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Executive Summary
	The FermiCloud Project has evaluated a number of hardware, operating system, and infrastructure-as-a-service technologies.  We have acquired the production hardware for the cloud platform.  We have finalized the requirements for the FermiCloud Infrastructure-as-a-service facility and opened it up to early adopters.  Although no single open-source infrastructure-as-a-service package meets all of our requirements at this time, through a combination of packages we can meet all the use cases of our known stakeholders.  In a separate document we will present the project plan for FermiCloud Phase 2, the work that remains to be done to have a completed Infrastructure-as-a-service platform for scientific users at Fermilab.
Introduction
	The goal of the FermiCloud Project is to investigate, design, and deploy an Infrastructure-as-a-Service facility for use by the grid and storage developers, integrators, and testers of the Fermilab Computing Division, and other interested scientific stakeholders.  In the past, developers and integrators have faced a very long lead time to get approval to buy machines, get them sited in a computer room, and then manage them once they get there, and the machines often end up being underused.  The idea of infrastructure-as-a-service is that users can request virtual machines on demand without intervention from the system managers, and the machines live only as long as they are needed.  This is the main difference between infrastructure-as-a-service where machines come into being at the request of the user, and a more static and proprietary virtualization management utility such as Citrix XenServer, VMWare ESX, or Oracle VM.
	The initial FermiCloud service is sized to fit our known stakeholders but we are trying to identify and deploy a facility which can scale to much bigger proportions and be interoperable with other large cloud-based users and facilities.   In addition to virtualizing infrastructure for known computing loads, cloud computing offers the capability to attack new classes of computing problems which have not been amenable to grid computing.
	The conclusions of this report are drawn for the use case of infrastructure-as-a-service on demand and are not meant to be a one-size-fits-all recommendation for all virtualization at Fermilab. It is not our scope to virtualize classic IT services; this is being pursued by another group in a different quadrant.  Nor is it our scope to virtualize all worker nodes of FermiGrid or to allow submission of arbitrary virtual machines as jobs to a batch system at this time.  Finally, FermiCloud is not meant to allow the running of non-approved OS at Fermilab or to allow the continuation of any OS beyond its natural support life time.
Definition of Terms
	There are three major categories of compute services commonly referred to as Cloud Computing.  These are Software-as-a-service, examples being the Kronos payroll system and Service-now.com, Platform-as-a-service, examples being the Google App Engine and Microsoft Azure, and Infrastructure-as-a-service, such as Amazon EC2, Rackspace.com, the Magellan project, and FermiCloud itself.  In addition, the field of cloud computing includes object-oriented storage such as Hadoop and the techniques such as MapReduce that can be done to objects in that storage. 
A Public Cloud, such as Amazon, accepts virtual machines across its web interface from outside its own facility.  A Private cloud, such as FermiCloud, does not open its web interface to users outside its facility.  A Hybrid cloud is a combination of private cloud and public cloud resources, with utilities to provision extra resources on demand in the public cloud if the private cloud is full, a technique known as cloudbursting.  
A typical Infrastructure-as-a-service facility consists of hardware, operating system, hypervisor, cloud management software, and facility-provided customizations.  Most cloud management software has the notion of a cloud/cluster controller, which are the nodes that manage the cloud, and of a VMM host, which are the individual computers that host all the virtual machines, sometimes also referred to as the Node Controller.  There will be much reference in this document to EC2, which is Amazon's Elastic Compute Cloud.   Their API is the de facto industry standard; it is also a swiftly changing target.  Their code is not open-source but the specification of their API is, and the various open-source developers are trying to emulate it as best they can. There is an ecosystem of developers who have written client tools which can be used both on Amazon and on the various open-source clouds that we are evaluating.  (Need diagram here.)
Technology Evaluation

	Hardware
	Intel CPU's were chosen for this project given the long and successful track record we have had with Intel and virtualization.  We chose the LSI-1078 RAID controller for its demonstrated good disk throughput and reliability both in the FermiGrid Services machines and in the OSG Services Gratia database machines.  We bought the fastest RAM that we could get (1333MHz).  We hooked up two “Infiniscale” infiniband cards in 2 machines and made sure that we could see and use them under the Xen kernel.
	Operating System / Hypervisor
	The two open source OS/Hypervisor combinations available to us were Scientific Linux running Xen and KVM (Kernel Virtual Machine).  
	Xen
	Fermilab has had machines running Xen since 2004.  Xen has three components, the hypervisor kernel, the client kernel, and the userland tools.  Xen has two modes of virtualization that they support, paravirtualized (PVE) and hardware (HVM).   We have used almost exclusively the paravirtualized type of Xen due to its superior performance.   The Xen hypervisor kernel is developed by XenSource (which is owned by Citrix/EMC) and available in open source form at xen.org.  Since Scientific Linux 5.2 it has been repackaged by our Upstream Vendor and been available as part of Scientific Linux.  Under Scientific Linux 6 this will not be the case due to the Upstream Vendor dropping this support and making KVM their exclusive virtualization solution.   It is expected that xen.org will make available Xen hypervisor kernels that are customized for SL as necessary, just as was done previously.  The client kernel which is run by all of the Xen guest domains also currently has to be specially compiled, but in the 2.6.31 and greater kernels the paravirtualized drivers pv_ops needed for Xen will be part of the stock kernel, thus Sci. Linux 6 can easily be a Xen guest.  
	Xen has successfully been used in the FermiGrid project to run everything from Globus gatekeepers to large Postgres and MySQL databases.  All the disk I/O measurements we have done are statistically consistent with running on the “bare metal.”  Network and CPU performance are comparable as well.  Within the last year we have noticed some instability in the system time for 32-bit hosts on 64-bit guests but these seem to be problems that plague all virtualized systems right now and have also been reported in VMWare and KVM.
KVM
	The Upstream Vendor for Scientific Linux purchased the company which was developing KVM a few years ago, and announced that it would be their main virtualization solution going forward.   KVM uses the full hardware virtualization features of Intel and AMD hardware.  Initial implementations of KVM only supplied a virtual 100MBit/sec interface and an IDE disk.  Now “Virtio” drivers have been written for KVM which deliver quite acceptable I/O performance on disk and network.   KVM has the advantage that no special kernel is needed in the virtual machine, making it easier to move from bare metal to virtual machine and back.  In addition KVM has the capacity of overbooking memory and CPU on the virtual machine host, allowing for each virtual machine to only use the memory it needs at any given time.  In addition KVM has a feature whereby the same shared libraries may be shared in common among a number of virtual machines.  A table of network and disk performance is below.  While speeds of network block reads and writes are similar to bare metal, it should be noted that for more complicated I/O tasks such as running Root or running a Lustre server, there has been up to a 50% degradation observed.  The overall KVM disk and network  performance is not quite as good but more improvements are expected  soon in the 6th version of Enterprise Linux.    
History has shown us that it is not a good idea to try to work against a technological direction choice made by the Upstream Vendor.  Thus we will deploy the bulk of our cloud on KVM, reserving a couple nodes for Xen.  All three cloud software systems we have evaluated support both Xen and KVM.
These tests were performed on Dell Poweredge 1950 servers with dual Intel Xeon X5355 (2.6GHz) CPU's, one of the two GB network ports active, 16GB of RAM, and a single 500GB SATA drive.  Note that when we specify 2 streams that each line of the table shows the throughput for a single stream.
 
	KVM iperf tests ( 2 min. test)
	Bandwidth
	Host cpu %
	VM cpu %

	 Bare metal to bare metal, single stream
	950Mbps
	14
	

	 KVM to bare metal single stream 
	949 Mbps
	110
	56

	2 KVM to bare metal stream A 
	474 Mbps
	56
	11

	2 KVM to bare metal stream B
	483 Mbps
	56
	11

	2 KVM to 2 bare metal stream A
	463 Mbps
	56
	11

	2 KVM to 2 bare metal stream B
	490 Mbps
	56
	11

	KVM to KVM within same host
	2910Mbps
	120
	56




	KVM Disk test (Bonnie)
	
Size (MB)
	Block read
KB/sec
	Block read
CPU
	Block write
KB/sec
	Block write
CPU

	Bare metal
	30000
	67908
	15.4
	51341
	3.8

	KVM VM
	30000
	23073
	5.5
	58959
	7.4



	Xen iperf tests ( 2 min. test)
	Bandwidth
	Host cpu %
	VM cpu %

	 Bare metal to bare metal, single stream
	947 Mbps
	11
	

	 Xen to bare metal single stream 
	949 Mbps
	0
	11

	2 Xen to bare metal stream A 
	474 Mbps
	0
	3.5

	2 Xen to bare metal stream B
	478 Mbps
	0
	3.5

	2 Xen to 2 bare metal stream A
	265 Mbps
	0
	2

	2 Xen to 2 bare metal stream B
	681 Mbps
	0
	5

	Xen to Xen within same host
	1860 Mbps
	0
	15




	Xen Disk test (Bonnie)
	
Size (MB)
	Block read
KB/sec
	Block read
CPU
	Block write
KB/sec
	Block write
CPU

	Bare metal
	30000
	54117
	10.6
	62093
	0.8

	Xen VM
	30000
	59754
	7.0
	69929
	0.1



	Commercially enhanced hypervisors
		
	VMWare is the commercial market leader and has the advantage of being able to run on Linux and Windows Hosts.  The Virtual Services group has a VMWare installation.  Given the high licensing costs we do not believe it is financially feasible for a cloud of this size.  However, we will have to have capacity to transfer virtual machine images in and out of VMWare.  We did not seriously consider Sun/Oracle's VirtualBox as a solution since it appears to be aimed mostly at the desktop market, although it is open source and we are aware of some campus grids that have used it to deploy virtual machines.
	There are two commercial solutions that bear mentioning here.  Both are commercialized and hardened versions of Xen.  One is Citrix's XenServer (and its open-source cousin XCP/XCCS).  The other is OracleVM, the successor of Virtual Iron, which has no open-source counterpart.  Both of these are using open-source Xen technology in their kernels; the value they add is a management GUI.  A management GUI at the machine-by-machine level, while very valuable if managing a collection of more or less static virtual servers, is not so necessary when dealing with infrastructure-as-a-service, which queries the hypervisors via the libvirt API and has its own GUI.
	Infrastructure-as-a-Service Software
	Base package and features
	We evaluated three open-source cloud control software systems, Eucalyptus 1.6.2, OpenNebula 1.4, and Nimbus 2.4.  All three of these packages released new production versions during the time we were evaluating, namely Eucalyptus 2.0, OpenNebula 2.0, and Nimbus 2.6, with significant new feature announcements in all.  We divided the members of the team between the three packages and had each member install and commission one of them.
	Eucalyptus
		Eucalyptus was initially developed at University of California Santa Barbara to be an open-source implementation of the Amazon EC2 API.  The developers have now left UCSB to form eucalyptus.com and they offer an open-source edition as well as an enterprise edition.  The software consists of a cloud controller and cluster controller daemon which run on the head node, and a node controller daemon on each of the machines that will be hosting virtual machines.  The software is implemented as Axis web services.  In addition they have the “Walrus” service which is an implementation of Amazon's S3 object store to be a repository for virtual machine images.  They also offer an implementation of Amazon's EBS (Elastic Block Store) which allows to attach an extra partition onto multiple virtual nodes.  Their goal is to offer all the same functionality that the Amazon EC2 API does, and none that it doesn't.  In the default configuration Eucalyptus runs the cloud controller, cluster controller, and storage emulations on a single head node, and a node controller daemon on each VMM host.
		Eucalyptus offers binary packages for most Linux distributions including CentOS,     Ubuntu, Fedora, and SUSE.  There is a set of command line tools also available for those distributions which can also be compiled under MacOS.   Eucalyptus was tested on a large cloud by the Magellan project at Argonne and we did compare notes with them.
	OpenNebula
OpenNebula is developed by the Reservoir project which is funded by the EU.  It is meant to be a multi-purpose toolkit for management of virtual infrastructure of which the cloud API is only a part.   It allows for construction of a wide variety of virtual machines.   They have a native XML-RPC API which can be accessed either by a web-based console application or via the command line.  Most of OpenNebula is written in Ruby with a few core daemons written in C++.  In addition OpenNebula emulates a small subset of the Amazon EC2 Query API, and also the OCCI (Open Cloud Computing Initiative) API.  OpenNebula can be and has been customized to work with a variety of underlying network topologies and storage systems.
OpenNebula is available in open source and also in binary packages for the leading Linux distributions.  There is a large deployment at CERN, which is using it to distribute thousands of simultaneous virtual machines to worker nodes.  OpenNebula's daemons run all on the head node.  Operations on the VMM, which include monitoring (im) , virtual machine launch (vmm), and file transfer(tm), are accomplished via the oneadmin account doing ssh to the remote VMM hosts.
	Nimbus
Nimbus is developed by the Workspace Services group at the Univ. of Chicago/Argonne.  It is an outgrowth of the Virtual Workspace Service which was once part of the Globus project.  The Nimbus project is dedicated to enabling science cloud computing in the cloud, both on science clouds and on Amazon's EC2.  Nimbus is mostly written in Java with some python and shell scripting add-ons.  Their core API is the so-called workspace API, accessible through their WSRF interface which borrows much code and its container structure from Globus GT4.  They also have an emulation of a subset of the Amazon EC2 SOAP and Query API's.  It is distributed as a source tarball.  
In Nimbus 2.5 and afterwards, they changed from an image repository which was based on GridFTP to Cumulus, which is an emulation of the Amazon S3 API.    Nimbus has a large deployment at IU's FutureGrid plus on an assortment of smaller science clouds.  
	Provisioning and Contextualization
	All three cloud systems have contextualization mechanisms available.  Eucalyptus uses the “Extended Metadata Service.”  This is a special-purpose URL available from within the cluster that gives the virtual machine access to information about itself, including the ability to distribute files.  Unfortunately it works only in the “managed” network mode.  Nimbus has the Context Broker which can simplify launching multiple machines as a cluster in the cloud.  OpenNebula has a contextualization section in the template files that create its virtual machines.  In the contextualization section the user declares a list of files which are bundled into an ISO file system, transferred to the VM host along with the OS image, and then mounted at boot time.
	In addition to the existing mechanisms, we found it necessary to develop a script to pull node-specific secrets such as Kerberos keytabs and X.509 host credentials  from a secure store at boot time.  This script is independent of cloud system and could be used in any system.  With this script it is not necessary to store secrets in the image repository, which is against draft security guidelines.
	Authentication and Authorization
		All communication with Eucalyptus is done via emulated EC2 API’s.  The command line tools and web tools can use either a SOAP API, which uses X.509 certificates to authenticate the user and service, or a EC2 Query (ReST) API which 	uses the Amazon access/secret key pair.  Unlike the Amazon EC2 service, the certificates that Eucalyptus uses are self-signed and not issued by any trusted certificate authority, and not easily replaced.  Also personal certificate and key pairs used in the SOAP API can’t be passphrase-protected.
		Nimbus has Globus-compatible authentication via its WSRF API, the same core as what is in Globus GT4 web services.  However, the newer features (EC2 Soap and Query API and Cumulus S3 authentication) don’t use these features.  Earlier versions allowed gridftp file transfers to upload images but this feature is no longer active.
		OpenNebula has a pluggable authentication feature.  By default it ships with “Plain” authentication which is a simple username/password and also allowed LDAP or SSH.   It was clear that using available Ruby routines it would be possible to enable X.509 authentication.
		Overall, our review of the EC2 Query API as implemented by all three packages is that the access/secret key combination as used by Amazon and all three of its emulations is not a strong enough secret for successful authentication of users or for encryption of the data stream.
	Virtual Machine Image Library and Block Storage
		Eucalyptus has the “Walrus” package which is an emulation of Amazon's S3 protocol, and they use it natively for users to upload images as well as image distribution to the VMM host when machines are launched.   Before upload the VM image is encrypted, compressed, and broken up into small chunks so that retry is possible if the upload is interrupted.  The Amazon S3 service is constructed to send different pieces of the VM from multiple mirrored hosts, but the open-source version of Eucalyptus restricts the repository to a single machine, thus creating a disk and network bottleneck and making a SAN of little use.  
		Nimbus has deployed “Cumulus”, also an emulation of the Amazon S3 protocol.  S3-like web interfaces are used to upload images to the cloud.   Distribution of images to the worker nodes can occur via a number of configurable protocols but the default is to have Cumulus use a POSIX file system store on the back end and use ssh/scp to copy the OS image to the final worker node.  Earlier versions of Nimbus used GridFTP.
[bookmark: _GoBack]		OpenNebula has no native image repository of its own, but does have a database backend to keep track of user images, which can be stored in a variety of OS-based formats.   There are several pluggable “transfer managers” which can be used to transfer machines from the image repository to the worker nodes.  These include NFS, SSH, and LVM.  The latter relies on caching a worker node image on each worker node and then making a LVM snapshot of the image for each new virtual machine that is launched.  Since only the blocks that change get written, the launch time is very fast.  CERN has used LVM to rapidly launch thousands of similar worker-node style virtual machines in combination with LanTorrent and other utilities to keep the copies of those virtual machines synchronized on all the virtual machine hosts.
	Virtual Machine Operations:
		Eucalyptus attempts to follow the Amazon EC2 usage model as closely as possible.  This assumes that the customer will have reason to stop his unused virtual machine on his own because the charge meter is running.  Thus Eucalyptus does not provide access to the underlying migration, save, pause, and resume functions of libvirt.  It is possible to save a machine manually but not automatically.  There is no notion of scheduling or of advanced reservation or of quota.  Eucalyptus has the annoying feature that if the cloud controller is rebooted, it loses track of all running virtual machines, and the controller daemons are prone to crashing for no good reason.
		OpenNebula allows any operation which is possible with the native hypervisor and libvirt to be done to a VM, including pausing, stopping, resuming, saving, shutdown, reboot, and live migration.  Live migration requires a shared file system between all the nodes.  It is possible to create your VM to be saved by default or not.  The system can recover from the reboot of the cloud controller or a VMM host.
		Nimbus can survive the reboot of the cloud controller but does not accurately detect if a virtual machine has been shut down outside of its control by the reboot of a VMM host.
	Network Topology
		Eucalyptus allows either a “static” topology which is a list of IP, MAC pairs or a “managed” topology, in which all network communications from the cluster controller to the virtual machine is done on a set of private VLANS, one for each different security group.  Public ip's, if used, are attached at the cluster controller via NAT and access is granted on a port-by-port basis.  This is the “Elastic IP” feature of EC2.  Only one network bridge can be opened per virtual machine.   Although this is a very helpful and secure way to manage the network, in Eucalyptus it is implemented in a way that makes the cluster controller a network bottleneck and a single point of failure.  Eucalyptus assigns all network addresses to hosts via DHCP.
		OpenNebula allows for the admin to define a wide range of network topologies, including choosing a single static IP address, choosing from a pool of static IP addresses and making public/private and private-only VM's.  Different special-purpose networks can be defined for different users.  The network address is passed to the virtual machine at initialization.  They also have the concept of a “ranged” subnet for private-only clouds in which a range of MAC addresses is defined and private IP addresses are auto-generated from that.  
		Nimbus uses a similar scheme to Eucalyptus but the “managed” topology does not appear to be supported at this time.  All addresses are assigned to hosts via DHCP, either via a node-by-node local DHCP server or via the system DHCP server.
	Clustered File Systems
	The closely-related Grid Storage Evaluation Project by G. Garzoglio and D. Strain successfully ran Lustre clients and servers on bare metal and under KVM. They also ran Lustre clients under Xen kernel.  Benchmarks for these activities will be in their report.   Independently we tested HDFS (Hadoop) under Xen and KVM and it worked on both, and also running  dCache servers and pool nodes under KVM.  The OSG Storage project has been running BestMan gateway and bestman-Xrootd independently under KVM for quite some time.  We have also successfully run AFS under Xen and mounted the bluearc NFS volumes under Xen.  Recently OCFS2 (Oracle Clustered File System 2) was released as open-source.  We have not yet had a chance to try this as yet.  It is listed as part of the second phase of the project.
	Requirements
	We refer to the completed hardware and software system that is to be created by this project as the “cloud system” below.   The Requirements are for the whole system, from hardware, OS, hypervisor, cloud management software, and potential addons created by Fermilab.
A.  Anticipated Cloud Capacity Needed by Stakeholders
1. Initial stakeholder surveys indicated we would have need for 80-90 simultaneously-running virtual machines, with (on average) one physical core per virtual machine and 2-4GB of RAM per virtual machine.  Other customers have come forward since that time with an equal number of machines.
B.  Hardware Technical Specification
1. Dual Intel E5640 “Westmere” processors, four cores each, 2.67 GHz.
2. 24GB RAM, 1333MHz, DDR-2 SDRAM.
3. Two 300-GB SAS system drives in RAID-0
4. Six 2-TB SATA data drives in RAID-5 configuration.
5. LSI MegaRaid SAS 1078 RAID controller—can source 300MByte/s of data rate from the above disk configuration.
6. Dual 1-GB Ethernet interfaces
7. ConnectX-2 (Mellanox) Infiniband card, DDR, 20GB/sec bandwidth
8. 23 machines purchased, 192 physical cores, 384 hyperthreaded cores total.
	We anticipated, and tests proved, that each of these machines could source 300 Mbyte/sec of data rate from disk.
C.  OS/ Virtualization Specification
1. The cloud head nodes and node managers must be able to run Scientific Linux.
2. The cloud must be able to run all Fermi-approved Linux operating systems.  Currently these include Scientific Linux Fermi, and Fermi STS.  Support for Windows virtual machines is considered a plus.
3. The cloud must support the use of Xen and KVM hypervisors, and be able to launch virtual machines using the KVM Virtio drivers for disk and network access.  Support for VMWare hypervisor is optional.
4. The cloud system must have user space tools available for Linux, Windows, and Mac.  Ideally these will be both of the command line and the GUI variety.
5. The cloud system must provide a method to move a virtual machine from desktop-based virtualization systems, specifically VMWare, Parallels, and VirtualBox, to the cloud and back, converting the image format as necessary.
6. The cloud system must have the hardware configuration of the virtual machines it creates be configurable.  In particular it must be possible to create one “Storage VM” per node which mounts the 10TB  RAID 5 array.  It must also be possible to create virtual machines with multiple network bridges, and machines that recognize and share the Infiniband card on the system.
D.  VM Provisioning/Contextualization Specification
1. The cloud system must have an option to boot a Linux installation image and install a clean virtual machine via Kickstart.
2. The cloud system must be able to leverage current large-scale configuration systems currently in use at Fermilab such as CFEngine and Puppet.
3. The virtual machine and operating system installation must be completely automated and supportable by groups who manage large quantities of machines.
4. The cloud system must allow the creation of a cluster of machines and let them all know where all the others are.
5. The cloud system must allow for attaching a set of machine-specific files corresponding to a specific IP address during contextualization, or going out and finding and/or creating on the fly files that belong to one of a list of IP addresses.
E.  Object Store Specification
1. The object store must be capable of holding at least 300 simultaneous virtual images at an average of 10GB apiece.
2. Clear instructions must be available on how to make a virtual machine image in the form that is required by the object store, and how to convert among the various incompatible image formats used by different hypervisors and cloud software.
3. The object store must be capable of launching the same virtual image on 400 cores all at the same time without crashing, in a period of time consistent with wire speed on the network.
4. The object store must be able to launch 100 different images all at the same time that were not previously cached, in a period of time consistent with wire speed on the network
5. Privilege separation must be available so that one user cannot access the images of another.
6. Authentication secrets such as encrypted kerberos keytabs or passwordless x509 private keys should not be stored in the virtual image repository.
7. Encryption and compression of the virtual image repository is a plus.
8. Emulation of the Amazon S3 service is a plus if it works scalably as defined above.
9. Emulation of the Amazon Elastic Block Storage (EBS) is also a plus if it works scalably as defined above.
F.  Interoperability Specification
1. The cloud system must be able to run CernVM-formatted virtual images.
2. The cloud system must be able to run virtualized worker node images as are currently being designed by the HEPiX virtualization taskforce.
3. The cloud system must be able to run virtual machines of the type being specified for LHC Tier 3 facilities.
4. The cloud system must demonstrate the capacity to “cloudburst” to a commercial cloud such as Amazon EC2.
5. The cloud system must support the Amazon EC2 REST API (query API) and the Amazon EC2 SOAP API.
6. The cloud system must accept submissions from the Condor-G “ec2” type universe.
7. The cloud system may support other API's as well, every extra API will be considered a plus.
8. Users must be able to upload images, start virtual machines, and view the state of their virtual machines via a Web GUI.
G.  Functionality specification
1. The cloud system must allow the option to pause and resume a virtual machine.
2. The cloud system must allow the option to save the state of a virtual machine, including running processes and memory state as well as files, and then restore it at a later date.
3. The cloud system must allow the live migration of a running virtual machine from one host to another.
4. The cloud system must be able to detect virtual machines which have been idle for a configurable length of time, suspend them, and launch worker node machines to backfill the cloud.
5. The cloud system must have the capacity to launch virtual machines at a certain time of day or week, and to reserve them for a certain interval.
6. The cloud system head node must have the capacity to recover from the reboot of a virtual machine host node without getting confused.
7. The cloud system control software must be able to be stopped and restarted without losing track of all the running virtual machines or being forced to restart them all.
8. The cloud system daemons must be able to run for long periods of time continuously without losing track of virtual machines or crashing with exceptions.
9. The cloud system must have the capacity to define user groups and assign quotas of virtual machines to groups of users, or to individual users.
10. The cloud system must be able to do fair-share scheduling in the case when the cloud is overloaded.
11. The cloud system must be architected so that it can be made a highly available service.
12. It is strongly preferred that the high availability of cloud daemons and live migration not require an external SAN to implement.
H. Accounting/Billing specification
1. The cloud system must report how many virtual machine instances have been run by which users and groups, how long they have been run, and how active they were while running.   Gratia project is currently considering extensions of this type.
I.  Network Topology Specification
	The cloud system must support IPv6.  We must have the capacity to deploy the following five use cases:
1. Launch a virtual machine with the same static publicly-resolvable IP address every time.
2. Launch a virtual machine with one of a list of static publicly-resolvable IP addresses, and load whatever machine-specific data is necessary depending on the IP you get.
3. Launch a coordinated cluster of a “head node” with public and private IP's and “worker nodes” with only private ip's, with passwordless ssh/rsh on the private net.
4. Launch a machine or machines on a dedicated private subnet with option to route a public IP address to the private IP address if necessary.
5. Launch a machine or machines on a dedicated private subnet with an option to open a publically addressable IP address on a second network bridge if it is found to be secure and patched.
J.  Clustered File System Specification
1. The following clustered network file systems must be able to run as servers and clients in the cloud:  Lustre, Hadoop, dCache, BestMan (xrootd and gateway), NFS.  Support for OCFS2 is considered a plus.
K.  Security Policy Specification
1. New virtual machines to be subjected to vulnerability/virus scan before being allowed to access public network, by leveraging Fermi network jail if possible.
2. All virtual machines must take advantage of standard site-wide security patching mechanisms
3. The cloud software must have a feature to periodically wake up dormant virtual machines to make sure they get their patches on a regular basis.
4. Authentication and authorization processes for launching a virtual machine image and logging into it once launched must be those approved for Fermilab's Open Science Enclave.  A recognized Kerberos credential or Grid certificate from a Certificate Authority accepted by Fermilab must be presented.  
5. Inter-process communication and file transfer among the daemons of the cloud control software must be done via secure protocols.
6. If X509 certificates are used for authentication, it must be possible to replace them with certificates issued by an IGTF-trusted Certificate Authority such as DOEGrids or the Fermilab HSM KCA.
Weighted Decision Matrix
The weighted decision matrix is included under separate cover as an Excel spreadsheet.  The contents of that matrix should not be disclosed to non-Fermilab staff or users.  The matrix was made by comparing the above requirements with the characteristics of the three software packages we evaluated.  Scores were based both on the availability of features, and on the quality of their implementation. 
Pilot FermiCloud Service as Deployed: Nov 2010-present
	The FermiCloud Service was deployed using OpenNebula 2.0 with fcl002 as the head node and seven virtual machine hosts fcl003-fcl009.  The head node runs the scheduler daemon and the master daemon.  It has the capacity to launch virtual machines via an emulated EC2 Query API but this was only used for our internal investigations and not made available to users.  Sample SLF5 OS images were made available from users and all users took advantage of them to start.  The image repository is stored on the local disk of fcl002.  Users have the capacity to save intermediate copies of their OS images after they have made modifications and extensions, and re-launch the modified copy of the OS image.  There is also a facility to save small (10-50GB) data volumes.  When production shifted to OpenNebula we had approximately 20 virtual machines running at any given time.  In the past year we have grown to 110 virtual machines running on average, and added six more VM hosts to the production cluster.
Conclusions
	Although Eucalyptus provides some security and network management functions that the other cloud providers do not, they do it at the cost of scalability and are too rigid to be able to deploy the diverse types of virtual machines we need, and have significant problems with reliability as well.      Nimbus provides most of the other features that Eucalyptus has, plus a well-developed notion of group quotas, reservation, and priorities.  In particular it provides the EC2 SOAP API needed to work with Condor Grid/EC2 universe submissions.  OpenNebula is lacking the SOAP API but has unprecedented versatility in launching exactly the kind of virtual machines we want, and also has shown the best stability and scalability to date.  Based on the results of the technology evaluation we have redeployed most of the nodes that had Eucalyptus on them to be Nimbus instead, and are beginning discussions with the OpenNebula and Nimbus developers to determine which of the packages can best meet our needs long-term.
