Using Small Abstractions
to Program
Large Distributed Systems

Douglas Thain
University of Notre Dame
19 February 2009

Using Small Abstractions
to Program
Large Distributed Systems

(And multicore computers!)

Douglas Thain
University of Notre Dame
19 February 2009

Clusters, clouds, and grids
give us access to zillions of CPUs.

How do we write programs that can
run effectively in large systems?

| have 10,000 iris images acquired in
my research lab. | want to reduce
each one to a feature space, and then
compare all of them to each other. |
want to spend my time doing science,
not struggling with computers.

| own a few machines | can buy time from Amazon or TeraGrid.

Now What?

How do a | program a CPU?

1| write the algorithm in a language that | find
convenient: C, Fortran, Python, etc...

1 The compiler chooses instructions for the
CPU, even if | don’t know assembly.

1 The operating system allocates memory,
moves data between disk and memory, and
manages the cache.

1 To move to a different CPU, recompile or use
a VM, but don’t change the program.

How do | program the grid/cloud?

1 Split the workload into pieces.
— How much work to put in a single job?

1 Decide how to move data.
— Demand paging, streaming, file transfer?

1 Express the problem in a workflow
language or programming environment.
— DAG / MPI / Pegasus / Taverna / Swift ?

1 Babysit the problem as it runs.

— Worry about disk / network / failures...

How do | program on 128 cores?

1 Split the workload into pieces.
— How much work to put in a single thread?

1 Decide how to move data.
— Shared memory, message passing, streaming?

1 Express the problem in a workflow language
Or programming environment.

— OpenMP, MPI, PThreads, Cilk, ...

1 Babysit the problem as it runs.
— Implement application level checkpoints.

Tomorrow’s distributed systems will
be clouds of multicore computers.

Can we solve both problems
with a single model?

Observation

11n a given field of study, a single person
may repeat the same pattern of work
many times, making slight changes to the
data and algorithms.

1 Examples everyone knows:
— Parameter sweep on a simulation code.
— BLAST search across multiple databases.

1 Are there other examples?.

Abstractions
for Distributed Computing

1 Abstraction: a declarative specification
of the computation and data of a workload.

1 Arestricted pattern, not meant to be a
general purpose programming language.

1 Uses data structures instead of files.
1 Provide users with a bright path.

1 Regular structure makes it tractable to
model and predict performance.

All-Pairs Abstraction

AllPairs(set A, set B, function F)
returns matrix M where

M[i][j] = F(C Ali], B[j]) for all 1,

I[P
®

allpairs A B F.exe

AllPairs(A,B,F)

Moretti, Bulosan, Flynn, Thain,
AllPairs: An Abstraction... IPDPS 2008

Al A2 A3
an | @b | g
Bl'\/'\/'ﬁ)
an | @b | g
BZ'\/'\/'Q)
oW W=
BB'!J'!J'QD

Example Application

1 Goal: Design robust face comparison function.

0.97 0.05

Similarity Matrix Construction

o]

| o

R O | O]

P O L] | ©F.
s

Pl Clw| @ B

Current Workload:
4000 images
256 KB each
10s per F
(five days)

Future Workload:
60000 images
1MB each

1s per F

(three months)

http://www.cse.nd.edu/people/faculty_bio.php?id=100000003
http://www.cse.nd.edu/people/faculty_bio.php?id=100000045
http://www.cse.nd.edu/people/faculty_bio.php?id=100000042
http://www.cse.nd.edu/people/faculty_bio.php?id=100000064
http://www.cse.nd.edu/people/faculty_bio.php?id=100000049
http://www.cse.nd.edu/people/faculty_bio.php?id=100000042
http://www.cse.nd.edu/people/faculty_bio.php?id=100000003
http://www.cse.nd.edu/people/faculty_bio.php?id=100000045
http://www.cse.nd.edu/people/faculty_bio.php?id=100000064
http://www.cse.nd.edu/people/faculty_bio.php?id=100000049

‘http://www.cse.nd.edu/~ccl/iviz -

|
latin lisct Ik locall
N SYE %l\ i5

locols I-:-cJ*J'El Igcaein lazod N2
g B j? i f i jEt E | e
locoqg lope o200 locozd o2 Ii[t:-:-23
7 5] j?l' 5 iE: N

! i

loco20 In\.n:n:-31E madeye mangansge mdrch
=] H b N ¥ 3
i e G\ e

mordoc music neumann nichel n!J'e
AT F_-i BCE A0 E ial'?m

picasso playbackll paiptehair pop pLidell
19 I34.5'ﬂj$hu T A

rembragdt remus Tenoi) roch rodin
10 ﬁﬁig-‘g's \E.'ED Ol || 7

' |
=c0-05 =c0-07 scOdlz

sc0-17 =c0-49
bR =] [7|
scD-SE'!
silican sirius star steifpeck™ stones
5 g v i p
theresa thermometethomas toto trudeau

-1.7 B SSEEE s i

wermeaear wiwaldi wyasa g m b a0
& &

¥

<

' -I .’:SIEE r "B wizard.cse.nd.edu -... r H| wizard.cse.nd.edu -... rﬁ Microsaft PowerPoin, .. (j Starage Poal Yisual -. .

.La;-nu:-deL'ISE izgnoae3V iss-noded3S iss-nodeld38 iss-node0dd iss-node0d

i i
e =i

EN
i
sclg sc L
R
-z)
ol et]
i g D

wangogh wault
g ¢ =

mombatd3 wombatdd wombat0s
152 EEE
0]

Data Only
Wl Storage Visual by Douglas Thain
(C) 2007 University of Notre Dame

Link Source
B Dizk Available & Link Dest

B CPUBusy

System Totals
43.58 TB Disk Total

J4.66 TB Disk fwvail
58.2 CPU Load
624 CPU Total
321 Node Total

cse-gw-06.cse.nd.edu
Disk Size

32.65 GB

20.87 GB Disk Avail
CPU Load

129.74155.155
22404542464

0.19

address
avail
hytes_read
hytes_written
cpu

cpus

inuse
lastheardirom
load1

load15

loada
memory_awvail
memory_total
minfree

name

opsys i
opsysversion
owner

port
shorthame
total
total_ops

2
12651790336

cse-gw-06.cse.nd.ed

26.8-55elsmp

35056332800

YO L E@®T. 4 £ T e52pm

Non-Expert User Using 500 CPUs

Try 1: Each F is a batch job.
Failure: Dispatch latency >> F runtime.

GlOIGIGAG

Y HEEEN

Try 2: Each row is a batch job.
Failure: Too many small ops on FS.

F@FFF

HN

Try 3: Bundle all files into one package.
Failure: Everyone loads 1GB at once.

Try 4. User gives up and attempts
to solve an easier or smaller problem.

All-Pairs Abstraction

AllPairs(set A, set B, function F)
returns matrix M where

M[i][j] = FC A[l], B[j]) for all i,

wul
Y

=)

®
®6 0
®

o
3
e

400 B |
s Naively
. 350 ¢ § Distributed -
&P on ~200 CPUs
> 300 r _
O
= 250 | :
:
i— 200 ﬁ' -
© A Single CPU
S 150 | :
o
S 100 t -
= All-Pairs
50 Abstraction -
on ~200 CPUs

100 1000 2000

Number of ltems in Set
e

Distribute Data Via Spanning Tree

200

@

© 190 ¢

O

S Topology Aware — Random
S 100 | Spanning Spanning
% Tree Tree

@

»

S 50

=

Sequential
Distribution

10 100 1000
Elapsed Time (seconds)

An Interesting Twist

1 Send the absolute minimum amount of data
needed to each of N nodes from a central server
— Each job must run on exactly 1 node.

— Data distribution time: O(D sqgrt(N))

1 Send all data to all N nodes via spanning tree

distribution:
— Any job can run on any node.
— Data distribution time: O(D log(N))

1 It IS both faster and more robust to send all
data to all nodes via spanning tree.

Choose the Right # of CPUs

Q)
g 107
<
) 8 r n=1000
£ s =1.25MB
c 6 | B = 125MB/s
T D = 10s
L. 4 ¢ =2000
[
O
3 2
=
0 l l l
0 100 200 300 400 500

Number of CPUs

What is the right metric?

400
350
300

)
O
O
9
e
g 250 Conventional -
T 200 Abstraction -
o 150 :
D
o 100 7
£
= 50 .
0 | | |
0 5 10 15 20 25 30

Elagsed Time ghoursz

How to measure In clouds?

1 Speedup?

— Seg Runtime / Parallel Runtime
1 Parallel Efficiency?

— Speedup / N CPUS?

1 Neither works, because the number of CPUs
varies over time and between runs.

1 An Alternative: Cost Efficiency
— Work Completed / Resources Consumed
— Cars: Miles / Gallon
— Planes: Person-Miles / Gallon
— Results / CPU-hours
— Results / $$$

g 2f :

P

-

0

% 1.5 I All-Pairs Abstraction .

% it

L Nel —%

= .

O

-

o

O .

T Conventional -
Beeeeremmme I TTT I T T T TT T T T T T TR 11|

0]]]
100 1000 2500 4000

Data Set Size

Wavefront (R[x,0], R[O,y], F(x,y,d))

% F) | RI2,4] | RI34] | R[4,4]

a Ty

x 5F)| RI3B2L | RI4,3]
d |y d Ty

: : —~ F} | R[4.2]
d |y d |y AfIy

X X X _XNF

Implementing Wavefront

The Performance Problem

1 Dispatch latency really matters: a delay in one
nolds up all of its children.

1 |[f we dispatch larger sub-problems:
— Concurrency on each node increases.
— Distributed concurrency decreases.

1 |f we dispatch smaller sub-problems:
— Concurrency on each node decreases.
— Spend more time waiting for jobs to be dispatched.

1 So, model the system to choose the block size.
8 And, build a fast-dispatch execution system.

Model of 1000x1000 Wavefront

100000
0
)
£
|_
2 10000 ¢
- [
e L
@
=
-
|_

Os Dispatch
1000 ! _ |
1 2 4 8 16 32

Block Size

100s of workers
dispatched via
Condor/SGE/SSH

put F.exe
put in.txt
exec F.exe <in.txt >out.txt
get out.txt

»
>

tasks
done

500x500 Wavefront on ~200 CPUs

200
180
160
140
120
100
80
60
40
20

200

180
160
1 140
1 120
1 100
1 80
1 60
1 40
Without Fast Abort 1 20

Jobs
Running

I I] I] 0
2000 4000 6000 8000 10000 12000

Elapsed Time (seconds)

Wavefront on a 200-CPU Cluster

12000 . : .
Cluster Real
i Cluster Mode| =--======-- .
10000 Infinite Model
8000 | -

6000
4000

Runtime (seconds)

2000

0O 50 100 150 200 250 300 350 400 450 500
Problem Size

Wavefront on a 32-Core CPU

40000 . . , | |

32-Core Real
39000 r 32-Core Model| =====------ "
30000 | Infinite-Core Model

25000 | o
20000 | -
15000 e :
10000 F _
5000 r e :

0 d:ﬂ- 1 I I I 1 1 I
O 50 100 150 200 250 300 350 400 450 500

Praohlam [NN-a

Runtime (seconds)
-

Classify Abstraction

Classify(T, R, N, P, F)
T = testing set R = training set
N = # of partitions F = classifier

Moretti, Steinhauser, Thain, Chawla,
Scaling up Classifiers to Cloud Computers, ICDM 2008.

100000

10000 ¢
1000 ¢
100 ¢ .
[cluster | cloud
10 1 1 1
32 64 96

Push e
Pull sssssssssns
HyDriQl —

128

From Abstractions
to a Distributed Language

What Other Abstractions
Might Be Useful?

1 Map(set S, F(s))

1 Explore(F(x), x: [a....b])

1 Minimize(F(x), delta)

1 Minimax(state s, A(s), B(S))

1 Search(state s, F(s), IsTerminal(s))
1 Query(properties) -> set of objects

1 FluidFlow(V[x,y,z], F(v), delta)

How do we connect multiple
abstractions together?

1 Need a meta-language, perhaps with its own
atomic operations for simple tasks:

1 Need to manage (possibly large) intermediate
storage between operations.

1 Need to handle data type conversions between
almost-compatible components.

1 Need type reporting and error checking to avoid
expensive errors.

1 |f abstractions are feasible to model, then it may
be feasible to model entire programs.

Connecting Abstractions in BXGrid

S = Select(color="brown”)

B = Transform(S,F)
M = AllPairs(A, B, F)

eye color Al| |A2| |A3
L | brown —1 51 \®\, - 7
L blue i
R brown i Curve
B3 Pt
N
R brown —1 S3 /®/

Bui, Thomas, Kelly, Lyon, Flynn, Thain
BXGrid: A Repository and Experimental Abstraction... poster at IEEE eScience 2008

Implementing Abstractions

Relational Database (2x)

Active Storage Cluster (16x)

B = Transform(S,F)

Condor Pool (500x)

M = AllPairs(A, B, F)
ol U U oy

S = Select(color="brown”)

/= BXGRID - Biometrics Research Grid - Windows Internet Explorer

@.\h_}. A |@ https: fbxgrid.cse.nd. edu/doall. php?thl=irises _stildstate=wvalidatedfwhere=temp_colleckionid+%: 304+ %27 1 2222665; V| ﬁ | || X ||:uuttinu;| gl inko | Folhs
_ = . »
T:? '-‘.1;1\? [@BXGRID—BiDmetrics Research Grid l l ﬁ - G - - Iij‘age » 0 Tools -

BXGRID - Biometrics Research Grid

BXGrid Main Data Source State (help) Constraint (help) Limit Detail Images Mode
Explore Data |iri5 images v |~sa|idated V||temp_cnllectinnid ='12222I3I35?|| 10 V||Iimited V||small V||~;alidate b
+ Browse Data

+ Query Data

+ Validate Data Showing 1 to 10 of 4336 results. Download all results as TXT or CSV or XML or TGZ

+ Enroll Data

Eﬁ.?aﬁ:fze":rggtgm ’ Prev 10 ” Mext 10 ” First Page ” Last Page]

+ Compare Data
* View Results Unvalidated Netadata Action Valid 1 Valid 2 Valid 3 |
+ Manage Data
About BXGrid Validate
+ Report Bug date 2008-09-09
+ Site Infa 00:00:00 lr:1.-.-I1'.
+ System Status eye Right Prablem f ¥ ‘
System Admin color Brown
e state validated
+ Manage Users o
dthain's Account | “iew Full Record subjectid nd1502463 Yiew Full Record Yiew Full Record Wiew Full Record Wiew Ful
+ My Account
+ Logout -

ot 2008-09-09 Walidate

00:00:00

ByE Left Problem
color Brown

state validated

= =
= =
= =
o w
= =N
w w
=3 =
fas} [as]

\iew Full Record subjectid nd1502463 View Full Record View Full Record View Ful
Validate
2008-09-09 . i s
00:00-00 " i BB ||
. > "
Right Problem “0 q
Brown i

I »

|

What Is the Most Useful ABI?

1 Functions can come in many forms:
— Unix Program
— C function in source form
— Java function in binary form

1 Datasets come in many forms:
— Set: list of files, delimited single file, or database query.
— Matrix: sparse elem list, or binary layout

1 Our current implementations require a particular
form. With a carefully stated ABI, abstractions
could work with many different user communities.

What is the type system?

1 Files have an obvious technical type:
— JPG, BMP, TXT, PTS, ...

1 But they also have a logical type:
— JPG: Face, Iris, Fingerprint etc.
— (This comes out of the BXGrid repository.)

1 The meta-language can easily perform
automatic conversions between technical types,
and between some logical types:

— JPG/Face -> BMP/Face via ImageMagick
— JPG/Iris -> BIN/IrisCode via ComputelrisCode
— JPG/Face -> JPG/Iris is not allowed.

Abstractions Redux

1 Mapping general-purpose programs to
arbitrary distributed/multicore systems is
algorithmically complex and full of pitfalls.

1 But, mapping a single abstraction is a
tractable problem that can be optimized,
modeled, and re-used.

1 Can we combine multiple abstractions
together to achieve both expressive power
and tractable performance?

Troubleshooting Large Workloads

It’'s Ugly Iin the Real Worla

1 Machine related failures:

— Power outages, network outages, faulty memory, corrupted file
system, bad config files, expired certs, packet filters...

1 Job related failures:

— Crash on some args, bad executable, missing input files,
mistake in args, missing components, failure to understand
dependencies...

1 Incompatibilities between jobs and machines:

— Missing libraries, not enough disk/cpu/mem, wrong software
Installed, wrong version installed, wrong memory layout...

1 Load related failures:

— Slow actions Induce timeouts; kernel tables: files, sockets,
procs; router tables: addresses, routes, connections;
competition with other users...

1 Non-deterministic failures:

— Multi-thread/CPU synchronization, event interleaving across
systems, random number generators, interactive effects,
cosmic rays...

A “Grand Challenge” Problem:

1 A user submits one million jobs to the grid.
1 Half of them fall.

1 Now what?
— Examine the output of every failed job?
— Login to every site to examine the logs?
— Resubmit and hope for the best?

1 \We need some way of getting the big
picture.

1 Need to identify problems not seen before.

Job ClassAd Machine ClassAd
MyType = "Job" MyType = "Machine"
TargetType = "Machine" aroet'Tybe
Clusterld = 11839 User Job Log 1.edu"
QDate = 1150231068 Job 1 submitted. g - CondorLoadAvg)
CompletionDate = 0 Job 2 submitted.
Owner = "dcieslak® 1"
JobUniverse = 5 Job 1 placed on ccl00.cse.nd.edu hain"
Cmd = "ripper-cost-can-9 {ife) s lSuteie 7.19 May 10 2006"
FIZIIBNIS @ BN WVTIIIN Job 1 placed on smarty.cse.nd.edu. 386-LINUX_RH9"
LocalSysCpu = 0.000000 [felslWelssallse=le 1
ExitStatus = 0)00

—n '

'
ale

ImageSize = 40000 Job 2 placed on dvorak.helios.nd.edu
DiskUsage = 110000 Job 2 suspended

NumCkpts = 0 Job 2 resumed 948
NumRestarts = 0 Job 2 exited normally with status 1.

NumSystemHolds = 0
CommittedTime = 0

ExitBySignal = FALSE
PoolName = "ccl00.cse.nc
CondorVersion = "6.7.19 May 10 200 eyboardldle = 817093
CondorPlatform = I386-.LINUX_ RH9 Consoleldle = 817093

" /n

000000

Vi
A

D I\
ROOtDIT — 7/

ATTA1Ip AAddr —

| &

| | Machine

v v Failure Criteria:
exit 1=0
core dump

Success Class Failure Class

evicted

suspended
bad output

Your jobs work fine on RH Linux 12.1 and 12.3 but

they always seem to crash on version 12.2.

Hypothesis:

exitl ;- Memory>=1930, JobStart>=1.14626e+09, MonitorSelfTime>=1.14626e+09
(491/377)

exitl :- Memory>=1930, Disk<=555320 (1670/1639).

default exit0 (11904/4503).

Error rate on holdout data is 30.9852%

Running average of error rate is 30.9852%

------------------------- rUN 2 -------------mmmmmmomm -

Hypothesis: exitl :- Memory>=1930, Disk<=541186 (2076/1812).
default exitO (12090/4606).

Error rate on holdout data is 31.8791%

Running average of error rate is 31.4322%

------------------------- runN 3 --------------mmmmmmmee -

Hypothesis:

exitl ;- Memory>=1930, MonitorSelfimageSize>=8.844e+09 (1270/1050).
exitl :- Memory>=1930, Keyboardldle>=815995 (793/763).

exitl :- Memory>=1927, EnteredCurrentState<=1.14625e+09,
VirtualMemory>=2.09646e+06, LoadAvg>=30000,
LastBenchmark<=1.14623e+09, MonitorSelflmageSize<=7.836e+09 (94/84).
exitl :- Memory>=1927, TotalLoadAvg<=1.43e+06, UpdatesTotal<=8069,
LastBenchmark<=1.14619e+09, UpdatesLost<=1 (77/61).

default exitO (11940/4452).
Error rate on holdout data is 31.8111%
Running average of error rate is 31.5585%

Unexpected Discoveries

1 Purdue (91343 jobs on 2523 CPUs)
— Jobs fail on machines with (Memory>1920MB)

— Diagnosis: Linux machines with > 3GB have a
different memory layout that breaks some
programs that do inappropriate pointer arithmetic.

1 UND & UW (4005 jobs on 1460 CPUs)

— Jobs fail on machines with less than 4MB disk.

— Diagnosis: Condor failed in an unusual way when
the job transfers input files that don’t fit.

/= Condor Log Analyzer - Windows Internet Explorer.

6@ - |ﬁ, http:/fcondorlog.cse.nd. eduf V| || X |Gu:ucu;||e | 2

ﬁ '-‘ﬁi' [ECDndDr Log Analyzer l_l ﬁ = Eﬂ E.éa - IﬁvF‘age - _Q:} Tools -

Condor Log Analyzer

Upload Your Log Files:

Required User Log File: | |[Browse... |

Optional Machine File: | |[Browse...] iy
| Upload My Log Files | ; '

Frequently Asked Questions | Tmmm—— e

+ What's going on here?
This web site allows you to upload log files generated by the Condor distributed computing system, and get back graphics and an explanation of what happened in
the system. This can aid in understanding a workload of hundreds or thousands of jobs. Here is an example of the output.

+ How do | create a user log file?
Add this line to your Condor submit file: 1og = userlog.txt

+ How do | create a machine file?
Run this command: condor status -1 > machinefile.txt

+ Why are you doing this?
We are constructing new tools that help people to debug distributed systems. The problem is, we need lots of log data to test our ideas on. So, if you upload your
log files, you get (we hope) a useful result, and we get more data to practice on.

+ Will others be able to see my data?
The URL of your results is based on the checksum of vour logfile. So. if you want to share your results with others, you can simply send the URL to your friends. If
wyou do not want others to see your data, then don't publicize the URL, and it is highly unlikely anyone could guess it.

s« Can | download graphics and logs to use in my own papers, presentations, etc?
Yes, go right ahead. We would appreciate it if you give us a credit with the following citation: Douglas Thain, David Cieslak, and Nitesh Chawla, "Condor Log
Analvzer”, http:condorlog. cse.nd edu, 2008.

T

— Condor Log &n...

= Condor Log Analyzer - Windows Internet Explorer

@;;r - |E, http:/fcondorlog. cse. nd. eduflogs/6b/95/6b351993ab 7 0e553e0b0bF a1 1 a1 FSa0F) V| +5 || X |Gu:ucu;||e | 2
ﬁ '-‘ﬁi' [@Cmdnr Log Analyzer l l ﬁ = Eﬂ @ - @Page - Q Tools -
=

Condor Log Analyzer

Workload Summary: Event Summary:
CPU Time: B0+18:22:56 Jobs Submitted: 6372

Total Goodput: 57+09:39:27 Execute Events: 7812
Total Badput: 3+08:43:29 Vacate Events: 1855

Elapsed Time: 0+07:36:44 Jobs Removed:
Jobs Complete: 6372

Workload Timeline - gif - eps - gnuplot - data
350

7000 : : ,
" Submitted
| | Running ——
g oo A AN
=N | | =
E 5000 | |' W } {250
3] £
5 4000 | | 1200 E
K]
= | o
T 3000 | \ 1150 g
3 | ©
@ 2000 | ' \ 1 100
0 | |
o \
5 1ooo I' \ 50
0 v : : : Lo - 0
25/08 25/08 25/08 25/08 25/08 25/08 25/08 26/08 2B/08 2B/08
17:00 18:00 19:00 20:00 21:00 22:00 2300 00.00 01:00 02:00
Runtime by Job - gif - eps - gnuplot - data Badput by Job - gif - eps - gnuplot - data Five Fastest Jobs: (see all jobs)
000 16000
37 (324042.000.000) "=slot2@sc0-28
8000 1 1 14000 | 37 (325716.000.000) "slot2@scO-2¢€
7000 | | 12000 | 38 (324387.000.000) "=lotZ@scO-11
6000 | - 38 (325030.000.000) "=lot2Z@scO-1€
= 5 10000 38 (326076.000.000) "=lot2@scO-03
w5000 o
E & 8000 | .
£ 4000}] @ Slowest Jobs: (see all johs) b
| >

dor Log An...

Acknowledgments

1 Cooperative Computing Lab
— http://www.cse.nd.edu/~ccl

1 Faculty: 1 Grad Students m Undergrads
— Patrick Flynn — Chris Moretti — Mike Kelly
— Nitesh Chawla — Hoang Bui — Rory Carmichael
— Kenneth Judd — Karsten — Mark Pasquier
_ Scott Emrich Steinhauser — Christopher Lyon
— LiYu — Jared Bulosan

— Michael Albrecht

INSF Grants CCF-0621434, CNS-0643229

http://www.cse.nd.edu/~ccl

	Using Small Abstractions�to Program�Large Distributed Systems
	Using Small Abstractions�to Program�Large Distributed Systems
	Clusters, clouds, and grids�give us access to zillions of CPUs.
	How do a I program a CPU?
	How do I program the grid/cloud?
	How do I program on 128 cores?
	Tomorrow’s distributed systems will be clouds of multicore computers.
	Observation
	Abstractions�for Distributed Computing
	All-Pairs Abstraction
	Example Application
	Similarity Matrix Construction
	Non-Expert User Using 500 CPUs
	All-Pairs Abstraction
	Distribute Data Via Spanning Tree
	An Interesting Twist
	Choose the Right # of CPUs
	What is the right metric?
	How to measure in clouds?
	Implementing Wavefront
	The Performance Problem
	Model of 1000x1000 Wavefront
	500x500 Wavefront on ~200 CPUs
	Wavefront on a 200-CPU Cluster
	Wavefront on a 32-Core CPU
	Classify Abstraction
	From Abstractions�to a Distributed Language
	What Other Abstractions�Might Be Useful?
	How do we connect multiple abstractions together?
	Connecting Abstractions in BXGrid
	Implementing Abstractions
	What is the Most Useful ABI?
	What is the type system?
	Abstractions Redux
	Troubleshooting Large Workloads
	It’s Ugly in the Real World
	A “Grand Challenge” Problem:
	Unexpected Discoveries
	Acknowledgments

