
Architecting a Symbiotic Virtual
M hi M it f S l bl Hi hMachine Monitor for Scalable High

Performance Computingp g

John R. Langeg

Department of Electrical Engineering and Computer Science
N th t U i itNorthwestern University

January 29, 2010

OutlineOutline
• Palacios

– Developed first VMM for scalable High Performance
Computing (HPC)

• Largest scale study of virtualization
– Proved HPC virtualization is effective at scale

• Symbiotic Virtualization
– Created high level interfaces to enable guest/VMM cooperation

• SwapBypass

2

– Leveraged symbiotic interfaces to improve swap performance

Past and Current ResearchPast and Current Research
• Palacios: Symbiotic virtualization at scale

– OSDI 2010 (in preparation): Scalable virtualization for HPC(p p)
– USENIX 2010 (in submission): Symbiotic Virtualization
– IPDPS 2010: Palacios VMM and scaling
– USENIX 2010 (in submission): Adaptive virtual paging

WIOV 2008: Virt al passthro gh I/O– WIOV 2008: Virtual passthrough I/O
– OSR 2009: Virtual passthrough I/O

• Empathic Systems: Bridging systems and HCI
– INFOCOM 2010: Empathic networksp
– SIGMETRICS 2009: Empathic networks
– USENIX 2008: Speculative remote display

• Virtuoso: Adaptive virtual infrastructure as a service (IaaS) cloud
HPDC 2007 T t t k i– HPDC 2007: Transparent network services

– ICAC 2006: Formalization of cloud adaptation
– MAMA 2005: Formalization of cloud adaptation
– HPDC 2005: Automatic optical network reservations

3

p
– Patent # 20080155537

• Vortex: Cooperative traffic aggregation for intrusion detection systems
– RAID 2007: Cooperative selective wormholes

What is a virtual machine?What is a virtual machine?
• Run an OS as an applicationpp

– Run multiple OS environments on a single machine
– Start, stop, pause
– Can easily move entire OS environmentsy

• Trap and Emulate
P i il d i t ti / t t d b VMM

Page Tables
CPU t t– Privileged instructions/events are trapped by VMM

– Emulated in software

l k lik /di h lApplication Guest OS

Application

Guest OS

Application

Guest OS

Application
Guest

CPU state
Hardware

– VMMs look like event/dispatch loops
– Can have substantial performance impact due to lots of exits

• Puppy Linux boot process: ~2 million exits (thousands of cycles per exit)
Hardware

OS

Application

Hardware

Guest OS

Host OS/VMM

Guest OS Guest OS

VMM Emulate
Page Tables
CPU state
Hardware

4

Hardware Hardware

Hardware

Hardware

What are VMMs currently used for?What are VMMs currently used for?

• Server Consolidation
• Fault tolerance
• Legacy application support $7.58 Billiong y pp pp
• Debugging
• Isolation

$16 70 Billion

$7.58 Billion

• Virtual appliances
• Failover and disaster recovery

$16.70 Billion

• Market size

5

– 2007: $5.5 billion
– 2011: $11.7 billion

High Performance Computing (HPC)High Performance Computing (HPC)

• Large scale simulations to solve Big ProblemsLarge scale simulations to solve Big Problems

6

Virtualization in HPCVirtualization in HPC
• Fault tolerance

– Red Storm MTBI target: 50 hours
– Red Storm MTTR: 30 minutes – 1 hour

A.B. Nagarajan, F. Mueller, C. Engelmann, and S.L. Scott
Proactive Fault Tolerance for HPC with Xen Virtualization
ICS 2007

• Broader usage
– Allow applications to select best OSAllow applications to select best OS

• Only if it doesn’t degrade performance…

7

– Tightly coupled parallel applications
– Very large scale

ScalabilityScalability
• Scale causes lots of problems

– Small intra-node performance losses become incredibly large
• Per-node overhead has a Butterfly Effect

– OS timers, deferred work, kernel threads
– “OS Noise”

• Linux reduces performance by X%p y
• Linux delivers performance of ~0%

• Performance at scale is not always correlated with local• Performance at scale is not always correlated with local
performance
– 5% loss for 1 node does not equal 5% loss at scale
– Example: Paragon

8

Example: Paragon

KittenKitten

• Open-source Lightweight KernelOpen-source Lightweight Kernel
– Exports Linux compatible ABI

• Subset of features• Subset of features

• LWK for a wide range of HPC applications
O i f C t t li– Open source version of Catamount lineage

• Contributing developer
– http://software.sandia.gov/trac/kitten

9
– http://code.google.com/p/kitten/

Palacios VMMPalacios VMM
• OS-independent embeddable virtual machine monitor
• Developed at Northwestern and University of New Mexico

– Lead developer and graduate student
• Open source and freely availablep y

– Downloaded over 1000 times as of July
• Virtualization layer for Kitten

– Lightweight supercomputing OS from Sandia National Labsg g p p g

• Successfully used on supercomputers, clusters (Infiniband and
Ethernet), and servers)

10http://www.v3vee.org/palacios

Palacios as an HPC VMMPalacios as an HPC VMM

• Minimalist interfaceMinimalist interface
– Suitable for an LWK

• Compile and runtime configurability• Compile and runtime configurability
– Create a VMM tailored to specific environments

• Low noise• Low noise
• Contiguous memory preallocation
• Passthrough resources and resource

partitioning

11

HPC Performance EvaluationHPC Performance Evaluation
• Virtualization is very useful for HPC, but…y ,

Only if it doesn’t hurt performance

• Virtualized RedStorm with Palacios
– Evaluated with Sandia’s system evaluation

benchmarks
17th fastest supercomputer

C XT3Cray XT3
38208 cores
~3500 sq ft

12

q
2.5 MegaWatts

$90 million

Scalability at Small ScalesScalability at Small Scales

Within 5%
Scalable

13

HPCCG: conjugant gradient solver

Comparison of Operating SystemsComparison of Operating Systems

Shadow Paging

CatamountCompute Node Linux

14

HPCCG: conjugant gradient solver

Large Scale StudyLarge Scale Study
• Evaluation on full RedStorm systemy

– 12 hours of dedicated system time on full machine
– Largest virtualization performance scaling study to date

• Measured performance at exponentially increasing• Measured performance at exponentially increasing
scales
– Up to 4096 nodes

• Publicity
– New York Times
– HPCWire
– Communicatios of the ACM

PC World
15

– PC World

Scalability at Large ScaleScalability at Large Scale

Within 3%

Scalable

16
CTH: multi-material, large deformation, strong shockwave simulation

SummarySummary
• Virtualization can scale

– Near native performance for optimized VMM/guest (within 5%)
• VMM needs to know about guest internals

– Should modify behavior for each guest environmentShould modify behavior for each guest environment
– Example: Paging method to use depends on guest

Bl k B i f i d i bl i HPC i• Black Box inference is not desirable in HPC environment
– Unacceptable performance overhead
– Convergence time
– Mistakes have large consequences

• Need guest cooperation
– Guest and VMM relationship should be symbiotic (Thesis Work)

17

Gues d V e o s p s ou d be sy b o c (es s Wo)

Semantic GapSemantic Gap
• VMM architectures are designed as black boxes

– Explicit OS interface (hardware or paravirtual)
– Internal OS state is not exposed to the VMM

• Many uses for internal state
– Performance, security, etc...
– VMM must recreate that state

• “Bridging the Semantic Gap”
– [Chen: HotOS 2001]

• Two existing approaches: Black Box and Gray Box• Two existing approaches: Black Box and Gray Box
– Black Box: Monitor external guest interactions
– Gray Box: Reverse engineer internal guest state
– Examples

18

– Examples
• Virtuoso Project (Early graduate work)
• Lycosid, Antfarm, Geiger, IBMon, many others

Example: SwappingExample: Swapping

• Disk storage for expanding physical memory
Application Memory Working Set

Disk storage for expanding physical memory

Physical MemorySwapped
Memory

GuestGuest

VMM

Swap Disk

19Only basic knowledge without internal state

ProposalProposal

• Bridging the semantic gap is hardBridging the semantic gap is hard
– Can we design a virtual machine interface with no gap?

• Symbiotic Virtualization
– Design both guest OS and VMM to minimize semantic gap
– 2 components

• Guest OS provides internal state to VMM
G est OS ser ices req ests from VMM• Guest OS services requests from VMM

– Interfaces are optional

20

Symbiotic InterfacesSymbiotic Interfaces
• SymCall Functional Interfacey

– Synchronous upcalls into guest during exit handling
– API

• Function call in VMMFunction call in VMM
• System call in Guest

– Brand new interface construct

• SymSpy Passive Interface
– Internal state already exists but it is hiddeny
– Asynchronous bi-directional communication

• via shared memory
– Structured state information that is easily parsed

21

Structured state information that is easily parsed
• Semantically rich

SymCall (Symbiotic Upcalls)SymCall (Symbiotic Upcalls)
• Conceptually similar to System Callsp y y

– System Calls: Application requests OS services
– Symbiotic Upcalls: VMM requests OS services

• Designed to be architecturally similar
– Virtual hardware interface

S t f S t C ll MSR• Superset of System Call MSRs
– Internal OS implementation

• Share same system call data structures and basic operations

• Guest OS configures a special execution context
– VMM instantiates that context to execute synchronous upcall

S ll i i d di d h ll

22

– Symcalls exit via a dedicated hypercall

SymCall Control FlowSymCall Control Flow
Running
in guest

Return
to VMM

Nested
Exitsin guest to VMMExits

Handle exit

23

Existing ImplementationExisting Implementation

• Symbiotic Linux guest OSSymbiotic Linux guest OS
– Exports SymSpy and SymCall interfaces

• Palacios
– Fairly significant modifications to enable nested

VM entries
R t t it h dl• Re-entrant exit handlers

• Serialize subset of guest state out of global hardware
structures

24

SwapBypassSwapBypass

• Purpose: improve performance when swappingPurpose: improve performance when swapping
– Temporarily expand guest memory
– Completely bypass the Linux swap subsystemCompletely bypass the Linux swap subsystem

• Enabled by SymCallEnabled by SymCall
– Not feasible without symbiotic interfaces

• VMM detects guest thrashing
– Shadow page tables used to prevent it

25

Shadow page tables used to prevent it

Symbiotic Shadow Page tablesSymbiotic Shadow Page tables
Guest Page Tables Shadow Page Tables

Page
Directory

Page
Table

Page
Directory

Page
Table

Physical
Memory

Physical
Memory

Swap
Disk
Cache

26

Cache

Swapped out page Swap Bypass Page

SwapBypass ConceptSwapBypass Concept
Application Working Set

G t 3

Guest Physical MemorySwapped
Memory

Guest 2 Guest 3

Memory

Swap Disk

Guest 3Global Swap
Disk Cache Guest 1

VMM
physical
Memory

Guest 2

27Swap Disk

Necessary SymCall: query vaddr()Necessary SymCall: query_vaddr()

1. Get current process ID1. Get current process ID
– get_current(); (Internal Linux API)

2. Determine presence in Linux swap cache2. Determine presence in Linux swap cache
– find_get_page(); (Internal Linux API)

3. Determine page permissions for virtual addressp g p
– find_vma(); (Internal Linux API)

• Information extremely hard to get otherwise
• Must be collected while exit is being handled

28

EvaluationEvaluation

• Memory system microbenchmarksMemory system microbenchmarks
– Stream, GUPS, ECT Memperf

Configured to overcommit anonymous memory– Configured to overcommit anonymous memory
• Cause thrashing in the guest OS

• Overhead isolated to swap subsystem
Ideal swap device implemented as RAM disk– Ideal swap device implemented as RAM disk

• I/O occurs at main memory speeds
• Provides lower bound for performance gains

29

• Provides lower bound for performance gains

Stream RuntimeStream Runtime

Ideal I/O improvement
Performance improves

Working set size

30

Stream: simple vector kernel

Future Work (short term)Future Work (short term)
• Continue exploring virtualization in HPCp g

– UNM and Sandia collaboration
– Granted 5 million hours on Jaguar

• Current fastest supercomputer in the worldCurrent fastest supercomputer in the world

Oak Ridge National Labs

Cray XT5Cray XT5
224,256 cores
4352 sq. ft
6.95 MegaWatts
$104 illi

• Continue exploring Symbiotic interfaces

$104 million

31

Continue exploring Symbiotic interfaces
– Symbiotic modules

Future Work (long term)Future Work (long term)

• Large scale and heterogeneous multicoreLarge scale and heterogeneous multicore
architectures
– Virtualization as a basic building blockg
– How to use massively multicore architectures

• Symbiotic Virtualizationy
– Leverage symbiotic interfaces

• Future HPC architecturesFuture HPC architectures
– Continue OS research in HPC

• User driven adaptation and optimization
32

User driven adaptation and optimization
– Direct user input to drive optimizations

Backup SlidesBackup Slides

33

RestrictionsRestrictions
• Currently designed for short queries

– Narrow focus allows behavioral guarantees

• Restrictions:
– Only 1 symcall active at a time
– Symcalls run to completion

• No blocking
– Blocking would allow asynchronous behaviorg y

• No context switches
• No injected exceptions or interrupts

S ll t it l k
34

– Symcalls cannot wait on locks
• Waiting would make deadlocks possible

JaguarJaguar

35
Oak Ridge National Labs

Jaguar Info
• #1 on Top500

Jaguar Info
p

• Cray XT5
• Hex core AMD

Opterons
• 224,256 cores across

18 688 d18,688 nodes
– 2,332 TFlops

• 4352 sq ft• 4352 sq. ft
• 6.95 MegaWatts
• $104 million

36

$104 million

Noise effects cont’dNoise effects, cont d

37

SwappingSwapping

li i ki

Physical MemorySwapped
Memory

Application Memory Working Set

y

38
Swap Disk

Symbiotic Virtualization in HPCSymbiotic Virtualization in HPC
• HPC environments are well suited to symbiotic y

techniques

F ll tr st of the soft are stack• Full trust of the software stack
– Fewer security concerns

• Specific hardware configurationsp g
– Limited number of devices

• Environments are much smaller
I t l OS t t i i l th l OS– Internal OS state is simpler than a general purpose OS

• At large scale performance impact is dramatic
– Large impetus to optimize VMM and OS

39

g p p

Market prevalenceMarket prevalence

• Springboard Research: 2010 forcast forSpringboard Research: 2010 forcast for
Asia/Pacfic

$1 billion for virtualization services– $1 billion for virtualization services
– $350 million for virtualization products

• 451 Group: US Market
– Expected compound annual growth of 36%.
– Through 2013

40

RedStorm InfoRedStorm Info

• #7 on Top500 in 2009 now#7 on Top500 in 2009, now
• Cray XT3

Q d d D l AMD O t– Quad and Dual core AMD Opterons
– Custom SeaStar RDMA interconnect

• 38208 cores across 12,960 nodes
– 284.16 TFlops

41

Performance is keyPerformance is key

• Applications are tightly coupled and parallelApplications are tightly coupled and parallel
– Lots of inter-node communication

C bilit hi• Capability machines
– Entire machine is used for a single application

• Massive scale
– 200,000 node reduction trees…

42

No really Linux doesn’t workNo really, Linux doesn t work
• Work by UNM collaborators:y

– Kurt B. Ferreira, Ron Brightwell, and Patrick G. Bridges. Characterizing application sensitivity to OS interference
using kernel-level noise injection. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(Supercomputing’08), November 2008.

• Example: kernel threads
– MPI operations at fairly small scale

128 d• 128 nodes

– Periodic noise injection
• 2500 usec
• 10HZ

– 2.5% overhead

43

Noise effectsNoise effects

44

Symbiotic DiscoverySymbiotic Discovery

• A symbiotic OS must run on real hardwareA symbiotic OS must run on real hardware
– Interface must be based on hardware features

CPUID• CPUID
– Detection of Symbiotic VMM

• MSRs
– Configuration of Symbiotic interfaces

45

SymSpySymSpy

• Shared memory page between OS and VMM
– OS uses MSR to map into address space– OS uses MSR to map into address space

• Standardized data structures
– Shared state information

46
• Read and write without exits

SymCall environmentSymCall environment
• Specified in virtual SYMCALL MSRsp

– VMM copies values into hardware control registers

• SYMCALL MSRs
– SYMCALL_RIP

• Global code entry point for all symcalls• Global code entry point for all symcalls
– SYMCALL_RSP

• Stack frame used by SymCall
– SYMCALL_CS (+SS)

• Code segment and Stack segment used for SymCall
• Enables kernel mode execution

47
– SYMCALL_GS and SYMCALL_FS

• Special segments that point to per CPU data structures

System CallsSystem Calls

• Entry points into KernelEntry points into Kernel
– Provides privileged services for applications

• Device IO, address space modifications, etc…

• Extensive hardware support
– Fast entry to preconfigured execution state

• Switch from user mode to kernel mode
• Kernel specifies execution environment to hardware

– Model Specific Registers (MSRs)

– Special instructions for kernel entry/exit
• SYSENTER and SYSEXIT

SYSCALL d SYSRET

48

• SYSCALL and SYSRET

Palacios as an HPC VMMPalacios as an HPC VMM
• Minimalist interface:

D t i t i h t OS f t– Does not require extensive host OS features
– Easily embedded into even small kernels

• Full system virtualization:
– Runs existing kernels without any porting

Li Kitt C t t C CNL d IBM’ CNK• Linux, Kitten, Catamount, Cray CNL, and IBM’s CNK
• Contiguous memory preallocation:

– Preallocates guest memory as a physically contiguous region
– Simplified implementation and deterministic performance for memory operations

P h h d i i i• Passthrough resources and resource partitioning:
– Host resources are easily mapped directly into a guest environment
– Provides access to high performance devices, with existing device drivers, with no

virtualization overhead.
L i• Low noise:
– Minimizes the amount of OS noise injected by the VMM layer.
– No internal timers and no accumulated deferred work.

• Compile and runtime configurability

49

– Compile a VMM tailored to specific environments
– Extensive ability to adapt VMM behavior at runtime

TakeawayTakeaway

• 2.5% local overhead 5X–35X slowdown at2.5% local overhead 5X 35X slowdown at
scale
– For only 128 nodesy

• These are large tightly coupled systemsThese are large tightly coupled systems
– Must be thought of as a single system

• Specialized Operating Systems are necessary
Lightweight kernels

50

– Lightweight kernels

Why does Virtual Paging Matter?Why does Virtual Paging Matter?
• Different approaches have very different architectures
• Guest behavior during context switch

– CNL swaps page tables
– Catamount does not, just invalidates pages

• Shadow paging
– Software emulation
– VMM emulates guest page tables
– Page table changes are expensive

• Nested pagingp g g
– Hardware support
– 2 sets of hardware page tables
– TLB misses are expensive

51

Symbiotic ModulesSymbiotic Modules

• Currently in developmentCurrently in development

• Runtime loading of modules from the VMM• Runtime loading of modules from the VMM
– Run VMM code in guest context

Create new Symbiotic interfaces at runtime– Create new Symbiotic interfaces at runtime

• Linux already has module support• Linux already has module support
– Load from user space
– Extension to allow loading from VMM

52

– Extension to allow loading from VMM
– No user intervention necessary

Device DriversDevice Drivers
• Guests often need direct device access

– High performance networks
– Driver included inside guest OS

• Self-virtualization
– Devices still require their own drivers

Not all devices are capable– Not all devices are capable

• Does not map well to virtual environments
i i h d l i h d– Migration changes underlying hardware

– Difficult to share between multiple VMs
– VMM must fully trust guest driver

53

Symbiotic Device DriversSymbiotic Device Drivers
• VMM provides passthrough driver to guest as a modulep p g g

• Guest OS no longer needs to include full set of drivers for all
possible hardwarepossible hardware

• VMM can optimize driver behavior to the environment
• Drivers can be dynamically swapped as conditions change

– Passthrough network driver
– Overlay network driver
– Paravirtual driver

54

Palacios DetailsPalacios Details

• Full hardware virtualizationFull hardware virtualization
– Intel and AMD virtualization architectures

S t 32 d 64 bit i t• Supports 32 and 64 bit environments
– Host and Guest

• Supports Linux and HPC guest OSes

55

56

