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What are Cycle Sharing Distributed 
Systems?Systems?

• Systems with following characteristics
Har ests idle c cles of Internet connected hosts– Harvests idle cycles of Internet connected hosts

– Enforces host owners’ priority in utilizing resources
– Resource becomes unavailable whenever owners areResource becomes unavailable whenever owners are 

“active”

• Popular examples: Climateprediction.net and the 
World Community Grid 

• Computing infrastructure provided by active open 
source codebases such as Boinc
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What are Fine-Grained Cycle Sharing 
Systems?Systems?

• Cycle Sharing systems with following 
characteristicscharacteristics
– Allows foreign jobs to coexist on a machine with 

local (“submitted by owner”) jobslocal ( submitted by owner ) jobs
– Resource becomes unavailable if slowdown of 

local jobs is observablelocal jobs is observable
– Resource becomes unavailable if machine fails 

or is intentionally removed from the networkor is intentionally removed from the network
Fine-Grained Cycle Sharing: FGCS

Example: Condor
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– Example: Condor 



Trouble in “FGCS Land”
• Uncertainty of execution environment to 

remote jobsremote jobs
• Result of fluctuating resource availability

– Resource contention and revocation byResource contention and revocation by 
machine owner

– Software-hardware faults
– Abrupt removal of machine from network

• Resource unavailability is not rarey
– More than 450 occurrences per machine in 

traces collected during 4 months on 20 
hi
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How to handle fluctuating resource 
availability?

• Reactive Approach

availability?
Current state of 

practice– Do nothing till the failure happens
– Restart the job on a different machine in the cluster

• Proactive Approach

practice

Proactive Approach
– Predict when resource will become unavailable
– Migrate job prior to failure and restart on different 

machine possibly from checkpointmachine, possibly from checkpoint
• Advantage of proactive approach: Completion 

time of job is shorter

IF, prediction can be done accurately and 
efficiently
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Our Contributions
1. Prediction of Resource Availability in FGCS

– Multi-state availability modely
• Integrates general system failures with domain-specific resource 

behavior in FGCS

– Prediction using a semi-Markov Process model– Prediction using a semi-Markov Process model
• Accurate, fast, and robust

2. Integration of failure prediction in scheduler for g p
production FGCS
– Reduction in application completion time

3. Efficient checkpointing on shared grid resources
– How to share checkpointing resources
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– How to optimize size of checkpoints stored



Outline
• Multi-State Availability Model 

– Different classes of unavailabilityy
– Methods to detect unavailability

• Prediction Algorithm
S i M k P d l– Semi-Markov Process model

• Evaluation Results
– Computational costComputational cost
– Prediction accuracy
– Robustness to irregular history data

R lt f F il P di ti i S h d l– Results of Failure Prediction in a Scheduler
• Checkpointing
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Two Types of Resource Unavailability
• Target applications – Long running, either CPU 

or memory intensive batch modeor memory intensive, batch mode
• UEC – Unavailability due to Excessive Resource 

Contention
– Resource contention among one guest job and host

jobs  (CPU and memory)
– Policy to handle resource contention: Host jobs are 

sacrosanct
• Decrease the guest job’s priority if host jobs incur noticeable 

slowdown
• Terminate the guest job if slowdown still persists• Terminate the guest job if slowdown still persists

• URR – Unavailability due to Resource Revocation
– Machine owner’s intentional leave

Software hardware failures

9/46

– Software-hardware failures



Studies on Resource Contention

• Detecting UEC requires quantification of g q q
noticeable slowdown of host jobs
– Noticeable slowdown of host jobs cannot be j

measured directly
• Our detection method

• Threshold for acceptable slowdown in host CPU 
usage is 5%

• Empirically find the correlation between observed 
machine CPU usage and effect on host job due to 
contention from the guest job

10/46

contention from the guest job



Studies on Resource Contention: CPU

• Experiment settings
– CPU-intensive guest jobCPU intensive guest job
– Host group: Multiple host jobs with different CPU usages
– Measure CPU reduction of host group for different sizes of host 

groupgroup

11/46



Studies on Resource Contention: CPU

• CPU contention study shows the existence of two 
thresholds Th1 and Th2 in machine CPU usagethresholds Th1 and Th2 in machine CPU usage

• UEC can be detected by observing machine CPU 
usage on Linux systemsusage on Linux systems
0 Th1 Th2

Observed machine no UEC no UEC
minimized guest priority

UEC
So terminate guest CPU usageminimized guest priority So, terminate guest

• Other candidate policies for regulating guest job
V i it ith fi l it E i t h– Vary priority with a finer granularity: Experiments show no 
significant difference for LH in (20%, 50%) 

– Always run guest job with lowest priority: Too
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Always run guest job with lowest priority: Too 
conservative and may incur unacceptable slowdown



Studies on Resource Contention: CPU & 
MemoryMemory

• Evaluate larger applications that have significant 
CPU and memory utilization

• Experiment settings
– Guest applications: SPEC CPU2000 benchmark suite
– Host workload: Musbus Unix benchmark suiteHost workload: Musbus Unix benchmark suite
– 300 MHz Solaris Unix machine with 464 MB physical memory
– Measure host CPU reduction by running a guest application 

together with a set of host workloadsg
• Observations

– Memory thrashing happens when jobs desire more memory  than 
the system hasthe system has

– The memory thrashing persists even if guest job priority is reduced
– When there is sufficient memory, UEC solely depends on the host 

CPU usage
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g
– Thus CPU and memory contention can be considered independent



Multi-State Resource Availability Model

S1: Machine CPU load is [0%,Th1]S S1: Machine CPU load is  [0%,Th1]
S2: Machine CPU load is  (Th1,Th2]
S3: Machine CPU load is  (Th2 ,100%] -- UEC

S1 S2

S5

S4: Memory thrashing -- UEC

S5: Machine unavailability -- URR
S

S4

S3

F t j b S S d S bl f il t tFor guest jobs, S3, S4, and S5 are unrecoverable failure states
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Resource Availability Prediction
• Goal of Prediction

– Predict temporal reliability (TR)Predict temporal reliability (TR)
The probability that resource will be available throughout a future time window

• Semi-Markov Process (SMP)
St t d t iti b t t t– States and transitions between states

– Probability of transition to next state depends only on 
current state and amount of time spent in current state 
(i d d t f hi t )(independent of history)

• Algorithm for TR calculation:
– Construct an SMP model from history data for the sameConstruct an SMP model from history data for the same 

time windows on previous days
Daily patterns of host workloads are comparable among recent days

– Compute TR for the predicted time window
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Compute TR for the predicted time window



Background on SMP

• Probabilistic Models for Analyzing DynamicProbabilistic Models for Analyzing Dynamic 
Systems
S : stateS : state
Q : transition probability matrix
Qi(j) = Pr {the process that has entered Si will enter Sj on its next 

transition};transition};
H : holding time mass function matrix
Hi, j (m) = Pr {the process that has entered Si remains at Si for m 

time units before the next transition to S }time units before the next transition to Sj }

• Interval Transition Probabilities, P
Pi, j (m) = Pr {S(t0+m)=j | S(t0)=i}
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Solving Interval Transition Probabilities

• Continuous-time SMP Too inefficient for 
online prediction– Backward Kolmogorov integral equations
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• Discrete-time SMP
– Recursive equations
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Availability Prediction
TR(W): the probability of not transferring to S3, S4, or S5

within an arbitrary time window, W of size T
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System Implementation
Job 

Scheduler Client

Gateway PredictorHost 
Process

Guest 
Process

Resource 
Monitor

Host Node

Non-intrusive monitoring of resource availability
U li ht i ht t tiliti t CPU d• Use lightweight system utilities to measure CPU and 

memory load of host processes in non-privileged mode
• Example: vmstat, prstat
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Evaluation of Availability Prediction

• Testbed
– A collection of 1.7 GHz Redhat Linux machines in 

a student computer lab at Purduea student computer lab at Purdue
• Reflect the multi-state availability model
• Contain highly diverse host workloads

1800 hi d f d i 3– 1800 machine-days of traces measured in 3 
months

• Statistics on Resource UnavailabilityStatistics on Resource Unavailability
Categories Total 

amount
UEC URR

CPU contention Memory 
icontention

Frequency 405-453 283-356 83-121 3-12

P t 100% 69 79% 19 30% 0 3%
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Percentage 100% 69-79% 19-30% 0-3%



Evaluation Approach

• Metrics
Overhead: monitoring and prediction– Overhead: monitoring and prediction

– Accuracy 
– Robustness

• Approach
– Divide the collected trace into training and test data 

sets
– Parameters of SMP are learnt based on training data
– Evaluate the accuracy by comparing the prediction 

results for test dataesu ts o test data
– Evaluate the robustness by inserting noise into 

training data set
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Reference Algorithms: 
Linear Time Series ModelsLinear Time Series Models

– Widely used for CPU load prediction in Grids:Widely used for CPU load prediction in Grids: 
Network Weather Service*

– Linear regression equations**ea eg ess o equat o s
– Application in our availability prediction

• Predict future system states after observing training y g g
set

• Compare the observed TR on the predicted and 
d t t tmeasured test sets

*R. Wolski, N. Spring, and J. Hayes, The Network Weather Service: A Distributed Resource   
Performance Forecasting Service for Metacomputing, JFGCS, 1999
** T l t f P A Di d d D R O’H l “A l ti f li d l f h t l d di ti ” I
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** Toolset from P. A. Dinda and D. R. O’Halaron. “An evaluation of linear models for host load prediction”. In 
Proc. Of HPDC’99.



Overhead

• Resource Monitoring Overhead: CPU 1%,                            
Memory 1%Memory 1%

• Prediction Overhead
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Less than 0.006% overhead to a remote job



Prediction Accuracy
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Relative error = abs(TRpredicted-TRempirical)/TRempirical



Comparison with Linear Time Series 
ModelsModels
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24/46

ARMA(p,q) Autoregressive moving average models with p q coefficients
LAST Last measured values



Using Resource Prediction in Job 
SchedulingScheduling

• Compare three schedulers
f– Falcon which uses failure prediction

– Condor which does matchmaking but is oblivious 
t f ilto failures

– Idealized omniscient algorithm
• How to integrate failure prediction
Estimated Job Completion Time (JCT) without failures = 

MTTF 


0

[1 ( )]t

TL
CR L TL 

MTTF = 
Effective Task Length (ETL) = MTTF  CR  (1-Lto(MTTF))
t0 is job submission time, CR is the clock rate of the machine, Lt0(T) is the

0
( )TR t dt
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t0 is job submission time, CR is the clock rate of the machine, Lt0(T) is the 
average load from (t0, t0+T).



Falcon Scheduler

1. Compare MTTF with JCT. 
2. If JCT > MTTF for each machine, select the one with 

largest ETL.
3 If JCT < MTTF select the one with minimum job3. If JCT < MTTF, select the one with minimum job 

completion time considering failures (JCTF)

(1 ( )) ( )
JCTF

TL CR L JCTF TR t dt   
TL: Task length, the job completion time on a dedicated host 

0 0
(1 ( )) ( )tTL CR L JCTF TR t dt    

machine with the average CPU speed as in our FGCS 
testbed
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Experiments for Schedulers
• Experiments performed to compare three 

scheduling algorithms
– Using GridSim but using availability traces from testbed
– Jobs submitted with submission times between 6 am and 

10 pm, 7 different lengths from 0.5 to 6 hoursp , g
• Experiment Metrics

– When a job is submitted, if no resource is available, then 
i f i d if ill il blwait for 5 minutes and retry; if still no resource available, 

then unscheduled
– A scheduled job either returns as finished, or if resource j ,

becomes unavailable then failed
– A failed job is restarted until it completes successfully
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Results from Scheduler Experiments

• Fraction of unscheduled jobs same
• Difference between proactive and 

omniscient algorithms increase with 
job length

• Omniscient algorithm has no 
overhead for prediction

• Two sources of slowdown –
prediction overhead ineffectivenessjob length

• For large jobs, fraction of failures 
lower for iShare than Condor

• Non monotonicity at 3 hours

prediction overhead, ineffectiveness 
of prediction

• Effect of failure and restart 
adversely affects Condor
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• Non monotonicity at 3 hours • Improvement in makespan 4-14%



Checkpoint and Restart

• When a job is evicted from a machine, it needs to 
be restarted on another machine

• To avoid recomputation, the job should be restarted 
from a checkpoint

• Questions that we answer:
1. Where to save the checkpoints?
2. How to compress the checkpoints so that state 

stored is reduced?
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State of the Art Checkpoint-Recovery Scheme

Compute Host
worker.nd.edu

Submitting Machine Dedicated Storage Serverbio purdue edu

Compute Host
worker.nd.edu

g
Storage.purdue.edubio.purdue.edu

Grid Environment
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Problem Motivation

High overhead for application users
• Submitting machineSubmitting machine

• If the submitter is behind a slow network (say, DSL modem)
• Central storage server

• High latency of transferring checkpoints back and forth g y g p
between different university campuses (12% of the time)

• High overhead when multiple machines are sending data to a 
single server

• High overhead of sending data to a loaded server• High overhead of sending data to a loaded server

 Stress on shared network resource
• Transferring large amount of checkpoint data 

(gigabytes)(gigabytes)
• Transferring data across distant points in the network
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Potential Solution and Challengesg

Compute Host

worker.nd.edu
Storage Host
worker.nd.edu

No Checkpoint available

bio.purdue.edu
Submitting Machine Compute Host

worker.nd.edu

Shared Grid Environment
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Contribution
 Goal: Can we improve the performance of the guest jobs 
by storing checkpoints in shared grid environment?

 Developed a reliable checkpoint-recovery system 
FALCON

P id  f lt t l  th h “E  C di ”• Provides fault-tolerance through “Erasure Coding”

• Selects reliable storage hosts which are nearby
• Builds a failure model for storage hostsg

• Stores and retrieves checkpoints in efficient manner

 Deployed FALCON in BoilerGrid (DiaGrid)
 Performance improvement of benchmark applications in 
production grid is between 11% to 44%

33/46



Failure Model

Aids in predicting availability of the storage nodes
Load: %utilization of I/OLoad: %utilization of I/O

S0


S0 S2 S3

Running Temporarily Unavailable

Max-Client

S1

Running

Loaded

Temporarily
Unavailable

Unavailable
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Storage Repository Selection

Predict availability of storage nodesy g
• Correlated temporal reliability

down
Compute Host

down

Storage Host 1down

Storage Host 2downdown
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Storage Repository Selection

Calculate network transfer overhead
• Network Overhead = Amount of data to send (MB) / 

Available Bandwidth between a storage host and a 
compute host

Minimize an objective function
• Objective function: checkpoint storing overhead – benefit j p g

from the fact that a job can restart from the last saved state

• Overhead includes network overhead

• Benefit computed using the correlated temporal reliability• Benefit computed using the correlated temporal reliability

Select a set of m+k storage nodes that 
minimizes this objective functionminimizes this objective function
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Checkpoint-Recovery Scheme

Di k

Original Checkpoint

Disk Disk

Original Checkpoint

Compression

di

Compressed

Decompression

Compressed

Erasure Encoding
(m+k)

Fragments

Erasure Decoding
(m)

Fragments

21 m+k 21 m+k

Storage Host Storage Host

Checkpoint Storing Phase Recovery Phase
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Structure of FALCON
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Evaluation

Overall performance evaluation: p
• Average job makespan – the time a job takes to complete

Efficiency of the checkpoint-recovery schemes:
Ch k i t t i  h d• Checkpoint storing overhead

• Recovery Overheads
 Setup:Setup:

• Submitted jobs to BoilerGrid
• Applications – MCF (SPEC CPU 2006), TIGR (BioBench)
• Erasure encoding parameters: m=3, k=2
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Checkpoint Storing & Recovery Overhead

FALCON

Dedicated-Remote

 Performance of Falcon scales with the increase in the checkpoint sizes
 Lower network transfer overhead and lower utilization of shared network 
bandwidthbandwidth

40/46



Overall Performance ComparisonOverall Performance Comparison
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Handling Simultaneous Clients
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Handling Storage Failures
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Contributions of Components
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Conclusion
• For practical FGCS systems, runtime prediction of 

resource unavailability is important
• Resource unavailability may occur due to resource 

contention or resource revocation
• Prediction system based on an SMP isPrediction system based on an SMP is 

– Fast: < 0.006% overhead
– Accurate: > 86% accuracy in average

Robust: < 6% difference caused by noise– Robust: < 6% difference caused by noise

• Prediction system helps a runtime scheduler
• For handling job evictions, we need checkpoint-restart

– It is possible to use shared machines as checkpoint repositories
– Dynamic selection of checkpoint repositories reduces application 

makespan
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Ongoing Work

• If we have parallel file system to store 
checkpoints how can we reduce its loadcheckpoints, how can we reduce its load
– Exploit the similarities in checkpoints of similar 

processesprocesses
– Aggregate and compress multiple similar 

checkpointscheckpoints
– Perform this in a tree-based form that scales with 

the number of processesthe number of processes
• What kinds of applications lend themselves 

to the shared and optimized checkpointingto the shared and optimized checkpointing
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Thanks!
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Backup Slides

• Resource contention studies, 27-29
• Linux scheduler, 30
• Details on reference algorithms for failure• Details on reference algorithms for failure 

prediction, 31
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Empirical Studies on Resource Contention

• CPU Contention
– CPU-intensive guest applications 
– host groups consisting of multiple processes with diverse CPU usage
– 1.7 GHz Redhat Linux machine
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All processes have the same priority Guest process takes the lowest priority
Host CPU usage in absence of guest process (L H ) Host CPU usage in absence of guest process (L H )
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Host CPU usage in isolation
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• Memory thrashing happens when processes desire more memory than the 
system hasy

• Impacts of CPU and memory contention can be isolated
• The two thresholds, Th1 and Th2, can still be applied to quantify CPU contention
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Linux CPU scheduler
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Details on Reference Algorithms

• AR(p) – An autoregressive model is simply a linear regression of the 
current value of the series against one or more prior values of the series. g p
p is the order of the AR model. Linear least squares techniques (Yule-
Walker) are used for model fitting. 

• BM(p) – Average on previous N values. N is chosen to minimize the 
squared errorsquared error

• MA(p) - A moving average model is conceptually a linear regression of 
the current value of the series against the white noise or         random 
shocks of one or more prior values of the series. Iterative non-linear 
fitting procedures (Powell’s methods) need to be used in place of linearfitting procedures (Powell s methods) need to be used in place of linear 
least squares.

• ARMA(p,q) - a model based on both previous outputs and their white 
noise 

• LAST – the previous observations from the last time window of the same 
length are used for prediction
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Prediction Robustness
Randomly insert unavailability occurrences between 8:00-9:00 am on 

a weekday trace
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1) Predictions on smaller time windows are more sensitive
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1) Predictions on smaller time windows are more sensitive
2) On large time windows (> 2 hours), intensive noise (10 occ
urrences within one hour) causes less than 6% disturbance in 
th di ti
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Summary on Related Work

• Fine-grained cycle sharing with OS kernel 
modification Ryu and Hollingsworth, TPDS, 2004

• Critical event prediction in large-scale clusters
Sahoo, et. al., ACM SIGKDD, 2003

• CPU load prediction for distributed compute 
resources W l ki t l Cl t C ti 2000resources Wolski, et. al., Cluster Computing, 2000

• Studies on CPU availability in desktop Grid 
systems Kondo et al IPDPS 2004systems Kondo, et. al., IPDPS, 2004
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