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Clusters, clouds, and grids
give us access to zillions of CPUs.

How do we write programs that can
run effectively in large systems?



| have 10,000 iris images acquired in
my research lab. | want to reduce
each one to a feature space, and then
compare all of them to each other. |
want to spend my time doing science,
not struggling with computers.

| own a few machines | can buy time from Amazon or TeraGrid.

Now What?



How do a | program a CPU?

1| write the algorithm in a language that | find
convenient: C, Fortran, Python, etc...

1 The compiler chooses instructions for the
CPU, even if | don’t know assembly.

1 The operating system allocates memory,
moves data between disk and memory, and
manages the cache.

1 To move to a different CPU, recompile or use
a VM, but don’t change the program.



How do | program the grid/cloud?

1 Split the workload into pieces.
— How much work to put in a single job?

1 Decide how to move data.
— Demand paging, streaming, file transfer?

1 Express the problem in a workflow
language or programming environment.
— DAG / MPI / Pegasus / Taverna / Swift ?

1 Babysit the problem as it runs.

— Worry about disk / network / failures...



How do | program on 128 cores?

1 Split the workload into pieces.
— How much work to put in a single thread?

1 Decide how to move data.
— Shared memory, message passing, streaming?

1 Express the problem in a workflow language
Or programming environment.

— OpenMP, MPI, PThreads, Cilk, ...

1 Babysit the problem as it runs.
— Implement application level checkpoints.



Tomorrow’s distributed systems will
be clouds of multicore computers.

Can we solve both problems
with a single model?



Observation

11n a given field of study, a single person
may repeat the same pattern of work
many times, making slight changes to the
data and algorithms.

1 Examples everyone knows:
— Parameter sweep on a simulation code.
— BLAST search across multiple databases.

1 Are there other examples?.



Abstractions
for Distributed Computing

1 Abstraction: a declarative specification
of the computation and data of a workload.

1 Arestricted pattern, not meant to be a
general purpose programming language.

1 Uses data structures instead of files.
1 Provide users with a bright path.

1 Regular structure makes it tractable to
model and predict performance.



All-Pairs Abstraction

AllPairs( set A, set B, function F )
returns matrix M where

M[i][j] = F(C Ali], B[j] ) for all 1,

I[P
®

allpairs A B F.exe

AllPairs(A,B,F)

Moretti, Bulosan, Flynn, Thain,
AllPairs: An Abstraction... IPDPS 2008
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Example Application

1 Goal: Design robust face comparison function.
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Similarity Matrix Construction
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Current Workload:
4000 images
256 KB each
10s per F
(five days)

Future Workload:
60000 images
1MB each

1s per F

(three months)
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Data Only
Wl Storage Visual by Douglas Thain
(C) 2007 University of Notre Dame
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B Dizk Available & Link Dest

B CPUBusy

System Totals
43.58 TB Disk Total

J4.66 TB Disk fwvail
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Non-Expert User Using 500 CPUs

Try 1: Each F is a batch job.
Failure: Dispatch latency >> F runtime.
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Try 2: Each row is a batch job.
Failure: Too many small ops on FS.

F@FFF
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Try 3: Bundle all files into one package.
Failure: Everyone loads 1GB at once.

Try 4. User gives up and attempts
to solve an easier or smaller problem.




All-Pairs Abstraction

AllPairs( set A, set B, function F )
returns matrix M where

M[i][j] = FC A[l], B[j] ) for all i,
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Distribute Data Via Spanning Tree
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An Interesting Twist

1 Send the absolute minimum amount of data
needed to each of N nodes from a central server
— Each job must run on exactly 1 node.

— Data distribution time: O( D sqgrt(N) )

1 Send all data to all N nodes via spanning tree

distribution:
— Any job can run on any node.
— Data distribution time: O( D log(N) )

1 It IS both faster and more robust to send all
data to all nodes via spanning tree.



Choose the Right # of CPUs
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What is the right metric?
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How to measure In clouds?

1 Speedup?

— Seg Runtime / Parallel Runtime
1 Parallel Efficiency?

— Speedup / N CPUS?

1 Neither works, because the number of CPUs
varies over time and between runs.

1 An Alternative: Cost Efficiency
— Work Completed / Resources Consumed
— Cars: Miles / Gallon
— Planes: Person-Miles / Gallon
— Results / CPU-hours
— Results / $$$
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Wavefront ( R[x,0], R[O,y], F(x,y,d) )
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Implementing Wavefront




The Performance Problem

1 Dispatch latency really matters: a delay in one
nolds up all of its children.

1 |[f we dispatch larger sub-problems:
— Concurrency on each node increases.
— Distributed concurrency decreases.

1 |f we dispatch smaller sub-problems:
— Concurrency on each node decreases.
— Spend more time waiting for jobs to be dispatched.

1 So, model the system to choose the block size.
8 And, build a fast-dispatch execution system.




Model of 1000x1000 Wavefront
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100s of workers
dispatched via
Condor/SGE/SSH

put F.exe
put in.txt
exec F.exe <in.txt >out.txt
get out.txt

»
>

tasks
done




500x500 Wavefront on ~200 CPUs
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Wavefront on a 200-CPU Cluster
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Wavefront on a 32-Core CPU
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Classify Abstraction

Classify( T, R, N, P, F)
T = testing set R = training set
N = # of partitions F = classifier

Moretti, Steinhauser, Thain, Chawla,
Scaling up Classifiers to Cloud Computers, ICDM 2008.



100000

10000 ¢
1000 ¢
100 ¢ .
[ cluster | cloud
10 1 1 1
32 64 96

Push e
Pull sssssssssns
HyDriQl  —

128



From Abstractions
to a Distributed Language



What Other Abstractions
Might Be Useful?

1 Map( set S, F(s))

1 Explore( F(x), x: [a....b])

1 Minimize( F(x), delta )

1 Minimax( state s, A(s), B(S) )

1 Search( state s, F(s), IsTerminal(s) )
1 Query( properties ) -> set of objects

1 FluidFlow( V[x,y,z], F(v), delta )



How do we connect multiple
abstractions together?

1 Need a meta-language, perhaps with its own
atomic operations for simple tasks:

1 Need to manage (possibly large) intermediate
storage between operations.

1 Need to handle data type conversions between
almost-compatible components.

1 Need type reporting and error checking to avoid
expensive errors.

1 |f abstractions are feasible to model, then it may
be feasible to model entire programs.



Connecting Abstractions in BXGrid

S = Select( color="brown”)

B = Transform( S,F )
M = AllPairs( A, B, F)

eye color Al| |A2| |A3
L | brown —1 51 \®\, - 7
L blue i
R brown i Curve
B3 Pt
N
R brown —1 S3 /®/

Bui, Thomas, Kelly, Lyon, Flynn, Thain
BXGrid: A Repository and Experimental Abstraction... poster at IEEE eScience 2008



Implementing Abstractions

Relational Database (2x)

Active Storage Cluster (16x)

B = Transform( S,F ) .....

Condor Pool (500x)

M = AllPairs( A, B, F) . . . .
ol U U oy

S = Select( color="brown” )




/= BXGRID - Biometrics Research Grid - Windows Internet Explorer
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What Is the Most Useful ABI?

1 Functions can come in many forms:
— Unix Program
— C function in source form
— Java function in binary form

1 Datasets come in many forms:
— Set: list of files, delimited single file, or database query.
— Matrix: sparse elem list, or binary layout

1 Our current implementations require a particular
form. With a carefully stated ABI, abstractions
could work with many different user communities.



What is the type system?

1 Files have an obvious technical type:
— JPG, BMP, TXT, PTS, ...

1 But they also have a logical type:
— JPG: Face, Iris, Fingerprint etc.
— (This comes out of the BXGrid repository.)

1 The meta-language can easily perform
automatic conversions between technical types,
and between some logical types:

— JPG/Face -> BMP/Face via ImageMagick
— JPG/Iris -> BIN/IrisCode via ComputelrisCode
— JPG/Face -> JPG/Iris is not allowed.



Abstractions Redux

1 Mapping general-purpose programs to
arbitrary distributed/multicore systems is
algorithmically complex and full of pitfalls.

1 But, mapping a single abstraction is a
tractable problem that can be optimized,
modeled, and re-used.

1 Can we combine multiple abstractions
together to achieve both expressive power
and tractable performance?



Troubleshooting Large Workloads



It’'s Ugly Iin the Real Worla

1 Machine related failures:

— Power outages, network outages, faulty memory, corrupted file
system, bad config files, expired certs, packet filters...

1 Job related failures:

— Crash on some args, bad executable, missing input files,
mistake in args, missing components, failure to understand
dependencies...

1 Incompatibilities between jobs and machines:

— Missing libraries, not enough disk/cpu/mem, wrong software
Installed, wrong version installed, wrong memory layout...

1 Load related failures:

— Slow actions Induce timeouts; kernel tables: files, sockets,
procs; router tables: addresses, routes, connections;
competition with other users...

1 Non-deterministic failures:

— Multi-thread/CPU synchronization, event interleaving across
systems, random number generators, interactive effects,
cosmic rays...



A “Grand Challenge” Problem:

1 A user submits one million jobs to the grid.
1 Half of them fall.

1 Now what?
— Examine the output of every failed job?
— Login to every site to examine the logs?
— Resubmit and hope for the best?

1 \We need some way of getting the big
picture.

1 Need to identify problems not seen before.



Job ClassAd Machine ClassAd
MyType = "Job" MyType = "Machine"
TargetType = "Machine" aroet'Tybe
Clusterld = 11839 User Job Log 1.edu"
QDate = 1150231068 Job 1 submitted. g - CondorLoadAvg)
CompletionDate = 0 Job 2 submitted.
Owner = "dcieslak® 1"
JobUniverse = 5 Job 1 placed on ccl00.cse.nd.edu hain"
Cmd = "ripper-cost-can-9 {ife) s lSuteie 7.19 May 10 2006"
FIZIIBNIS @ BN WVTIIIN Job 1 placed on smarty.cse.nd.edu. 386-LINUX_RH9"
LocalSysCpu = 0.000000 [felslWelssallse=le 1
ExitStatus = 0 )00

—n '

'
ale

ImageSize = 40000 Job 2 placed on dvorak.helios.nd.edu
DiskUsage = 110000 Job 2 suspended

NumCkpts = 0 Job 2 resumed 948
NumRestarts = 0 Job 2 exited normally with status 1.

NumSystemHolds = 0
CommittedTime = 0

ExitBySignal = FALSE
PoolName = "ccl00.cse.nc
CondorVersion = "6.7.19 May 10 200 eyboardldle = 817093
CondorPlatform = I386-.LINUX_ RH9 Consoleldle = 817093

" /n
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| &

| | Machine

v v Failure Criteria:
exit 1=0
core dump

Success Class Failure Class

evicted

suspended
bad output

Your jobs work fine on RH Linux 12.1 and 12.3 but

they always seem to crash on version 12.2.



Hypothesis:

exitl ;- Memory>=1930, JobStart>=1.14626e+09, MonitorSelfTime>=1.14626e+09
(491/377)

exitl :- Memory>=1930, Disk<=555320 (1670/1639).

default exit0 (11904/4503).

Error rate on holdout data is 30.9852%

Running average of error rate is 30.9852%

------------------------- rUN 2 -------------mmmmmmomm -

Hypothesis: exitl :- Memory>=1930, Disk<=541186 (2076/1812).
default exitO (12090/4606).

Error rate on holdout data is 31.8791%

Running average of error rate is 31.4322%

------------------------- runN 3 --------------mmmmmmmee -

Hypothesis:

exitl ;- Memory>=1930, MonitorSelfimageSize>=8.844e+09 (1270/1050).
exitl :- Memory>=1930, Keyboardldle>=815995 (793/763).

exitl :- Memory>=1927, EnteredCurrentState<=1.14625e+09,
VirtualMemory>=2.09646e+06, LoadAvg>=30000,
LastBenchmark<=1.14623e+09, MonitorSelflmageSize<=7.836e+09 (94/84).
exitl :- Memory>=1927, TotalLoadAvg<=1.43e+06, UpdatesTotal<=8069,
LastBenchmark<=1.14619e+09, UpdatesLost<=1 (77/61).

default exitO (11940/4452).
Error rate on holdout data is 31.8111%
Running average of error rate is 31.5585%



Unexpected Discoveries

1 Purdue (91343 jobs on 2523 CPUs)
— Jobs fail on machines with (Memory>1920MB)

— Diagnosis: Linux machines with > 3GB have a
different memory layout that breaks some
programs that do inappropriate pointer arithmetic.

1 UND & UW (4005 jobs on 1460 CPUs)

— Jobs fail on machines with less than 4MB disk.

— Diagnosis: Condor failed in an unusual way when
the job transfers input files that don’t fit.



/= Condor Log Analyzer - Windows Internet Explorer.

6@ - |ﬁ, http:/fcondorlog.cse.nd. eduf V| || X |Gu:ucu;||e | 2

ﬁ '-‘ﬁi' [ECDndDr Log Analyzer l_l ﬁ = Eﬂ E.éa - IﬁvF‘age - _Q:} Tools -

Condor Log Analyzer

Upload Your Log Files:

Required User Log File: | |[ Browse... |

Optional Machine File: | |[ Browse... ] iy
| Upload My Log Files | ; '

Frequently Asked Questions | Tmmm—— e

+ What's going on here?
This web site allows you to upload log files generated by the Condor distributed computing system, and get back graphics and an explanation of what happened in
the system. This can aid in understanding a workload of hundreds or thousands of jobs. Here is an example of the output.

+ How do | create a user log file?
Add this line to your Condor submit file: 1og = userlog.txt

+ How do | create a machine file?
Run this command: condor status -1 > machinefile.txt

+ Why are you doing this?
We are constructing new tools that help people to debug distributed systems. The problem is, we need lots of log data to test our ideas on. So, if you upload your
log files, you get (we hope) a useful result, and we get more data to practice on.

+ Will others be able to see my data?
The URL of your results is based on the checksum of vour logfile. So. if you want to share your results with others, you can simply send the URL to your friends. If
wyou do not want others to see your data, then don't publicize the URL, and it is highly unlikely anyone could guess it.

s« Can | download graphics and logs to use in my own papers, presentations, etc?
Yes, go right ahead. We would appreciate it if you give us a credit with the following citation: Douglas Thain, David Cieslak, and Nitesh Chawla, "Condor Log
Analvzer”, http:condorlog. cse.nd edu, 2008.

T

— Condor Log &n...



= Condor Log Analyzer - Windows Internet Explorer
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Condor Log Analyzer

Workload Summary: Event Summary:
CPU Time: B0+18:22:56 Jobs Submitted: 6372

Total Goodput: 57+09:39:27 Execute Events: 7812
Total Badput: 3+08:43:29 Vacate Events: 1855

Elapsed Time: 0+07:36:44 Jobs Removed:
Jobs Complete: 6372

Workload Timeline - gif - eps - gnuplot - data
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