
ROOT I/O Workshops
https://indico.fnal.gov/conferenceDisplay.py?confId=5328

ROOT plenary, presentations and posters at CHEP 2012
http://root.cern.ch/drupal/content/root-presentation-chep-2012

ROOT I/O Improvements
Philippe Canal <pcanal@fnal.gov> ROOT

Performance Enhancement
Many areas of the ROOT I/O and TTree packages
have been made more efficient in either runtime
or memory usage.

Significant improvement of the performance of
SetBranchAddress/SetAddress (by a factor 3 to 10
depending on the length/complexity of the
classname).

Prevented the unlimited growth of the TBasket's
buffer even if the basket is reused and minimize
the number of buffer reallocations.

Optimized the use of the TTreeCache memory by
insuring that it is completely used when the
clusters are small and does not grow without
bound when the clusters are unusually large.

Extended the amount of statistics recorded by
the TTreePerfStats class.

Multi-Thread
gDirectory/gFile are now thread-local.
Completely removing the dependency requires
backward incompatible changes in TObject.

Asynchronous Prefetching
When the asynchronous prefetching is enabled, a
separate thread will fetch the TTreeCache blocks
that are likely to be needed next and the main
thread continues the normal data processing.

In order to enable prefetching the user must set
the rootrc variable TFile.AsyncPrefetching.

In addition the result of the prefetch can be cached
on local disk.

Features

Object Merging
We introduced a new explicit interface for
providing merging capability. If a class has a
method with the name and signature:

it will be used by a TFileMerger (and thus by
PROOF) to merge one or more other objects into
the current object.

If this method does not exist, the TFileMerger will
use a method with the name and signature:

The object TFileMergeInfo can be used inside the
Merge function to pass information between
successive runs of the Merge operation.

In the past year, the development of ROOT I/O has focused on improving the existing code and increasing the collaboration with the experiments' experts.
Regular I/O workshops have been held to share and build upon the various experiences and points of view. The resulting improvements in ROOT I/O
span many dimensions including reduction and more control over the memory usage, drastic reduction in CPU usage as well as optimization of the file size
and the hardware I/O utilization.
Many of these enhancements came as a result of an increased collaboration with the experiments' development teams and thanks to their direct
contributions both in code and to the quarterly ROOT I/O workshops.

Resources and further reading

Variable TTree cluster size

A TTree cluster is a set of baskets containing all the data for an integral number of
entries that will be read in a single I/O operation by the TTreeCache. Each TTree has a
different cluster size. When merging files, the TTree now records the cluster size of each
of the input TTree, resulting in higher I/O throughput when reading the merged file.

 gEnv->SetValue("TFile.AsyncPrefetching", 1)

 TString cachedir="file:/tmp/xcache/";
 // or using xrootd on port 2000
 // TString cachedir =
 // "root://localhost:2000//tmp/xrdcache1/";
 gEnv->SetValue("Cache.Directory", cachedir.Data());

 TFile f(filename, option, title);
 f.SetCompressionAlgorithm(ROOT::kLZMA);
 f.SetCompressionLevel(5);

 TFile f(filename, option, title,
! ! ROOT::CompressionSettings(ROOT::kLZMA, 5));

 TFile f(filename, option, title);
 f.SetCompressionSettings(
! ! ROOT::CompressionSettings(ROOT::kLZMA, 5));

 TTree *tree1, *tree2;

 input.GetObject("tree1",tree1);
 tree1->SetCacheSize(300*1024);

 input.GetObject("tree2",tree2);
 tree2->SetCacheSize(400*2048);

 tree1->GetEntry(entry1);
 tree2->GetEntry(entry2);

Automatic support for more than
one TTreeCache per file.

• TTree::SetCacheSize(Long64_t) no longer
overrides nor deletes the existing cache

• Each cache is independent
• So the worst case scenario is the rare occurence of two

large TTree that are strongly intertwined in the file.

 Long64_t Merge(TCollection *input, TFileMergeInfo*);

 Long64_t Merge(TCollection *input);

LZMA Compression
ROOT I/O now supports the LZMA algorithm to compress data in addition to the ZLIB
compression algorithm. LZMA compression typically results in smaller files, but takes
more CPU time to compress data.
.

Setting the Compression Level and Algorithm

There are three equivalent ways to set the compression level and algorithm supported
by the classes TFile, TBranch, TMessage, TSocket, and TBufferXML.
For example, to set the compression to the LZMA algorithm and compression level 5.

 TFile::Open("mergedClient.root?pmerge=mergehost:1095","RECREATE");

Existing solution: Processing and storing the
partial output on each local node and then only
at the end of the process, upload to the server
and only when all slaves are done, read all files
on the server and write to a single output file.

New solution: Increase parallelism by having the slaves start
uploading the TTree clusters directly to the server which
immediately starts saving them in the final output file.

New TFile implementations:
• TMemFile: a completely in-

memory version of TFile.
• TParallelMergingFile: a

TMemFile that on a call to
Write will upload its content
and reset the TTree objects.

Parallel Merging

With fixed cluster size!

With variable cluster size!

Result of merging TTrees.!

Final File!

Client!

Client!

Client!
Server!

Final File!

Client!

Client!

Client!

Server!

More info:

https://indico.fnal.gov/conferenceDisplay.py?confId=5328
https://indico.fnal.gov/conferenceDisplay.py?confId=5328
http://root.cern.ch/drupal/content/root-presentation-chep-2012
http://root.cern.ch/drupal/content/root-presentation-chep-2012
mailto:pcanal@fnal.gov
mailto:pcanal@fnal.gov

