by ORACLE7.

* The number of views and the maintenance burden on these views could accelerate over time.

B.LOCKING

As was mentioned in the previous pros and cons list, the default locking functionality within
SQL *Forms V3 may need to be overwritten if using multi-table views. But, first let's describe
what that default logic is. SQL *Forms V3 will perform a "select ... for update no wait" for each
row that the user attempts to update or delete. It attempts to get the row-level lock in this manner
as soon as the user attempts to delete a record or change a base table field of a queried record.
This select may result in one of three outcomes.

I. The lock is acquired.

2. The record is locked by another user. At this point SQL *Forms prompts the current user if she
would like to retry or quit, until she either quits or retries and acquires the lock.

3. The record was changed or deleted by another user. In this case, the current user is asked to
re-query the record to view the changes (or find it has been deleted).

This functionality is extremely convenient. And not very simple to reproduce. But, we need to
reproduce it if we are utilizing multi-table views as base tables within an updateable block. We
have done this with some success by implementing the lock functionality within a database
package. This function returns one of three outcomes and the form handles the production of
error messages. This technique is currently being refined, and shows promise. The following is
a list of pros and cons for utilizing this new locking technique.

MISCOMP Equipment Database r .. 14

Overview

(J Pros:

/~) , ,
\'---

,)
~-

* Locking mechanism is encapsulated from the application.

* Locking mechanism can be changed without having to change all of the forms that use it.

Cons:

* Locking mechanism and form handling must be coded for each object and each form.

* Records will probably have to be timestamped with last update date if the new locking
mechanism is going to function effectively. There are probably other techniques, but this one
seems the most promising.

C. DATA MANIPULATION

The default SQL *Forms V3 data manipulation functionality automatically creates SQL
statements for inserts, updates and deletes derived from each block's base table or view and base
table fields. We chose to completely override this functionality through the use of package calls.
Thus, every ON-INSERT, ON-UPDATE, and ON-DELETE trigger is overridden with a package
call. In most cases the insert call returns the new ill of the row. This is done so that the ill
generation was encapsulated from the forms. Also, in order to keep the locking behavior
synchronized with the default SQL *Forms locking behavior, we allowed for the select of the
rowid in the POST-INSERT trigger. The rowid is used by SQL*Forms to perform all lock,
update, and delete related where clauses.

The details of how we constructed the packages will be discussed in the next part. But, we can
summarize the pros and cons for this technique before enumerating them.

Pros:

* Table structures are encapsulated during data manipulation.

* Any extra data manipUlation functionality is encapsulated from the forms. (e.g. ID generation.
cascade updates. etc ...) And, thus is more easily reused.

Cons:

* Requires recoding of default data manipulation logic.

* Requires coding of the packages.

MISCOMP Equipment Database 1~5

Overview

':) III. PACKAGEARCIDTECTURE

The general architecture for package construction attempted to implement the object oriented
concepts of inheritance and polymorphism. This was done by creating two basic types of
constructs: object managers and package hierarchies. An object manager is responsible for
brokering most of the calls that are generated to objects within the same package hierarchy. A
package hierarchy is a group of packages that resemble a type hierarchy of the objects. The use
of packages includes more than these two concepts, but for the scope of this paper, we will limit
our discussion to object managers and package hierarchies. Throughout this discussion it may be
helpful to refer to diagram 5.

A. OBJECT MANAGERS

Within the MEDO implementation, there are several object managers, one exists for flxed assets,
claims, logical networks, request details, id tags, and abstract instruments. The abstract
instrument object manager handles calls for the following object types: network service, network
service group, and physical network segment. Each object manager should understand the
following basic messages.

LOAD _<OBJECT_TYPE> (one parameter for each attribute shared by all objects in the
corresponding hierarchy)

This procedure instantiates an object into memory, in preparation for a save.

(-)" LOAD_ATTRIBUTE(attcname, attr_value)
"--

This procedure loads a single attribute value into the instantiated object. It is used for extra
attributes that are not part of the shared attribute list.

GET _ <OBJECT _TYPE> (objecUd)

This instantiates an object into memory from the database.

GET_ATTRIBUTE(attcname)

This function returns, in varchar2 format, the value of the attribute for the instantiated object.

SAVE_ONE

This function saves (insert or update) the instantiated object to the database. It will return the id
of the object.

DELETE_ONE(objecUd)

This procedure deletes from the database the object with the id.

CLEAR

This procedure uninstantiates an object from memory.

i,:,~~) There may be more procedures and functions for each manager based on the nature of their
corresponding package hierarchy.

MISc-OMP Equipment Database 1-16

()

C)

.•....) ..
....

Overview

Given the above messages, the standard way to insert a new record from SQL *Forms would be
to call LOAD _<OBJECT_TYPE> to instantiate the new object, then call LOAD _ATTRIBUTE
for any extra attributes, and finally call SA VE_ ONE to insert it. The same sequence would be
used to update the record. To delete a record, the form would call DELETE_ONE.

The SAVE_ONE and DELETE_ONE procedures within the object-manager package will call the
appropriate package in the corresponding object hierarchy. The appropriateness is based on
inheritance rules for the type of the object being acted on. The following example details how
inheritance and polymorphism are addressed by object managers.

Suppose an IP NETWORK is being created, the LOGICAL_NETWORK_MANAGER would
first check to see if there is an IP _NETWORK insert procedure. Suppose there isn't. Then, the
LOGICAL_NETWORK_MANAGER would look up the type hierarchy and find
ADDRESSABLE NETWORK. And, would then look for an ADDRESSABLE NETWORK
insert procedure. The LOGICAL_NETWORK_MANAGER would continue upthe type
hierarchy until it found an insert procedure to invoke. This same example applies to the update
and delete functionality within the object manager.

B. PACKAGE HIERARCHIES

Each package hierarchy corresponds to an object manager. Each node in a package hierarchy
corresponds to a type within a type hierarchy of objects. There are three basic messages that
each node may implement.

INSERT_ONE(one parameter for each attribute)

This function inserts the object and returns an id.

UPDATE_ONE(one parameter for each attribute)

This function updates the object matching the id that is passed.

DELETE_ONE(objecUd)

This function deletes the object having the passed id.

A package within the hierarchy will only implement one of these methods if it intends to
override its parent's method. And, if a package overrides a method, it still may call the parent
package to reuse code. if appropriate. Thus, packages will only get created for an object if it has
some special data manipulation logic/rules or has different attributes.

C. CONCLUSIONS ON THE PACKAGE ARCIDTECTURE

Why should we go to all of this trouble? Our belief is that by providing such a framework, we
will be better prepared to leverage reusability. We also believe that maintenance efforts will be
greatly reduced by such an architecture because our code will become "normalized." In other
words, the "one fact one place" rule that makes data easier to maintain, will provide the same
benefits for code maintenance. We believe that the extra effort for initial development will pay
large dividends in the form of reduced time to extend and modify the built systew. These are the
primary benefits for this kind of architecture .

MISCOMP Equipment Database 1-17

\:J

()

....)

Overview

As technology and our experience evolve, this solution will become more elegant. But, we
should still be utilizing these same concepts of inheritance, polymorphism and encapsulation. In
fact, PL/SQL has an extension that will allow us to dynamically generate and run PL/SQL. This
will provide even more elegance to our object manager solution in the near future. It may
provide us with a data driven technique toward generating object managers and package
hierarchies.

MISCOMP Equipment Database 1 - 18

u

R(WIST DEtAIL

HETYalK SERVICE flEWEST DE1All

IHSTALUTIC»4 IIEClJESt OETAll

ADORESS 1'Ii1IS1MlI~ IIEaJlliJ I)(UIL

(

IHc.fle HCH·IPrCIT Ie
IIIIIIstMtlOll IIEalnUllCIt
NO-JUf RErunT
DETAIL IIETAIL

'0 c
nOdi. II

10 c
ftOdll Ia.

I
r nod .. 1o.

". ."IQ" nI ..

- ,-~~-

[
~~::~~~~,-,;--J-[~~oo-... -'-a'-.'-'~J

CLASS CLASS

--~- --~ ----
IHSlflt.lWI CUSS

PfJJYlSIOI CLASS

flEaJUT

"lWJI'I(SERVICE R£WEIl

I[RIIICE
'IEGIUIUIIQ"I
"ErunT

• II ...

\ ~ --.crr----m---'

'0 I., I.. 10. I'
.. , ,,' hi 10"""'''1 p'owld.
.. .11 .. In

prow'lfe ... ' 111 . ,

... ~ I"~ I ..
.. __ 1 __ _

I. ubl "" • p ••• ldod 'p.o.ldod
'.,1 ,w'" •• 11 o ... loCi 01 ,- . ------.----

-..." MClIU'
DlIAIl

.........
"

1
, ..
'M' .,

--

'" .,'

I ' 4

, "

o

----- -

--~

OI.O.I«:lE IIEQJESI OETAIL

r----~

I [~ I HElWlfI< CARD O(VIU ('EV'" ~"' """'" , IIECRJUI ,,"HO'
!lEWEI' II£WESI DUAIl MalESI

, ,,~---- --,

t·
' __ .II,

-- ----- -----
liP I , 1",1 ,,' ." o,hl, e ... ","".1", .. chln,'n ", -, .llh -II" R 01 cho .. o'"O 0'

, . ,
, , , , , ,

I .' Ud I I I ,
,.,Iu J ',',", ., I ' c.d
I ,IU' .. ~!-~-+---~'-~ : -"-"-'-- ,-

'''',<f .. ,lnoIIDn

!.!.--'--- '~I-----

e==l
--.-~---.---~, ~----I---~r .--; -+---~--'-----r---

I"", .. d br
. --,--

l~~~~ J

EJ~::':Jl
lOOICAL N(IWI,.

, - - ,

IN5If11. ... OCI

PPIOY'5ItH

N""

~--~---~-~-----,---- -----'_.

[
;;;;;;C;C- .)
IVlt.

PlnSICAl Iwi" ENt

" ""' ., .. , -------__ -_., 1

. "

i i
"-.J' o o

l OBJECT TYPES
--.-~------~--'\j7~------~----~---~-~--~~-

luperlYAlol • lublype 01 " Iyp. 01 I type Ofl , , t YP' 0 I

Iypod by
100

rio T~GS ~----~l> ~
l

~lla, lor
t.oOE_AlIASES p

l
local Ion 01

INSrilLJ.4ENT IOCAllQ'>.lS -...... ___ _

~-.-----

-~-~:~~::: -
child

.~.,.--.---.-.-

CONIIGlmAllON,lTEMS

[

Jdonillied by

allaud by

IDeation 01

located al

1;0111.1 I u.) r

compauonl

.-.---~ltlall' 01 AODfiESSES ___ ~__.

(hilailltd by
u,.d 10 conn.cl , - -------------""": r

govu r nud nN. INTERfACE CAlID

"
,III DIiU (J I all DUU 01

t rom 10

I Ihu

I ~UIO "ovur'Lddln~' OViI/IUIIIIIl .ao :an

phy.lcally
conn,cl~O br

delall, 01

delalleu lo~

(~~~~--~----.:-~!- con I a I/IU I : :~d : :~d

I

CONFIGlJA liON ELEt.£tHS ~_-'lU" .. • ____ J. __________ _

l ~~I .• ,-I PHOVISION.ClASSES

. Chlldconlpol>ull1 _._-----------
class

IYPI 0 I

ClAIt.Ei

I.,

Ihl
POU8650r: lypuLl ., " '.

------"-----.,

Iype 01

typed

"
J..6.t3ERSH I PS

member
01

member
.1

coni tnlng

,
conlillnlng

owned

"
I ho

:OWOUI ,.,
'~----'-J

----~,-- ~--,

[':10R' ~~~_
&ubgroup'. ~r8nl mlnulaClut&r the 'ruqllo6Iu/

1'00\1151005

Ih.
I c I as s , .,

01 group .,
luper local Ion .,

sub-local Ion 0/

ge ne ric I k I

~e!,!r_1 ~ _I.."~ __

g~~~r_1 ~ _I~~ ••

subslrlulad 1.,
substituted
lor

,
I III au
~II h

: III loll
,with

val I d
I. ,

01 "Ioctor '01
01 I I ,

roqull6lod lypotJ

,l±':,b ' ___ Ll f~l
REOJESTS

dota I'IIHI
by ,

gen.,lc lid
__ ~ __ l __ _

genlr:lc 1512
REQUEST DETAilS

- - - i - -

genei Ie Ik3 ---j_.-
a8ne

Iyped by

,
I manulaelulod ,

,genu/II:
• I k 1 , ... 11 h '

--~---"--,

.d8l1n8d Lb"
.. ~ --.-- _. - ---.---- . _. -------

Diagram 3 . Table Diagram
5UPOIClilSS

01

I ype 0 I

E;~~~ ~~;)
('L IliSIOny

'[
• L. 0 r .,

glln8 r L I:
1'2

u

PROCEDURE
CALLS '

APPLICATION ARCHITECTURE

Data

......-... ----_.
Sal (Selects only)

Sal

Diagram 4

/

U

(
U

PACKAGES & OBJECT ORIENTATION

Calls to Maintain a Logical
Network ObJect of any Type

LOGICAL
NETWORK
MANAGER

lOGICAL NETWORK

ADDRESSABLE NETWORK ETHERT AlK ZONE FARMLET

Distribute Work to
Correct Package
(Polymorphism)

DECNET PHASE4 AREA IP SUBNET

Procedure Calls to
Reuse Supertype's
Code
(Inheritance)

u

• ORACLE7 Packages provide encapsulation via public and private procedures
and the separation of protocol definition from PUSQl code.

DiagramS

Development Standards

(J MISCOMP EQUIPMENT DATABASE

()

,)

Version 0.5

Developers Documentation

2. Development Standards

.,

MISCOMP Equipment Database 2-1

o

(J
'-

~)

Development Standards

FORMS 4.0 STANDARDS

Template Form

To use the template form, copy the file TEMPLATE.fmb to YOURFORM.fmb. The
TEMPLATE.fmb file can be found in the $EQUIPMENT_DB_DIRIfrm4 directory.

The template form consists of

1. Windows and canvases which are part of each form of the application.
(Windows include the Root window, Main window, and Toolbar; canvases
include the Main canvas and Title canvas.)

2. Toolbar containing buttons which control navigation and other functions
when running a form.

3. Lists of values and their underlying record groups.

Root Window

When running a form, the root window contains the menu functions and also displays
messages. The window is 80 characters wide by 3 lines and appears at position 0,0 of the screen
(upper left). The root window holds no canvas.

For a new form, add a title to the root window using the following format:

MISCOMP: Form Title

Toolbar

The toolbar window is displayed just under the root window when running a form. The
toolbar contains a basic set of buttons which can be modified to meet the requirements of
individual forms. For an example of a toolbar set which has been modified, see the NODE0900
(Report Submission).

MISCOMP Equipment Database 2 - 2

i'J

()

\J

Development Standards

Main Window and its Canvases

The main window is displayed just under the the toolbar. TJieo main window consists of 2
canvases. The "title" canvas, which is displayed at the bottom of the window, consists of 1 line
containing the usemame and title of the form. The "main" canvas is a dummy canvas to use for
the new form.

The main window should have the same title as the root window:

MISCOMP: Form Title

Other Windows and Canvases

When designing additional windows and canvases, apply the following standards:

I. Window titles should contain the title of the "parent" window followed by
a description for the current window. For example, if the main window
pops up a secondary window and the secondary window pops up a third
window, the third window would have the following title:

MISCOMP: Form Title: Secondary Window Title: Third Window Title

2. For single-function windows or windows that prompt the user, the title of
the window should be a descriptive function name, e.g. "Enter Node
Address".

3. Window titles should not be too lengthy. Some window managers use a
large font and will truncate the title if it does not fit the width of the
window.

4. When sizing windows, it may be necessary to make the window wider
than 80 characters. This is okay-assume that the form will not be run in
character mode.

5. Canvases have a default size of 255 x 255. This can be left alone; window
size determines the viewed area.

6. All windows should have the "Inherit Menu" option turned off,-the menu
is only needed on the root window .

. ,

Naming Conventions for Forms4 Objects

Do not use Oracie's default names for windows, block, canvases and items. Instead give
these objects meaningful names-name them after the underlying database view whenever
possible. Also, whenever possible, name the window, canvas, and block the same name (an
example is LOV _POPUp).

MISCOMP Equipment Database 2 - 3

Development Standards

() Blocks

(~)

~)

All blocks should be created from a database view-not from a base table. This will help
to encapsulate changes to the tables.

Fonts

The standard font for boilerplate text on a layout is "times", the stanard font size is 12
points, and the standard style is "bold". These standards can be varied for emphasis when
appropriate-for example 14 point Times can be used for headings. Avoid use of ALL CAPS
whenever possible in boilerplate text.

Displayed text and date items should be set to uppercase and date items should have a
format mask MMlDDIYY.

Items

Items should be set to the "default" style.

Items, Buttons and Scroll bars

Items and buttons should be set to the "default" style for visual attributes.

Buttons which are associated with a single item appear to the right of the item they are
associated with.

Scrollbars appear to right of the group being scrolled and to the right of any list of values
or other buttons.

Buttons which call a list of values should consist of the single character "?" (more details
under "List of Values" below). Buttons which display the "edit" window for an item should
consist of the single character "+".

Buttons which affect the entire window and are not part of the toolbar, should appear at
the top right part of the window (see other forms for examples).

Colors

The color for buttons and items is set when the "default" style is selected. Do not change
these colors, as they may vary between window managers. The user has the opportunity to
change colors of some objects, such as buttons and scrollbars.

MISCOMP Equipment Database 2 - 4

()

()

,)

Development Standards

Triggers

Whenever possible consolidate triggers which perfonn similar functions into procedures
and pass the block name and/or other relevant parameters. This will reduce maintenance on the
form since a change may only have to be made in the procedure. This same idea applies to
consolidating similar procedures into another procedure.

For further standard use of triggers, see examples in existing fonns.

Procedures and Packages

Calls to packes must be used to insert, update or delete data from the database.

Packages should not be used to select data from the database. Instead, write your own
select statement into the fonn. This allows query only access to forms without granting access to
packages.

All database records will be locked by a procedure call to FRMLm. If the procedure you
need does not exist model yours after LOCK_REQUESTS or LOCK_REQUESTS_DETAILS.
(Note that these procedures do not return a value to you. It is all handled internally by a call to
check_lock.)

Messages

All messages, wamings, errors and fatal errors should call the rnsg_popup procedure. (If
you require a yes/no/cancel response from the user then use an alert box.) A call to rnsg_popup
looks like the following:

mS/Lpopup(' message_text' , 'E', TRUE}

where 'E' can be substituted with T, 'W', or 'F' and TRUE can be FALSE, depending on
whether the calling procedure should contine or stop.

MISCOMP Equipment Database . 2:3

\~

C)

)

Development Standards

List of Valoes

Since the template contains all available list of values, the copied form will also have
those list of values. The following objects for each list of values which is not needed can be
deleted (where "NAME" is the list of values name).

List of Values
Record Group
Trigger "LOV _NAME"
Trigger "LOV _CLEANUP_NAME"
"NAME_POPLIST" from the LOV _POPUP block

The button for a list of values should be 2 characters wide and the text should be the
single character "?". If the list of values applies to one item, the button should appear to the right
of the item. If the list of values applies to an entire record, the button should appear to the left of
the record.

For specifics on using list of values, see separate documentation.

FRMLm

FRMLIB is library of procedures which can be attached to a form and its procedures
called from a program unit in a form. FRMLIB should be attached as "readonly". Procedures
which exist in FRMLIB include "rnslLPopuP", "find_indivdiual" (plus other find procedures),
and list of value procedures among many other procedures.

When a form is compiled, any referenced procedures will appear in the list of PUSQL
Program Units following by the "@" symbol-the procedure can then be viewed like any other
procedure. The contents of a FRMLIB procedure can be viewed without compiling by selecting
"AttachlDetach Library" from the File menu of the form and loading (then editing) the procedure
to beviewed.

MISCOMP Equipment Database 2 -f)

::=)

(J-"
"

-)

Development Standards

List of Values Standards in Forms4

Using Pre-existing List of Values from Template Form

Note: If you copied the TEMPLATE form when creating a new form. all of these objects should
already exist in the new form.

Steps 1 - 3 need be done once per form, regardless of the number of lists used.

1. Copy window LOV _POPUP
2. Copy canvas-view LOV _POPUP
3. Copy block LOV _POPUP (make sure you enter the canvas as LOV _POPUP at the bottom of
the reference entry window.)

Steps 4-7 should be done once for each type of list you want to reference. The exact object
names for each step are dependent on the type of list. These object names are enumerated after
step 7.

4. Copy the record groups.
5. Copy the LOVs
6. Copy the form level triggers.
7. If step 3 was done in the past and you are adding a new list type, you may need to copy a
poplist item from the LOV _POPUP block in the TEMPLATE into the LOV _POPUP block in
your form.

8. In order to use the list of values, you will need to call the appropriate procedure in FRMLIB
with the parameter list documented in the Call field. Note that if the Reduction Styles states that
none are available, then you should just pass null to the ReductionStyle parameter. Also, note
that if you do not have a field name to return any variable into, then you may just pass in any
string; e.g. 'bogus'.

Calls to the FRMLIB procedure take the following format:

lov _ <lovname>(autoReductionFIag, ReductionStyle, Reduction Value, returnField
[, returnField, ... J);

MISCOMP Equipment Database 2 - 7

C)

C)

J

Development Standards

where

•
•

•

•

•

lov _ <Iovname> will be either LOV _PROVISION_CLASS, LOV _FIXED_ASSET, etc.
autoReductionFlag indicates if you want the list to automatically query the database, or
if you want the user to be prompted to enter additional information before querying the
database. 'Y' will automatically query. The default is null. .
ReductionStyle is used when you are creating a list of values that will have some
dynamic capabilities for the queries. Provision classes allow straight comparison or
hierarchical lists. Fixed assets will allow lists that have varying fmd fields, etc. The
value you enter here must correspond to one of the values that your
LOV _ <iovname> _POPUP field allows.
Reduction Value is the value to use when reducing the list. If auto reduction is used, this
willlirnit the list when queried. If not, this value will be placed in the reduction prompt
field for the users. Default is null.
ReturnField will be one or more field names to which you want the value from the list of
values returned. The number and names of these fields will vary for each LOV. For
example, the LOV _PROVISION_CLASS procedures expects 3 field names in this order:
provision_class.id, provision_class. name, provision_c1ass.description. If you do not want
to return these values to your form, simply return them to local PLlSQL variable and then
do nothing with them.

For example, the following calls the provision class LOV, prompts the user for entry of
criteria for limiting the list, defaults the list style to 'Class like', defaults the limiting value to
'0/0' , and tells the LOV function to return values to the fields indicated.

lov _provision_c1ass('N', 'Class like', '0/0', 'blockl.id', 'blockl.c1ass_name',
'blockl.c1ass_description ');

9. Also, any block which uses one of these list of values will have to have an ON-LOCK trigger
that only locks the record if it has an ID. i.e. ID is not null.

10. Listed below are objects, call formats, and reduction styles for each list of values type
currently in the TEMPLATE form.

MISCOMP Equipment Database 2 - 8

()

C)

\J

Fixed Assets:

Record Group:

LOV:

Trigger:

Poplist:
FRMLIB Procedure:
Call:

Reduction Styles:

Individuals:

Record Group:

LOV:

Trigger:

Poplist:
FRMLIB Procedure:
Call:

Reduction Styles:

Groups:

Record Group:
LOV:
Trigger:

Poplist:
FRMLIB Procedure:
Call:

Reduction Styles:

Development Standards

FIXED_ASSET_BY_PROP _NUM
FIXED_AS SET_BY _SER_NUM
FIXED_AS SET_BY _CLASS
FIXED_ASSELBY_PROP_NUM
FIXED_ASSET_BY _SER_NUM
FIXED_ASSET_BY_CLASS
LOV _FIXED_ASSET
LOV _CLEANUP _FIXED_ASSET
FIXED_ASSET]OPLIST
LOV]IXED_ASSET
loy _flxed_asset(autoReductionFIag, ReductionStyle,

Reduction V alue,.idReturnField,
propNumReturnField, seriaiNumReturnField,
classNameReturnField, classDescReturnField,
ManufReturnField)

Property Number, Serial Number, Type Name

INDIVIDUAL_BY_NAME
INDIVIDUAL_BLBADGE
INDIVIDUAL_BY_NAME
INDIVIDUAL_BY_BADGE
LOV _INDIVIDUAL
LOV _CLEANUP_INDIVIDUAL
INDIVIDUAL_POPLIST
LOV _INDIVIDUAL
loy _indiyidual(autoReductionFIag, ReductionStyle,

Reduction Value,.idReturnField,
fullNameReturnField. lastReturnField.
flrstReturnField, rnidInitReturnField,
badgeRetumField)

Name, Badge Number

GROUP
GROUP
LOV_GROUP
LOV _CLEANUP_GROUP
** nQne **
LOV_GROUP
loy ~oup(autoReductionFlag, ReductionStyle,

Reduction V alue,.idReturnField, nameReturnField,
descReturnField, typeReturnField).

none

MISCOMP Equipment Dat4base 2 -9

C)

()

••...)_.
".

Hardware Addresses:

Record Group:
LOV:
Poplist:
Trigger:

FRMLIB Procedure:
Call:

Reduction Styles:

Locations:

Record Group:
LOV:
Trigger:

Poplist:
FRMLIB Procedure:
Call:

Reduction Styles:

Logical Networks:

Record Group:

LOV:

Poplist:
Trigger:

FRMLIB Procedure:
Call:

Reduction Styles:

HW_ADDRESS
HW_ADDRESS
** none **
LOV _HW _ADDRESS

Development Standards

LOV _CLEANUP _HW _ADDRESS
LOV _HW _ADDRESS
loy _hw _address(autoReductionFiag, ReductionStyle,

Reduction Value,
provIdRetumField, hwAddrRetumField);

** none **

LOCATION
LOCATION
LOV _LOCATION
LOV _CLEANUP _LOCATION
** none **
LOV LOCATION
loy _location(autoReductionFiag, ReductionStyle,

Reduction Value,
idRetumField, nameReturnField,
descRetumField, parentIdRetumField);

** none **

LOGICAL_NETWORK_BY _NAME
LOGICAL_NETWORK_BY _CLASS
LOGICAL_NETWORK_BY _ADDRESS
LOGICAL_NETWORK_BY _NAME
LOGICAL_NETWORK_BLCLASS
LOGICAL_NETWORK_BY _ADDRESS
** none **
LOV _LOGICAL_NETWORK
LOV _CLEANUP_LOGICAL_NETWORK
LOV _LOGICAL_NETWORK
loy _logical_network(autoReductionFiag, ReductionStyle,

Reduction Value,
idRetumField, nameRetumField,

, nwAddrRetumField,
classIdRetumField, classNameRetumField);

Name, Address, Class Name

MISCOMP Equipment Database 2 - 10

()

()

!)

Nodes:

Record Groups:

LOV:

Poplist:
Trigger:

FRMLm Procedure:
Call:

Reduction Styles:

Node Domains:

Record Group:

LOV:

Poplist:
Trigger:

FRMLm Procedure:
Call:

Reduction Styles:

NODE_BY_NAME
NODE_BY_ADDRESS
NODE_BY_CLASS
NODE_BY_NW _NAME
NODE_BY _NW _ADDRESS
NODE_BY_SYS_NO
NODE_BY_NAME
NODE_BY_ADDRESS
NODE_BY_CLASS
NODE_BY_NW _NAME
NODE_BY _NW _ADDRESS
NODE_BY_SYS_NO
** none **
LOV_NODE
LOV_CLEANUP_NODE
LOV_NODE

Development Standards

loy _node(autoReductionFlag, ReductionStyle,
Reduction Value,
idRetumField, nameReturnField, addrRetumField,
ciassIdReturnField, classNameRetumField,
nwIdReturnField, nwNameRetumField,
nw AddrRetumField,
sysIdRetumField, sysNoReturnField);

Node Name, Node Address, Node Class, NW Name,
NW Address, System #

NODE_DOMAIN_BY _TYPE
NODE_DOMAIN_BY _NAME
NODE_DOMAIN_BLTYPE
NODE_DOMAIN_BY _NAME
NODE_DOMAIN]OPLIST
LOV _NODE_DOMAIN
LOV _CLEANUP _NODE_DOMAIN
LOV _NODE_DOMAIN
loy _node_domain(autoReductionFlag, ReductionStyle,

Reduction Value,
idRetumField, nameReturnField,
ciassIdRetumField, ciassNameRetumField);

Name, Type

MISCOMP Equipment Database 2 - 11

()
"

C)

..... J ..
"

Network Services:

Record Group:
LOV:
Poplist:
Trigger:

FRMLIB Procedure:
Call:

Reduction Styles:

Physical Systems:

Record Group:

LOV:

Poplist:
Trigger:

FRMLIB Procedure:
Call:

Reduction Styles:

Provision Classes:

Record Group:
LOV:
Poplist:
Trigger:

FRMLIB Procedure:
Call:

Reduction Styles:

NETWORK_SERVICE
NETWORK_SERVICE
** none **
LOV _NETWORK_SERVICE

Development Standards

LOV _CLEANUP _NETWORK_SERVICE
LOV _NETWORK_SERVICE
loy _network_service(autoReductionFIag, ReductionStyle,

Reduction Value,
idReturnField, nameReturnField);

** none **

PHYSICAL_SYSTEM_BY _NAME
PHYSICAL_SYSTEM_BY _SYS_NUM
PHYSICAL_SYSTEM_BY _NAME
PHYSICAL_SYSTEM_BY _SYS_NUM
PHYSICAL_SYSTEM_POPLIST
LOV _PHYSICAL_SYSTEM
LOV _CLEANUP]HYSICAL_SYSTEM
LOV _PHYSICAL_SYSTEM
loy _physical_system(autoReductionFIag, ReductionStyle

Reduction V alue,.idReturnField,
sysNumReturnField, nameReturnField,
classNameReturnField)

System Number, Name

PROVISION_CLASS
PROVISION_CLASS
PROVISION_CLASS]OPLIST
LOV]ROVISION_CLASS
LOV _CLEANUP_PROVISION_CLASS
LOV _PROVISION_CLASS
loy _proyision3Iass(autoReductionFIag, ReductionStyle

Reduction V alue,.idReturnField,
nameReturnField, descReturnField)

Class like, Parent Class =

MISCOMP Equipment Database 2 ·12

(J

(J

'.)-
"'"

Development Standards

Creating a New List of Vahies Type

I. Create the LOV in the TEMPLATE form. Make certain to return the values of the fields to
global variables named something like 'global.lov _return_ <fieldname>'.

If you are designing a LOV in which you want to allow the user to dynamically control the
find field, you will need to create multiple LOV's for each style you want to allow.

2. Create a record group(s) for your list of values in the TEMPLATE form.

Simple LOV's, will only need one record group, which will be the actual query always
executed by the LOV.

Dynamic LOV's that allow for differing find fields will need one record group for each style
allowed corresponding to the multiple LOV's noted in I.) above.

For dynamic LOV's that allow for different queries, such as a hierarchical sort, versus a
straight comparison, the record group should be the default query that your user would
execute. The record group will be redefined at run-time if necessary. See step 3 for details
on how to create the record group dynamically.

3. Create a user named trigger on the LOV _POPUP block named LOV _ <lovname>. This
trigger does three main things:

I.) it creates the dynamic query if necessary, or simply leaves the record group alone ifno
dynamism is allowed;

2.) it calls lov_query which builds the query and executes it by calling lov_execute;
3.) it sets the necessary return fields after the LOV is executed.

Each user name trigger you create must do all these steps. For an example, see the
LOV _PROVISION_CLASS user named trigger. Note, it uses a dynamic list of values. For
non-dynamic simply call1ov_query with a null value for dynamicStyle and dynamicValue.

4. Create a user named trigger on the LOV _POPUP block named
LOV _CLEANUP _ <lovname>. This trigger must erase the globals you use to pass values
back from your LOV.
See LOV _CLEANUP_PROVISION_CLASS for an example.

5. Create one library procedure for your new list of values in FRMLlli. This procedure is used
upon initial call of your list of values and must be named in the format LOV _ <lovname>. It
sets up initial parameters and return field names particular to your list of values. An example is
LOV]ROVISION_CLASS.

6. Perform the steps noted above if you then want to use this newly created list of values in a
form. .

MISCOMP Equipment Database 2 - I3

(J

1·-"\
I,)

J

Development Standards

NOTES:

• You must make the different items in record groups (even those created dynamically) the
same datatype and length of the record group that they will populate. This may cause some
restrictions, but they can easily be overcome as we are returning the values all into globals.
We can simply manipulate the globals with the appropriate functions before returning the
values to our screens (to_number, to_date, etc.).

MISCOMP Equipment Database 2 -14

()

C-)

'--J"
'- .. -

Development Standards

Report Standards

Naming Standards

Reports shall be named prior to developing them based upon discussions with the appropriate
users. Where possible, names similar in construct to other like reports shall be used.

Report Class

Each report shall be assigned to a report class. Report Submission will allow the users running
reports to query on this class. Current identified classes of reports are:

System
Fixed Asset
Network
Contract

Special

Heading

Reports printing systems and their components.
Reports printing fixed assets only.
Reports printing network or node information.
Reports printing service provider contract information, excluding
systems on contract.
Reports printing other specialized information or reports designated
for some special usage.

Layout Standards

Each report shall have a two line heading on every page. The first line will include the word
MISCOMP centered and the date right justified in the format below. The second line will
include the report header centered and the page numbering right justified in the format below.

Each report shall have a one line sub-heading on every page that is entered by the user at
runtime. This sub-heading will be centered immediately below the standard two line heading. It
will default to null if no value is entered by the user in the report submission screen.

MISCOMP
<Report Title>
<Sub-Heading>

Date: dd-mon-yy
Page: n of m

MISCOMP Equipment Database 2 - IS

/-)
<~-

(~\
J

IJ

Development Standards

One blank line shall be inserted immediately below the header before the printing of any text.

Notes: n = cnrrent page number, m = total number of pages printed.
Letters in bold above should be printed in bold in report.
MISCOMP shall also be underlined.
Sub_heading should be used in SQL *ReportWriter as the variable name for the sub
heading.

Footer

Each report shall have a footer on every page that includes the report name right justified in the
following format.

Report Name: <ReportName>

Trailer Page:

The following was the original idea for a trailer page to provide the user more information about
their execution of the report. Based on reviewing this capability, however, it would be difficult
to make this Report Diagnostics trailer page work properly and be of any use. Thus, this will not
be included until noted otherwise.

Each report shall have a diagnostic trailer page which will include the report heading, the report
footer, and the report parameters as indicated below.

Report Name: <ReportName>

Parameters:

MISCOMP
<Report Title>
<sub-heading>

<parameter name>: <parameter value>

<parameter name>: <parameter value>

... repeated for each parameter ...

REPORT DIAGNOSTICS

Notes: m = total number of pages printed.

Date: dd-mon-yy
Pages: m

Letters in bold above should be printed in bold in report.
Sub_heading should be used in SQL *ReportWriter as the variable name for the sub
heading.
Parameter name will print the name as used in SQL *ReportWriter, not the name as
seen in the Report Submission screen.

MISCOMP Equipment DatQJjase 2 - 16

Documentation Standards

o MISCOMP EQUIPMENT DATABASE

Version 0.5

Developers Documentation

3. Documentation Standards

()

(~)

MISCOMP Equipment Database J-1

o

()

-)
.......

Documentation Standards

Impact Analysis Techniques

Standards

When developing extensions to the Equipment Database, Impact Analysis reports should be used
to assess the amount of work needed to change/add the new feature. These Impact Analysis
reports must consider all aspects of the database and include a detailed description of all changes
required, from new columns in tables, to changes in database package code, to forms changes,
etc. The areas to review are listed below, and an example of one impact analysis report follows.

Areas to Review for Impact Analysis

Tables
Indexes
Constraints
Views
Sequences
Synonyms
Grants
Data
Packages
Forms
Reports

MISCOMP Equipment Database 3 - 2

Documentation Standards

(J Impact Analysis Techniques

()

=)

Examples

Networks Services Impact Analysis
For Name Server Zones, Name Servers

Tables:

New tables to create:

NAME_SERVERS
(server_proy _id
node_id

MAIL_EXCHANGERS

number
number

not null,
not null)

/* ofthe systernlcluster*!

(Irucnode_id number not null, /* of the mail exchanger */
mxcnode_id number not null, /* of the rnx recipient */

sort_sequence number null)

PRIMARY _SECONDARY _NAME_SERVERS
(server_proy _id number not null,
nw _zone_proy _id number not null,
prim_sec_flag char(l) not null)

/* of the systernlcluster */
/* of the nw or zone */
/* P or S */

Indexes:

none

Constraints:

Add the following contraints:

NAME_SERVERS Table:
PROV _FK on NAME_SERVERS(proY_id) referencing PROVISIONS.ID
PROV _FK2 on NAME_SERVERS(node_id) referencing PROVISIONS.ID

MAlL_EXCHANGERS Table:
NODE_FK on MAlL_EXCHANGERS(rnx_node_id) referencing PROVISION.ID
NODE_FK on MAlL_EXCHANGERS(mxcnode_id) referencing PROVISION_ID

PRlMAR LSECONDARY _NAME_SERVERS
NODE_FK on PRIMARY_SECONDARY _NAME_SERVERS(servecproy _id)
referencing PROVISION.ID
NODE_FK on PRIMARY_SECONDARY _NAME_SERVERS(nw _zone_proy _id)
referencing PROVISION.ID

Check contrainst on
PRIMARY_SECONDARY_NAME_SERVERS(prim_sec_flag) allowing only P or
S.

MISCOMP Equipment Datilbase 3 - 3

/) \,._.

\)

iJ

Documentation Standards

Views:

Add the following:

COMPLETE_NAME_SERVERS 1* joining NAME_SERVERS w/ PHYSICAL
SYSTEMSILOGICAL CLUSTERS and NODES */

COMPLETE_MAIL_EXCHANGERS /* joining MAIL_EXCHANGERS w/ NODES
and NODES */

COMPLETE_PRIMARY_SECONDARY _NAME_SERVERS /* joining
PRIMARY SECONDARY NAME SERVERS w/ PROVISIONS and
PROVISIONS */ - -

Sequences:

none

Data:

Add the following extra attributes for NAME SERVER ZONES:

default ttl
refresh
retry
discard

Create bogus systems and nodes for all assets that must be included in the name server reports,
e.g. VME boards.

Create node aliases/nicknames for all "cname" records in the name server file.

Create operating system information for the cpu's in all system that do not currently have any
such information. This will be tricky, as we will have to make certain that the cpu type matches
before just loading an operating system.

Load the missing nodes from the name server files. This will require some further analysis of the
current data load algorithms.

Packages:

Add new packages for Zones, Mail Exchangers, Name Servers, and Primary/Secondary Name
Servers.

MISCOMP Equipment Database 3 - 4

C)
Documentation Standards

Forms:

Forms3:

Build a new Maintain Node Domains/Zones fonn for use in maintaining the node domain zones
and their attributes.

Build a new block in NODE0331, Maintain Nodes that allows for the entry of mail exchange
assignments. This assignment entry will require that both the exchanger and the exchanger
recipient nodes be created first. But, it should allow the user to enter the assignment from either
direction: exchanger or recipient. That is, if entering a node, they should be allowed to then
either enter the mail exchanger for the node, or enter the recipient for the node.

Forms4:

Add a name server button to NODE0345 that activates a window for entering the nodes for
which this cluster is a name server.

1**
It may be necessary to either add mail exchanger to the node registration request detail
processing, and/or to add a new request detail type specifically for mail exchangers. This is not
detennined to be necessary today, but may change.
**1

(,J Reports:

.J

We must make certain that we have MANY name server files: a domain-name-service.master
each for fnal.gov and hep.net which print the corresponding nodes for that name server zone, and
a domain-name-service.reverse-master file for each IP network, which prints all nodes on that
network.

Change the name server reports to use the new extra attributes for the name server zone rather
than the currently hard-coded values. This is used at the beginning of the files.

Change the name server reports to use the new structure for name servers when printing the "ns"
records.

Change the name server reports to use the primary/secondary name servers when printing the
information at the beginning of the file. These will vary depending on the name server zone or
the network for which the file is created.

Print periods where needed in the name server reports (e.g. fnal.gov. instead of fnalv).

Change the name server reports so that a network or a zone may be entered when running the
reports, and a default output fIlename is specified, but may be overwritten. Default names are
domain-name-service.master and domain-name-service.reverse-master.

MISCOMP Equipment Database 3 - -S

\~

()

i:J

Estimate of Work Efforts:

1. Tables, constraints, views:
2. Data:
3. Packages:
4. Fonns:

Maintain Node Domains/Zones
NODE0331: Maintain Nodes (Mail Exchanger)
NODE0345: Logical Clusters (Name Server)

5. Reports:

Documentation Standards

I days
10
2

1
2
2
2

20 Total days

MISCOMP Equipment Database 3 - 6

()

()

"""\

)

Documentation Standards

Release Notes

Standards

Release notes should be prepared for each new version of the Equipment Database. Release
notes for major version upgrades (VO.4, VO.5, etc.) will be more detailed and include more
sections, than release notes for ruinor upgrades (e.g. V0.4.1, V0.5.1). All release notes should
include the following three sections: 1. New Features; 2. Problems Fixed; and 3. Known
Bugs. Details of the contents of each section follow, along with an example, the VO.5 Release
Notes.

1. New Features: This section describes all new features implemented in this version of the
Equipment Database. It is required for any version that includes new functionality. It may be
oruitted for any version which includes no new functionality, but only bug fixes.

Versions which include numerous detailed new features may require that this section be broken
down into multiple sections per topic. For example, Version 0.4 broke this section into 10
different sections describing Accessing the System, Equipdb Changes, New MISCOMP
Features, New Business Processes Automated, etc.

2. Problems Fixed: This section describes all problems fixed in this release. It describes both
problems that the users may have encountered when running the system, and problems that the
development team may have discovered and subsequently fixed.

3. Known Bugs: This section details all outstanding known bugs. Bugs recorded in previous
release notes and still present must be listed here. This will allow our users to refer to the Known
Bugs section of the most recent release notes for a listing of all current known bugs.

MISCOMP: Equipment Database 3-7

()

C)

)

Documentation Standards

Examples

New Features in this Version

1) New claim types to support software responsibility and warranties have been added to the
database. The following list is a hierarchy of these new claim types with their
abbreviations:

2)

3)

SOFfW ARE RESPONSffiILITY (SR)
WARRANTY (W)

WARRANTY RETURN (WR)
WARRANTY RETURN BASIC (WRB)
WARRANTY RETURN 24 HOUR (WR24)
WARRANTY RETURN PART ONLY (WRPO)
WARRANTY RETURN CARRY IN (WRCl)

WARRANTY ON SITE (WOS)
WARRANTY ON SITE BASIC (WOB)
WARRANTY ON SITE FULL (WOF)

Four views have been added to the database to support the new claim types:

CURRENT_WARRANTY _CLAIMS
WARRANTY_CLAIMS
CURRENT _SOFfW ARE_RESP _CLAIMS
SOFfW ARE_RESPONSffiILITY _CLAIMS

Two reports have been modified and four reports have been added. The details on these are
included below.

CHARGEBACK: Modified to print all assets for systems that are being charged back to
the specified budget code. See the report help on-line for additional details.

SC_FORM: Modified to print warranty claims and user maintained information. Also
modified to allow for you to query all systems with a specific claim. See the report help
on-line for additional information.

REPORT_LIST: New report that prints a list of all reports in the Equipment Database.

REPORT_USER_DOC: New report that allows you to print the complete user
specifications for a report(s).

SYSNAME_UNNODE: New report,that prints all systems and nodes whose names do not
match. This was created as a quality assurance report for Data Communications &
Networks. but may be useful to others as well.

CLASS_HIER: New report that prints the provision class hierarchy starting at the class
you enter.

CLASS_MFG: New report that prints the provision class hierarchy for a given
manufacturer. starting with the class you enter.

MISCOMP: Equipment Database 3-8

(J

(J

J

Documentation Standards

4) A new screen for querying trouble calls has been added to the GUI MISCOMP part of the
application.

5) The following new features have been implemented in the Network Services Request
Processing screen.

Network Detail button and window:

A button has been added that allows the user to instantly view more data about the network
when processing a request.

Order of Used Node Addresses:

The Used Node Addresses window ordered the node addresses by their character string
value. This was a problem in that the following items appeared as ordered:
131.225.220.10,131.225.220.105,131.225.220.20. The addresses are now ordered by their
individual numeric parts, so that they appear as ordered: 131.225.220.10, 131.225.220.20,
131.225.220.105.

Display status changes on frrst block:

Once a status change was made and the user returned to the flrst window, that change was
not reflected until the user re-queried the block. Now this change is seen immediately upon
returning to the block.

Email requester on status change:

Once a request was processed, the original requester had no idea of knowing that the
request had been completed, cancelled or rejected. The person processing the request had
to remember to notify the user. If they forget, then the user had to make an effort to go
back into the database to check on their request. Now, upon changing the status of a
request, the processor will be given the option of notifying the requester automatically via
e-mail. If the requester's e-mail address exists in EQUIPDB, it will be the default e-mail
address. The address can be changed, or even more e-mail addresses can be added,
separated by a space.

6) In the GUI MISCOMP application, users can now change their own passwords. This is
done by selecting "Change Password" from the "Setup" menu of the application. The
current user name is displayed

7) Three terminal types are now supported in their native mode. These are SUN, SGI, and
VT220. The "setup equipmenCdb" command uses the TERM environment variable to
determine which keyboard mapping to use. If the TERM variable definition is unknown to
the setup file, it will default to VT220. The following variable definitions are known to
setup: vt220, sun-cmd, iris-ansi.

MISCOMP: Equipment Database 3-9

C)

Cj

J

1)

2)

3)

4.)

5)

Documentation Standards

Problems Fixed in this Version

In the GUI MISCOMP application, the List of Values for nodes in some cases displayed
the Network ill instead of the System Number. The System Number now correctly
displays.

In the GUI MISCOMP application, some of the List of Values were missing titles and/or
column headings. These have been added.

Button styles (in the GUI MISCOMP application) in some cases varied in appearance. All
now use the "default style".

The Report Submission screen built in the GUI MISCOMP application was only using the
selection criteria that you entered to limit the report output if you closed all windows back
to the main report window and then ran the report. If you entered your parameters, and
then, with the parameter window still open, ran your report, the parameters you just entered
were not used. If you did this your report would return all records retrieved by the report's
base queries, not just your desired subset. This has been fixed so that you can now run a
report from anywhere in the Report Submission screen and the report will limit your output
based on your selection criteria

Entry of an invalid username and password when logging into miscomp no longer gives an
error message that says "Normal, successful completion".

6) When selecting a list of values that popped up a window for entering reduction criteria, you
always had to select OK or Cancel to exit the window. If you navigated out of the window
using your mouse without selecting one of these options, all guidance in the form was de
activated and you no longer received any hints or indications of errors. This problem has
been fixed.

MISCOMP: Equipment Database 3-10

~)

C)

!J

1)

2)

3)

4)

5)

Documentation Standards

Known Bugs

The current window navigation is not consistent. Occasionally, you may see windows
repaint themselves before settling down. In particular, you will note that the message
window in each form jumps around quite frequently when you move between forms.
This is a known problem in the OracleForms x-tenninal interface.

Occasionally, you may find yourself in what appears to be a loop of window repainting.
We have found that either clicking on a window, or selecting one of the "action" buttons
stops this looping effect.

The user name field at the bottom of each forms initial window, meant for display
purposes only, allows you to move into this field and change its value. Doing so provides
no functional value and is not recommended.

Most date fields are of the format mm1ddlyy (e.g. 06102/94). However, date fields that
are display only do not allow for formatting and are displayed as dd-mon-yyyy (e.g. 02-
JUN-I994). Again, this is a known bug in the OracleForms product.

By default, the delete key deletes the character on which your cursor is placed, and not
the character to the left of the cursor. To make the delete key behave as it does in most
other applications, the XII key mapping must be modified. For your convenience, we
have created an alias that you can use to do this for you: keyb_del. This alias should be
run after you setup equipmenCdb, and before you run miscomp.

NOTE: Depending on the terminal type you are using, changing the X11 key behavior
with this alias may negatively effect your Unix environment. Please be advised.

6) The current system configuration is very limited on available memory and the current
OracleForms product is very hungry for memory. Coupled, these two issues may cause
some problems with your use of the system. If you receive either an "out of memory"
type error, a "Segmentation Fault", a "core dump", or other such errors please notify
miscomp-admin@fncdua.fnal.gov immediately.

7) In form NODEOllO, Network Service Registration Requests, when entering a Node
Name Change Request Detail, you must enter the New Node Name before you can view
the existing nodes for this system using the View Nodes button. Logically, you may want
to view the nodes, determine the node you want to rename, and then enter the new node
name. However, the system does not currently allow this.

8) In form NODE01IO, Network Service Registration Requests, when entering a new
system and fixed asset, you cannot enter a serial number which matches the beginning of
another longer serial number already in the database. The fixed asset record being added
will be overwritten by the one with the longer matching serial number.

9) The Tool Bar for the the Report Submission screen is missing the "Across" default label.

10) When exiting from EQUIPDB application to the GUI MISCOMP using the "Exit" menu
option, a meaningless message "Record must be entered or deleted first" displays.

MISCOMP: Equipment Database 3·11

(J

(J

l)

Documentation Standards

NODE0900 - Report Submission

The Report Submission screen built in the GUI MISCOMP interface was only using
the selection criteria that you entered to limit the report output if you closed
all windows back to the main report window and then ran the report. If you
entered your parameters, and then, with the parameter window still open, ran your
report, the parameters you just entered were not used. If you did this your
report would return all records retrieved by the report's base queries, not just
your desired subset. This has been fixed so that you can now run a report from
anywhere in the Report Submission screen and the report will limit your
output based on your selection criteria.

MISCOMP: Equipment Database 3 -12

C)

C)

J

Configuration Management

MISCOMP EQUIPMENT DATABASE

Version 0.5

Developers Documentation

4. Confi2Uration Mana~ement

MISCOMP: Equipment Database 4 - 1

/)
/

()

.... J

Configuration Management

Database & Application Configuration Management

in an Oracle CASE Environment with Multiple Concurrent
Project Teams.

Nancy Hughart
Vicky White

Matt V ranicar
Stephen p, White

14-Jan-94

Abstract

The Oracle CASE environment and support of projects that use Oracle CASE require a new
methodology for software module development and management.

Revisions

02-Jun-94 Matt Vranicar Modified the discussions on version cutting to reflect what really
happens,

07 -Jul-94 Stephen p, White Added a section on how to create a patched version of the products

"

MI8COMP: Equipment Dat(JJjase 4 - 2

Configuration Management

() ',.

Table Of Contents

Database & Application Configuration Management in an Oracle CASE Environment
with Multiple Concurrent Project Teams .. I
Table Of Contents ... 2

Introduction ... 1
Configuration Management Overview .. 2

Three Work Areas Required For Configuration Management 2
Development Environment ... 4
Integration Environment ... 4
Production Environment ... 5
CASE Object Management ... 5
Operating System Source Code Management .. 8
Database Source Code Management.. ... 8
Database Object Management .. 8

Detailed Steps For Configuration Management .. 9
Steps for Creating an Initial Version of the Application 9
Steps for Subsequent Versions ofthe Database Product 9

o Steps for Creating a Version of the Database Product 11
Creating a Patched Version ... 12

FCM and Makefile Overview ... 12
FCM Overview ... 12
FCM Commands ... 13
Make Overview ... 14

"

\~)

MISCOMP: Equipment Database 4 - 3

i~)

l)

..•)

Configuration Management

Introduction

Development in an Oracle RDBMS and Oracle CASE environment presents some unique

challenges. Previous development environments presented challenges of how to manage the

application source code along with any data object definitions. The Oracle environment

confronts us with these two challenges, but adds additional complexities. These include the

addition of another layer of "source code" in CASE, a central repository of data definitions and a

layer of source code actually stored in the database. These challenges force the development

team to rethink the more traditional approach of merely using a code management system to

handle the check-inlcheck-out and versioning of products. These tools are very useful for

dealing with source code but fall short when dealing with objects stored in the database. This

paper describes the problem and presents one approach to configuration management in this new

environment.

The first challenge, the additional layer of "source code" stored in Oracle's

CASE*Dictionary includes the definitions of database objects, and modules and their data

usage's. Storing these items in Oracle's CASE repository provides a central location for the

development team, It also provides added benefits of easy access to shared defmitions, simple

generation of actual source code from these definitions, and numerous reports which are useful

for generating system documentation and allowing the team to do impact analysis when a shared

data object needs to be changed. With these benefits, however, comes one drawback. The more

traditional approach to configuration management does not suffice. Checking in and out of

source code, cutting versions of source, etc., do not easily apply to data held in a database

management system. A unique approach to including this CASE "source code" in the

configuration management umbrella must be devised.

Another configuration management challenge in an Oracle environment is the control of the

database objects themselves. Simply cutting new versions of software now becomes a more

complex issue. New software in a RDBMS environment typically means new or changed

database objects as well. A mechanism is required to ensure that the database changes and any

data conversion needed by new versions are made along with the source code changes .

MISCOMP: Equipment Datiibase 4 - 4

()

(J

)

COnfiguration Management

Finally, the Oracle development environment also allows for the creation of another layer of

source code. Oracle's Cooperative Development Environment (CDE) tools allow the developer

to store their code in either the database or the operating system file system. In most cases it is

assumed that the code will be stored in the file system for easy management using the current

configuration management tools of FCM and UPS. However, OracleForms provides the

developer the capability to either copy or reference objects from one form into the current form

they are developing. To use this feature, the form being copied/referenced must be stored in the

database tables. Thus, it is unavoidable that this feature will be used by someone and a schema

for controlling this extra version of source is required.

In addition to these new challenges, the specific challenges of each project must be

considered. This paper discusses the distinct requirements of dealing with the above stated

challenges in a project which consists of multiple concurrent sub-projects. This environment

requires that the sub-project teams be provided as much autonomy as possible, while operating

on a common database repository.

Configuration Management Overview

2.1 Three Work Areas Required For Configuration Management

To ensure that the production code is clean there shall be three work areas. These work areas

are Development, Integration and Production. Each of these work areas will consist of a

database, and a directory structure for source and executable code. A description of each and the

required configuration management procedures follows. Diagram I, provides a pictorial

representation of the project environment.

MI8COMP: Equipment Database 4-5

/)
1_

(0),
.... -

~)

CASE
Generator

Product
development

area

New version

ups version with
integration flavor

ups version with
production flavor

Configuration Management

IJ)&;,~~~©rpm®ij'i)~ ~m7a W©ij'i)m®ij'i)~

OCR andACR

Continuing develooment

RESERVE

FCM ~ I ~ Oracle CASE

---------~~-----
REPLACE SCRIPTS -
FCM OevelopmenCdb

~rru~®~~~iU@rru ~rru~~~@ij'i)m®rru~

Integration_db
SCRIPTS

~W©@~©~~@rru ~~M~~@rrum®rru~

SCRIPTS
Production_db

Diagram 1

MISCOMP: Equipment Database 'I -7i

Configuration Management

() 2.1.1 Development Environment

/.---...

(,,~

. ~)

The Development environment will consist of development directory structures and a

development database. All development, will be conducted under the Development

environment. The basic approach for the operating file system management is to have a UPS

product declared for each sub-project, with a development directory for each. Each sub-project

will also have its own makefile, FCM class~s, and FCM source code ditectory for all sub

projects. Only one premake file will exist and it will handle all sub-projects.

The database approach differs slightly, in that a common database will be used to house all

data objects. An Oracle account will exist for each development sub-project, but will only be

used for data objects that fall into two categories. First are data objects that are currently being

modified by that sub-project development team and will cause a conflict with other sub-projects.

These objects will remain in the sub-projects work area until such time that the other project

teams modify their application code to accommodate the new data object definition. Second are

data objects that are unique to a single sub-project. These data objects will reside in the sub

project work area permanently.

Oracle's CASE Impact Analysis utility will be used to determine what modules would be

effected by a data object change. The output of this utility will be reviewed by the CASE Data

Manager. If the CASE Data Manager determines that this change will impact other sub-projects,

then it will be the responsibility of the CASE Data Representative for the sub-project that desires

the change to solicit approval from the CASE Data Representatives of the Impacted sub-projects.

(see CASE Object Management for a definition of the CASE Data Manager and the CASE Data

Representative) .

Check-in and Check-out procedures will be used for both operating system source code and

CASE definitions. See Operating System Object Management and CASE Object Management

for a definition of these check-inlcheck-out procedures .

.

MISCOMP: Equipment Database 4 - 7

C)
Configuration Management

2.1.2 Integration Environment

The Integration environment will be used as the test environment prior to production roll-out.

The Integration database will be generated by copying the current production database to the

integration area and then applying a build procedure to it. This build procedure shall be the same

procedure that will be used to generate the new production release. Thus, ensuring that the

procedure will be successful when generating the new production release. The integration source

code will copied from the FCM library to the new version directories, compiled and declared

current with a flavor of integration. Moving and compiling source code between environments

will be done with premake and make.

Once the Integration environment has been upgraded to the current version being cut,

detailed testing must be conducted on this integration system. Test suites, defmed during design,

should be conducted with all results recorded and compared to the predicted results. Once the

test suites are completed successfully, the new version of the database will be migrated to

() Production and the application code will be declared current with the flavor of production.

-j
--~

The integration database will be deleted and the integration source code directories will be

deleted if one of the following two cases occurs: 1.) the conversion utilities run against the

integration system fail; 2.) the new version of the system fails it's integration test suite. Upon

correction of the problem the integration environment will be recreated. It is important that the

integration system is rolled back and any modifications needed are made in the development area

and then re-cut up to integration. Coding and/or database changes must not be made directly to

the integration database. This ensures that the conversion utilities created will run correctly

against the production environment.

2.1.3 Production Environment

The Production environment is exactly that, a production version of database and software

being accessed by end users only. No development activities of any kind will be conducted

against this database. As noted above, any new database versions cut to development will

undergo the same conversion process used to cut the integration database and the application

code will be declared current in the flavor of production after it has been tested. But before this

is done the production database must be backed up or exported in case the production

environment must be rolled back to a prior version.

MISCOMP: Equipment Database 4-= 8

I,)

(-)
"-

iJ

Configuration Management

Once a new version is cut, the application should be tested to at least ensure that the new

features are available to the user. Detailed testing should not be necessary if the development-to

integration-to-production migration and testing sequence has been followed rigorously.

2.2 CASE Object Management

Oracle's CASE*Dictionary stores definitions of both data and modules that are used to

generate source code for both. Data definitions consist of definitions of tables, views and

indexes. Other database objects defined in Oracle CASE include packages, procedures and

functions. These three objects are actually stored in CASE as modules. Other module types

include screens, reports, and more.

Configuration management of the Oracle CASE objects requires that a person(s) be assigned

the role of CASE Data Manager (CDM). The CDM will be responsible for all coordination

efforts across the sub-project teams.

In tum, each sub-project team will also have a person(s) responsible for management of their

CASE objects. This role, the CASE Data Representative (CDR) for the sub-project team will be

responsible for overseeing all changes made by that project team to the CASE models. This may

mean that the CDR is the only person for the team who actually uses CASE, or it may mean that

they are merely held responsible when the CDM needs to resolve conflicts. The distribution of

these activities is up to each sub-project team to determine.

Diagram 2 is a sample diagram of the Oracle CASE environment as it applies to the

MISCOMP project.

MISCOMP: Equipment Database 4 - 9

Q

(J

.J

Configuration Management

, ,..
DRUIDS I
CDR

CASE DATA
MANAGER

(COM)
M[SCCJMlP

CASE DA TA REF RESENTATIVES (CDR)

, ~
SPACE
CDR

,If

, ,.. , ,..
ADMIN FINANCE
CDR CDR

DRUIDS

SPACE

ADMIN
M[SCCJMJP>

Owner of all common database objects

FINANCE

LICENSE

DOC

Oracle RDBMS
Diagram 2

, ~
LICENSE

CDR

MIS-c-OMP: Equipment Database 4 • 10

ETC

, ,
DOC
CDR

Configuration Management

() 2.3 Operating System Source Code Management

()

Management of the operating system source code files is the easiest of all tasks in this

environment. The current tools of UPS and FCM will be used to control the product setup and

the change control management. Prior to working on an item it will be checked out of FCM.

The new source code, generated from Oracle CASE or created manually, will be placed in the

appropriate development area for the sub-project. Once completed, the source will then simply

be checked back into the FCM library.

Given the current status of Unix security mechanisms, the check-out will be performed at the

user level. It will be up to the user to grant access to other people in his group. This can be done

using the chrnod command and granted group privileges.

2.4 Database Source Code Management

Database source code presents the toughest challenge to configuration management. None of

the current mechanisms is useful in enforcing any version control over Oracle CDE tools.

Instead, rules will be defined that state that the primary location of any and all source code is the

fIle system. Items should be stored in the database only when necessary. And, if stored in the

database, it will be assumed that they are also stored in FCM as well. The fIles in FCM will

always be assumed to be the latest versions.

2.5 Database Object Management

Database objects require the management of the SQL source code used to create these

objects. For each database object created, a version of SQL code must exist in a fIle in the

development SQL area and in FCM. The FCM SQL source code will be considered the primary

version of the object. When changing the object, the SQL code which was originally used to

create it must be modified to reflect the new structure. All changes to objects that are defmed in

the CASE application must be changed in the CASE application first. The SQL code can then

either be generated from CASE or outside of CASE.

Objects may be altered using a SQL alter command. If so, the original SQL code should still

be modified, but the alter command should"also be stored in a SQL fIle. This alter command

may be useful for the cutting of integration and production versions and so will be managed

along with all other source code using UPS and FCM. If multiple alter commands are required

_~) between versions of a product, they should be combined into a single alter SQL fIle.

MISCOMP: Equipment Dtiiiibase 4 - 11

Configuration Management

,/) Detailed Steps For Configuration Management

().
'.

An overview of the Configuration Management Strategy has been presented. This section

will give the detailed steps to implement the above approach under the constraints of the projects

current development environment.

3.1 Steps for Creating an Initial Version of the Application

The CASE application must be created by the CDM. The CDM will grant access to the

application to the authorized developer(s) through the Application System Access Rights

Screen. This option is off of the Management Menu, Application Access Control sub-menu.

The initial application will be modeled.

Source code will be created either by direct CASE generation or manual creation of secondary

scripts (i.e. grants, synonyms). See your project standards for file naming conventions.

All the code and SQL scripts will be added into FCMl, the appropriate FCM class and the sub

project makefile. These will include files generated by CASE and files that were written

outside of CASE. Also this will include all of the CODE that has been generated by CASE

but subsequently altered.

Create a new version of the source code (see section 3.3 Steps For Creating A Version).

3.2 Steps for Subsequent Versions of the Database Product

Software Change Request (SCR) is reviewed by the CASE Data Manager.

Impact analysis is run by CDM, or a CASE Data Representative (CDR). The Impact Analysis

option off of the reports menu has 8 options available to identify possible areas to be changed.

(Other alternatives may be included in this analysis, such as string searches through

application code, if necessary, as a backup strategy or to increase the likelihood of all the

changes being identified.)

The impact analysis will be distributed to .ill CDRs for comments. The CDRs are required to

respond within 48 hours or it will be assumed that they accept the purposed change as

submitted. This step is the objective analysis and conflict resolution stage. Based upon

) feedback from all of the project teams involved, the CDM may decide that this particular

1 Specific FCM and makefile commands will be discussed later in this document.

M1SCDMP: Equipment DatalJase 4 - 12

C)

(-)-
'-

~

Configuration Management

database change should not be implemented, or perhaps deferred for some period of time.

Feedback may be in the form of rejection. acceptance, or modification to the proposed

change(s).

Once the CDM has given approval for this change to occur, the CDM will allow the sub-project

wishing to make the change, to make the changes to the CASE model. (any changes to an

object that changes the current CASE model will be made in CASE first).

If any database objects will be changed the sub-project team will create the alter scripts and run

the create and alter scripts as their own user id, they will then have to alter their synonyms so

that they are looking at the new database object. This will allow all other groups to proceed

using the old definitions.

As the other groups are ready to make the changes necessary to their sub-project to accommodate

the new structures they will need to run the create and alter scripts and revise their synonyms

as well.

When all sub-project teams have made the changes the alter scripts can be run against the version

that was created with the MISCOMP user id and all sub-projects can reset their synonyms to

point at that version.

The alter scripts should then be placed under FCM control and added to the sub-project makeflle.

If any source code will be changed, it must be reserved through FCM using the appropriate FCM

commands_ At this point FCM will copy the source code from the originating library to the

current working directory, following all relevant security settings.

Create new source code as needed. This step could either be a CASE generation, or just

modifications to the pre-established source code. See your project standards for flle naming

conventions.

NOTE: Changes occurring on Referential Integrity Constraints (RIC) or against Views must

also be examined for timeliness of implementation. That means that some referential

declarations must occur only after the table it references has been created. Failure to do this

will result in the failure of the RIC.

MISCOMP: Equipment Database 4 - 13

(')

(J

,J

Configuration Management

After the changes to the source code have been completed any changed code needs to be returned

to FCM and any new source code needs to be place under FCM control, the appropriate FCM

class updated and added to the make file.

Create a new version ofthe source code (see Section 3.3 Steps For Creating A Version).

3.3 Steps for Creating a Version of the Database Product

The new version of the database product needs to be created in the integration area. Everything

that is used to create this version shall be listed in the sub-product class. This file contains the

version numbers of all source code used to create or used by the sub-product.

Using premake and makefile files, a copy of the source code will be extracted from FCM and

copied to the new Vn directory (where in is the version number). The new version is declared

using the following UPS command:

ups declare -u use_dependencies -r path -fintegration produccname version2

At this point, the new version is declared to be current with the flavor of integration. The current

script which is run by the sub-project makefile will have created or altered the integration

database from the DDL generated by CASE and secondary scripts created by the developers.

It will also have compiled all necessary code. A partial list of functions which the current

script may perform include:

Export the tables and data if appropriate.
Remove unnecessary object, add new objects, or alter existing objects.
Remove existing grants, add grants to new or altered objects.
Define synonyms.
Create database links.
Import data if necessary.
Etc.

The ups command to declare the version current is

ups declare -c -f integration producCname version.

Review the logfile created by premake and the makefile for any errors. If any errors are found

the appropriate files must be modified (In development), the integration database returned to

its prior state and the makefile run again. This must be repeated until all build errors have

been corrected.

2 A UPS User Guide is available for additional infonnation on use of this product.

MISCOMP: Equipment Datilbase 4 - 14

Configuration Management

() Test the new version in the integration area.

(J

........)
"""

After the application code has passed all of its acceptance tests V n will be declared to be current

with a flavor of production. The production database will be updated using the same scripts

that were used to update the integration database. The ups command to make the version

current with the production flavor is as follows:

ups declare -c -f production pruduccname version

Creating a Patched Version

On occasion it may become necessary to patch a version of the application code. The steps

required for perfonning this are identical to those outlined in "Steps for Creating a Version of

the Database Product" listed above - with one exception.

The complete directory structure with its souce must be copied to a new directory structure

without changing the timestamp associated with any of the files. This must be done so that when

the makefile is executed only the files which have been modified will be pulled from FCM. To

create the directory structure and copy the files without changing the timestamp (in one step)

execute the following command:

cp -Rp source_directory destination_directory

In the above command th '-R' will create the entire directory structure and and copy its
files from the souce to the destination directory. The '-p' will prevent the copy command
from updating the files timestamp.

FCM and Maketile Overview

FCM Overview

The Fenni Code Manager (FCM) provides a means of maintaining source code. Users store

source code in a library, reserve it for modification, and then replace the changed source back

into the library. It is possible to retrieve any revision of the source. The reservation and

replacement of the source code from the library also provides a means of controlling

modifications amongst a group of programmers .

MI8COMP: Equipment Dat(j}jase 4 - IS

()
--"--../

)

.J

Configuration Management

FCM is not a complete code management system. It only provides an interface to an

underlying source code management system. Currently, FCM covers SCCS (Source Code

Control System). Although the FCM commands should be adequate for most users, it is possible

to directly manipulate library elements with SCCS commands.3 Current SCCS libraries can be

manipulated with FCM without any problems.

The remainder of the FCM discussion lists what commands a developer should use under

specific situations. For more detailed documentation of FCM and all its commands refer to the

FCM manual found on FNCD in the $FCM_DIRIdoc directory.

FCM Commands

Inserting new source code into FCM while updating the source code version
maintained by the class.

fcm create element element-name "remark"

fcm insert generation element-name class-name "remark"

OR

fcm create element element-name -binary "remark" (uuencodes a binary file)4

fcm insert generation element-name class-name "remark"

Reserving source code from FCM for editing.

fcm reserve element-name

Revoking a source code reservation.

fcm unreserve element-name "remark"

3Direct SCCS command use is not recommended. Some FCM features are skipped. For example, history records
are not updated. Or, if an FCM library element is deleted directly, the element is not removed from any FCM
classes to which it may belong.
4 A element created as text in FCM cannot later be converted to binary.

MISCOMP: Equipment Database 4 • Hi

!)

)

/-_.)-,
.... ~

Configuration Management

Replacing source code into FCM while updating the source code version
maintained by the class.

fcm replace element -name "remark"

fcm insert generation [-supersede) element-name class-name "remark"

- supersede indicates that FCM should over write the version
already marked in the class.

Obtaining a copy of source code without reserving it.

fcm fetch element-name "remark"

MISCOMP: Equipment Database 4 - 17

'J

C)

,J

Configuration Management

Make Overview

Make is a UNIX utility which builds a product based upon rules defined in a makefile. One

makefile is created for each sub-product of MISCOMP. The makefile will extract all necessary

files from FCM, load those files into the appropriate directories, compile files which require it

and perform all DML and DDL conversions on the database. To differentiate between all sub

product makefiles the following file naming convention is used: makefile."sub-product".

Note: The make]Ue is extremely sensitive about the use of spaces and/or tabs. You may

receive odd errors when trying to use it that may require you to replace tabs with spaces in

certain spots and vice versa.

It is the developer's responsibility to insure that the makefile is updated when source is

created or changed. The makefile must be maintained in FCM and the sub-product classes in the

same manner as all other source files. In short you must reserve it, replace it and update the class

whenever a change is made to a makefile. A discussion of how to maintain the makefile is

beyond the scope of this paper. For more information on makefiles refer to the "SunOS

Reference Manual Volume I".

All makefiles are invoked through the file "premake". Only one premake file exists for all

sub-products of MISCOMP. Premake will determine which makefile to call, what product to

build, the version of the product to build and what portions of the product to build. Premake

creates a logfile which must be checked for errors after the product is built. Premake has the

following syntax:

"

MISCOMP: Equipment Database 4 - 18

C)

()

:)

Configuration Management

premake product version make_target usemame password 10lLfile

product - the MISCOMP sub-product to build

version - the generation of the sub-product to build or "current" to update the
development directory with the latest version of all FCM code.

make_target - "con" for converting the database, "all" for building the entire
database (it will not perform DB conversions), "fun" for updating and
compiling the SQL *Forms V3 forms only, "rep" for updating and compiling
reports only, "frnx" for updating and compiling the OracleForms V 4 forms
only, "sql" for updating sql and package fIles only, or "txt" for updating all
text files that do not require compilation.

NOTE: The OracieForms V4 files check their latest version and also check
the latest version of the FRMLIB.lib file. If either their fmb or the
FRMLIB.lib is newer than their jmx, they will be regenerated. The
SQL*Forms V3 files and the SQL*ReportWriter reports check only their
executable file against their source file.

usemame - the oracle account to login to

password - the password for the oracle account

log_fIle - the name of the logfile to write all output to

To build a product with premake you must perform the following steps:

First, validate the makefIle and fcm versions:

Setup the development version of the "sub-product".
Fetch the makefIle into the Isrc directory.
Verify that the make fIle and the fcm versions are up-to-date using the fIle

lusr/products/miscomp/equipmenCdb/devellutllvaiidate_equipdb_class. This file
flags any case in which the latest version of a file in fcm has not be declared to be in
the fcm class, and cases in which a file exists in the fcm class but does not exist in the
makefIle.

MISCOMP: Equipment Database 4 -19

()

()

(-J._-.
--

Configuration Management

Next, cut the integration version and perform integration testing:

Setup the integration version of the "sub-product", which should setup fcm and the
integration version of Oracle too.

Make sure the the environment variable FCMLIB is set to lusr/products/miscomp/SCCS.
Fetch the premake file from FCM into the .Isrc directory.
chmod 755 premake.
Run premake using the syntax noted above. Usually, you will probably want to extract all

sql files fIrst using the "sql" target as packages may need to get recreated during the
data conversion. Then you will want to run premake again to do the data conversion
only, using the "con" target. Finally, you will want to cut "aU".

Perform thorough integration testing.

Finally, cut the version to production:

Declare the new product to ups using:
ups declare -u "< oracle_db misprotO" -r lusr/products/miscomp/equipmenCdb/vO_x
where: oracle_db is the name for the Oracle product; misprotO is the production
version of oracle_db; and vO_x is the current version of Equipment Database
being cut.

Convert the production data using premake and the "con" target.
Make any necessary changes to the oracle_db product.
Make any other user, security, menu role or other modifIcations.
Create any objects that must be created in the database for the application to run. For

example, new versions of menus (for both SQL*Menu V5 and OracleForms V4).
Declare the new version as production to ups using:

ups declare -c -f production equipmencdb vO_x
Perform some simple tests to ensure that the application will be accessible to the users.
Notify the users that the database is back up and accessible.

And lastly, one last cleanup that is good practice to do at this point:

Change the pointer of the integration product in ups to point to a new directory for the next
version of the product:
ups modify -r lusr/products/miscomp/equipmencdb/vO_x+l

MISCOMP: Equipment Database 4 - 20

,:]

Configuration Management

Report Configuration for Immediate Release

Fixing the Report in Production
&

Migrating the Changes to the Next Version

Check the item out from fcm into a temporary work area before beginning. This will ensure that
you do not conflict with developers who may be making changes to the report for a future
release. It will also be useful later for comparing to see if any changes have already been
made to this report for a future release.

Inform the production users that you will be modifying the report and that they should not use it
until you inform them.

Setup the production version and move to the Production report directory:
setup equipmencdb; cd $EQUIPMENT_DB_DIRIrep

Compare the current production report to the report that you checked out earlier in step 1 and
note if any differences exist. A simple Unix diff on the rex files should do. This will
indicate the steps to be taken later and MUST be done now before any changes are made
to the current production version of the report.

/')' \ Load the production version of the report in question into your production SQL *ReportWriter

)

account:
loadrep <report_name>.rex usemame/password

Fix the report in production.

Fix the report submission tables in production if necessary.

Test your changes

Inform the users that the problem is fixed and they can once again use the report.

Dump the new production report back into a rex file:
dumprep <report_name> usemamelpassword <report_name>.rex

Delete the report out of your SQL *ReportWriter account:
deleterep username password.
You will be prompted for the report name.

NOTE: Deleting the reponjs necessary in order that two developers who may
have reason to modify the same report at different points in time do not override each
others modifications by accidentally thinking their version of the repon in the
SQL*ReponWriter tables is the most recent. It should always be assumed that the rex
file in production is the most recent. '

MISCOMP: Equipment Database 4 - 21

,,-)

"") (, .. ,--

i)

Configuration Management

If there were differences in the fcm version of the report and the initial production version (see
step 4 above), you will need to reapply your changes manually to the report in
development and then check the new development report back into fcm.

If no differences existed, you can simply load the report's rex file which you created
earlier in the production report directory into fcm as the new version of the report, using
fcm replace.

Insert the new version of the report into the next version of Equipdb, curtently Version 0.4.
fcm insert generation -supersed <report_name>.rex <class_name>

Make the same changes to the development report submission tables that you made to the
production report submission tables.

MISCOMP: Equipment Database 4 - 22

	img-1091830-0001
	img-1091830-0002
	img-1091830-0003
	img-1091832-0001
	img-1091832-0002
	img-1091832-0003
	img-1091833-0001
	img-1091833-0002
	img-1091833-0003

