Fermi National Accelerator Laboratory
NIMI V2_0 Scope Document

Jim Fromm
1/22/2010

1. Introduction and Background
Recent requirements have been identified that necessitate new functionality be added to the NIMI software package. This document will discuss these requirements and define the scope of that project. There are essentially three new components that will be introduced in NIMI v2_0:
1. TIssue based exemption system
2. Simplification of the detector interface
3. Reorganization of code base

This constitutes the scope of the project. Each of these components will be discussed below, giving background information and motivation for why the changes are needed.
2. Project Details
This section will describe each element of this project in more detail.
A. Tissue based exemption manager
The recent introduction of the TIssue baseline detectors has highlighted the need for an event-based exemption system within the NIMI infrastructure. This system would allow for creation, configuration and management of exemptions as well as the ability for the issue tracking code software(TIssue) to alter normal processing based on these exemptions. This system would constitute what has been referred to as the “relief” system within the enforcement system as outlined in the Fermilab Baseline Process Framework (https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=3358).
As baseline detectors have been rolled out, the inability to allow for event creation to be filtered through some exemption system has proved problematic. For example, the Linux baseline detector and the Windows Aged Password detector both required exemptions. Both implemented exemptions in the detector, using a manually maintained white list.
 A manually created and maintained white list does not scale to the number of exemptions that will be needed. With a manually maintained list, it’s necessary to remember when the exemption is no longer valid so that the entry can be removed. The danger is a list of exemptions that should have been “expired” long ago, but instead are still in place because they have been forgotten. In addition, a manually maintained list provides no means of notifying the sysadmins that an exemption is about to expire.
Exemptions should be managed through a formal role-based approval process. Relevant roles are envisioned to include system administrator, CPPM’s, and the Computer Security Head (or their designated alternate). The system should allow for flexibility in defining roles and workflow.
 To implement the exemption engine, the scanning exemption architecture (CST-RA) will be re-architected to implement a general purpose exemption system. The CST-RA application (Computer Security Team – Risk Analysis) was a product originally developed to collect information about computers that would drive the creation of a Risk Analysis form to be completed annually by the system administrator. This application was never used for its intended purpose, but the network scanners discovered that the pieces of CST-RA could be used to control nmap parameters to allow for throttling back or completely bypassing devices that were sensitive to port scanning. In essence, CST-RA became a specialized exemption system.
The CST-RA application is a good candidate to re-architect into a general purpose exemption system that can be used by both the port scanners and the TIssue application. Approval was granted to formally declare the Risk Analysis functionality dead, and the first steps of removing elements related to the Risk Analysis questionnaire from the application have been completed.
The exemption system must provide the ability to selectively suspend or alter the enforcement of baseline rules, independent from the specific software that detected the event (i.e. the detector). An exemption system based on existing architecture will be built to allow the management and configuration of TIssue and port scanner based exemptions.

B. Simplification of the detector interface.
TIssue v2_0 will allow for easy development of TIssue detectors, allowing for the creation of detectors with minimal scripting skills. Developing the client side of a detector in the current environment requires that the entire NIMI suite be installed and configured in the development environment, as well as requiring that the client side of the detector be developed in Python. It is simply not feasible for a person without an understanding of the NIMI architecture to develop a detector. A team approach must be utilized – the analyst who understands that business logic must feed that information to a NIMI developer who can actually write the detector. At the very least, this introduces inefficiencies and at worst introduces errors through miscommunication. The recent development of the password aging detector for the Tune IT Up campaign and the Linux baseline detector illustrated these problems clearly. In addition to client side development, in the current environment it is necessary to change the server side which can only be done by a NIMI developer. In essence, the current architecture requires both client and server code to be developed for each new detector. This approach will not scale to the number TIssue baseline detectors that are being proposed.
Simplifying the TIssue interface will mean that creating a detector will be possible by those with minimal scripting skills without server side changes. This will allow the focus of the detector writing to be on the business logic, not the implementation details. Using a thin SOAP client will allow people to quickly develop detectors on a platform and scripting language of their choosing with minimal setup.
C. Reorganization of software packaging.
Currently, the NIMI infrastructure is packaged completely as one package (nimi) that is managed by CVS and ups. Making any change to any part of the code requires a new release of the entire package. This has proven to be problematic. One frequent problem with the current release procedure is to roll out code that was not intended to be included with the release. The “nothing or everything” approach often results in code sneaking it’s way into the production environment. Another problem with this approach is creating dependencies that should not exist. For example, during discussions for the rollout of the aged password detector for the Tune IT Up campaign, coordinating a release became an issue because modifications to the user interface were in the process of being tested for a release. While the detector was ready to be released, it could not be until the issues related to the upcoming scheduled release were resolved. The network detectors and user interface have nothing in common other than they are bundled together, and forced to be released as one. This is not consistent with a sensible release management process, particularly as the Computing Division formalizes the change and release processes through the ITIL methodology.

The NIMI package will be broken up into subcomponents along functional lines. New development, such as the TIssue exemption manager and recent baseline detectors (aged password for example), will be defined as sub packages. There are obvious candidates in the existing code that will also be broken out immediately. By looking for the obvious functional boundaries, we anticipate being able to separate NIMI into several smaller components.

Repackaging NIMI into smaller components increases overall maintainability in many ways. Release and change management will be greatly simplified, and allow for the release of only the part of the package being affected. Unit test suites can now be more easily developed, as well as allowing for the ability to develop a regression test suite. Finally, breaking up the code will result in cleanup of the code itself and major improvements in code maintainability.

3. Summary
The recent introduction of the TIssue baseline detectors has brought a request for a new type of exemption not available in the current NIMI infrastructure, as well as highlighted the need for a general purpose interface for development of network detectors and a reorganization of the NIMI software package. These changes will allow NIMI to meet the needs of the Computing Division, allow for easier transition of the NIMI software into a Change Management and Release Management process, simplify maintainability and code maintenance, and allow for the development of automated test suites to insure a more reliable product.
