
Two Proposals
Walter Brown
Marc Paterno

William Tanenbaum
CD-doc-468-v1

Contents

1 Introduction 1

2 Desiderata 2

3 Overview of the Two Proposals 3

4 Proposal A: RecCollections in TTrees 4

5 Proposal B: The COBRA Framework in ROOT 8

6 Conclusion 10

But man acts from judgment,
because by his apprehensive power

he judges that something should be avoided or sought.
— THOMAS AQUINAS

1 Introduction

In a previous document [CD-doc-467], we presented three proposals addressing the is-
sue of a desired “ROOT/COBRA interface.” Verbal and email reactions1 to that document
indicated that there was not yet agreement on the requirements or their priorities. Both
the main proposal in §3 and the alternative proposal of §4.2 received some support.

In this document, we re-present those two proposals, and compare and contrast
them with each other and with the existing COBRA framework.2 The first proposal, which
originated from §3 and is herein termed Proposal A, is mostly the same as originally
presented, but has been modified to reflect some of the feedback we have received. The

1 Respondents (in alphabetical order) included: James Branson, Vincenzo Innocente, Norbert Neumeis-
ter, Lucia Silvestris, Paris Sphicas, David Stickland, and Stephan Wynhoff.

2By COBRA framework we mean the standard CMS batch framework, including the CMS event-data
objects defined in ORCA, but used for analysis rather than for reconstruction.

1

mailto:wb@fnal.gov
mailto:paterno@fnal.gov
mailto:wmtan@fnal.gov
http://computing.fnal.gov/docdb/documents/0004/000467/001/paper.pdf

2 CD-doc-468-v1

second proposal, which originated from §4.2 and is herein known as Proposal B, has
been substantially augmented and is thus presented in much greater detail than in its
previous incarnation. Our goal herein is to present the Proposals with sufficient detail
to enable CMS to evaluate their respective individual merits.

2 Desiderata

The document CD-doc-467 enumerated the following desiderata for a ROOT/COBRA

plug-in.

1. We want to read existing COBRA data.
2. We want to train people to use the COBRA data model.
3. We want it to be easy to produce distributions from the data.
4. It should be easier to use than the full COBRA framework, but need not be as fast

as reading ROOT ntuples.
5. Export COBRA and ORCA high-level objects to ROOT, without exposing the data as

ROOT TTree instances.
6. We want a plug-in to “make COBRA/ORCA objects readable at the ROOT prompt.”

This list contains contributions from several CMS collaborators, and (as previously
noted) some of the entries seem to conflict with others. Furthermore, some of the com-
ments we received on CD-doc-467 indicated to us that there was possible disagreement
on the meaning of the first three desiderata. In order to help assure we all agree on the
meaning of these desiderata, here we explain each of these three in slightly more detail.

We take item 1 to mean that one does not want to employ a separate program to
transform the COBRA format (perhaps we should say POOL format) data into a format
suitable for analysis in ROOT. The reason for this requirement is not entirely clear to us.

We take item 2 to mean that one wishes users of the new software to be learning the
skills needed to work in the COBRA framework. There are several skills involved: facility
with the C++ programming language, familiarity with the COBRA event-data and recon-
struction models, and familiarity with the ORCA classes representing the reconstructed
data. Since one does not obtain facility in using things by avoiding them, we surmise
this requirement involves not shielding the user from all of them. However, in “training”
users, it might be useful to do away with some of the complexity of the learning process,
perhaps by shielding the user from part of the complexity of the COBRA/ORCA system.

We take item 3 to mean that it should be possible to perform some useful physics
analysis tasks (albeit only relatively simple ones) without writing any C++ code. We
have not assumed that this requirement means that it must be possible to perform
sophisticated analysis without writing C++ code. We have also not assumed that a point-
and-click interface is necessary.

http://computing.fnal.gov/docdb/documents/0004/000467/001/paper.pdf
http://computing.fnal.gov/docdb/documents/0004/000467/001/paper.pdf

Two Proposals 3

3 Overview of the Two Proposals

In this section, we provide an overview of the two proposals. Section 4 describes Pro-
posal A in greater detail, and section 5 is devoted to Proposal B.

Proposal A and Proposal B independently meet many of the same desiderata. Each
Proposal provides a tool to be used from within a ROOT session. Each provides access
to the CMS event data and the ability to read existing (POOL format) files. Each Proposal
allows the user to work in the ROOT interactive environment, and each provides the
same easier specification of the input collections. Because what each Proposal provides
could also be done from a COBRA framework program, we believe it is useful to describe
each functionality in terms of such a program.

Proposal A provides a tool that takes POOL files and produces files in a ROOT file
format that is more suitable for interactive use. It puts the RecObj instances selected
by the user into the branches of a TTree instance. It allows the user to do so without a
need to understand COBRA’s mechanisms for accessing reconstructed objects.

To achieve comparable functionality in the current COBRA framework, a user would
have to create a module that could be configured (through an orcarc file, perhaps)
with the names of the RecObj classes which were to be written to the created TTree
output. Such a task seems suitable for batch, rather than interactive, use, because the
conversion of large input files will be time-consuming. Such a task seems suitable for
interactive use only when the data sample being processed is small. After the TTree
instances have been created, the user has available all the features of the reconstructed
objects subject to any restrictions ROOT might place upon them.

Proposal B provides a tool that allows the execution of arbitrary user code in a COBRA

event loop driven from an interactive ROOT session. In this it is very similar to direct
use of the COBRA framework. The user would write essentially the same code in each
case.

Proposal B requires the user to write C++ code to do even simple tasks. Proposal A
does not require the user to write C++ code to do simple tasks; they can be done writing
DRAW commands.

It will probably not be possible to perform “complicated” tasks using Proposal A,
where “complicated” means any task that requires associating objects in one branch
with objects in another using information other than the fact that the objects are part of
the same event. In particular, some links between objects in the trees will not be usable.
Proposal B makes available all the information in the data.

In the existing COBRA framework, users have found it difficult to provide the list of
dynamic libraries needed by their jobs. Each Proposal has the same requirement. Ease
of use would require the determination of this list be automated. The use of ROOT does
not help solve this problem, and probably any solution could be used in COBRA as well
as with either Proposal.

Users of the COBRA framework also have complained about the length of the edit/-
compile/link/run cycle during analysis. Proposal A avoids this cycle by transforming
the data into ROOT’s “natural” format, and so enables the user to use ROOT’s interactive

4 CD-doc-468-v1

facilities for analysis. Proposal B does not alter this cycle. Neither Proposal makes the
(potentially time-consuming) step of reading the COBRA-format data faster.

User code developed in the context of Proposal B may be directly transported to the
COBRA framework (and thus used in ORCA); the code would be nearly identical.

Finally, we note that Proposal B does not shield the user from the complexities of
navigation of the web of reconstructed objects.

4 Proposal A: RecCollections in TTrees

This Proposal A would create a facility

• that allows reading COBRA data from within a ROOT session, and
• that would provide automatic reorganization of a subset of the COBRA data into the

ROOT format most useful for use from the ROOT prompt.

To this end, we propose the creation of a class, TCobra, which has the responsibility of
creating ROOT-format data from the COBRA data.3 This class would coordinate reading
of the COBRA-format data, creation, filling, and management of TTrees to contain the
data, and all associated ROOT “housekeeping” necessary for this to work.

In sections 4.1–4.4 we sketch the important operations of TCobra. Section 4.5 shows
some uses of the resulting TTree, section 4.6 notes some caveats, and section 4.7 men-
tions additional functionality that could be added in a later release, if such enhance-
ments seem warranted.

4.1 Connecting to CMS Event Data

To create a TCobra object, the user specifies the data to be read. Construction of the
TCobra object does not cause the data to be read; reading is delayed until a later step in
the use of the object. It is possible to create multiple TCobra objects, but it is not possible
to copy (by copy construction or copy assignment, or cloning) a TCobra object. This is
disallowed because of the cost of copying the underlying ROOT objects; unintentional
copying would likely cause terrible performance problems. If, for some reason, a user
wishes to create two identical TCobra objects, it is always possible to construct two such
objects independently, using the same specification of input data.

1 // Specify the data to be read . Only system input collection
2 // specifiers shall be supported in the initial version .
3 TCobra c(" / System / aaa / bbb / ccc " ,
4 " InputFileCatalogURL1 InputFileCatalogURL2 ");

3We recognize that COBRA data files are ROOT files. However, these ROOT files are organized in a fashion
that is useful for reconstruction, but that is not convenient for use from the ROOT prompt. The organization
imposed by the transformation done by TCobra provides this convenience of use.

Two Proposals 5

4.2 Creating a TTree

Each TCobra object is limited to creation of a single TTree instance. Supporting use of
more than a single instance would increase the complexity of the user interface, with no
important gain in functionality that we can identify.

The TTree instance is associated with a given operating system file and with a TFile
object, which is used as a backing store. When the TCobra object is destroyed (at the
end of the ROOT session, if not before), the operating system file remains.

1 // Specify the name of the TTree to be created , and the name of
2 // the file that shall be used as its backing store .
3 c. createTree (" mytree " , " myfile ");

4.3 Specifying the Objects to be Accessed

The user can specify the objects to be written to the TTree instance by calling the mem-
ber function createBranch once for each object to be written. The user specifies:

1. the name of the RecAlgorithm whose output is wanted, and
2. the name of the branch to which the output shall be written.

The RecCollection produced by the specified RecAlgorithm shall be “unwound” into
its separate components, which shall be written into a TClonesArray on the branch. The
call to createBranch does not cause reading of the input data.

If the user requests an EDM object which is not in the specified data, reconstruction
on demand will not be used to provide the requested object. In the first release, only
the default version of the algorithms will be used, and no ability to do reconstruction
on demand will be available. Please note this behavior is the opposite of that which
was described in our previous document [CD-doc-467].

1 // Specify which EDM objects are to be read ,
2 // and the name of the branch to which it shall be written .
3 c. createBranch (" CombinatorialTrackFinder " , " ctf ");
4 c. createBranch (" GlobalMuonTrackFinder " , " gmtf ");

The user can list all available branch names and their respective collections, one line
per branch, by calling the listBranches member function.

1 // List all available collections and their branch names.
2 c. listBranches (std :: cout);

4.4 Filling the TTree

After the user has specified what branches are to be created, he arranges to fill the
branches:

http://computing.fnal.gov/docdb/documents/0004/000467/001/paper.pdf

6 CD-doc-468-v1

1 // Fill the TTree . Only one of the following should be called .
2 c. fill (); // to read all events , or
3 c. fill (100); // to read only 100 events

This is the time at which the data is read, and so this step may be very time-consuming.

4.5 Using the Result

After the above calls have been executed, the user has available a ROOT TTree instance,
with branches containing TClonesArrays of the requested EDM objects. The user is able
to do whatever ROOT allows to be done with such a TTree and its contents.

To help illustrate what will then be possible, we provide several examples. In these
examples, we assume mytree is a TTree containing two branches: the branch jet con-
tains jets from some algorithm, and the branch ele contains electrons from some algo-
rithm. We also assume that the entries of the TClonesArrays have been sorted on pt ,
the transverse momentum of the object.

To obtain a plot of the transverse momentum of every jet:

root > mytree . Draw(" jet . pt () ")

To obtain a plot of the transverse momentum of the leading jet in each event:

root > mytree . Draw(" jet [0]. pt () ")

Note that if some event contained no jets, TTree :: Draw is smart enough to skip that
event.

To obtain a scatter-plot of the transverse momenta of the two leading jets in each
event:

root > mytree . Draw(" jet [0]. pt (): jet [1]. pt () ")

To obtain a plot of the transverse momentum of the leading electron in each event
for which the leading jet had pt () > 20.0 :

root > mytree . Draw(" ele . pt () " , " jet [0]. pt ()>20.0 ")

For calculations that require looping constructs more complicated than looping over
all entries in a TClonesArray, the user will generally have to write a CINT macro or C++
code.

4.6 Caveats

Because the time allocated for implementation is short, and because there may be as-
yet-unknown technical challenges ahead, we specify some of our assumptions here. If
these assumptions turn out to be untrue, it is likely that the project will not be possible
within the allocated time.

Two Proposals 7

• We assume it is straightforward to create the ROOT dictionaries for all classes for
which interactive use is desired.

• We assume there is no problem in having both ROOT and SEAL dictionaries for the
same classes in the same program.

• We assume it is straightforward to write the EDM objects into a TTree, since these
data are currently written in a ROOT format (although that format is different).

• Persistent POOL links between objects are unlikely to be traversable until such time
as support for traversing links to objects in TTrees is added; adding such support
is outside the scope of this project.

We do not know what fraction of the inter-object navigability will be available from
within ROOT. The time budget allocated precludes significant modification of the COBRA

classes to support use within interactive ROOT.

It is likely that the memory demands of this use of ROOT will be quite large. Code is
required for each of the objects to be used; much of this code is required again in the
ROOT dictionaries, for interactive use; some code is required a third time in the SEAL

dictionaries, for I/O purposes.

Reading data files with this software shall be no faster than when done with the CO-
BRA framework; the same technology is being used. Looping over events in the created
TTree may be significantly faster. The ROOT files created may be very large. Once the
user has selected his choice of branches to be written, no further pruning of data is
carried out.

4.7 Possible Later Additions

If user interest dictates, a subsequent version of this software may offer additional func-
tionality. Some enhancements to be considered are:

• more user control over the EDM objects selected, and
• user control over whether reconstruction-on-demand is done.

Another possible addition would allow the user to specify that all available collections
be written to the TTree instance by calling createAllBranches . In this case, default
names would be used for the branches. The call to createAllBranches would not
cause the input data to be read.

1 // Specify that all available EDM objects are to be read ,
2 // and that they be written to separate branches using
3 // default branch names.
4 c. createAllBranches ();

8 CD-doc-468-v1

4.8 Comparison between Proposal A and the COBRA

Framework

We may describe Proposal A as a tool that allows the user to write a ROOT TTree from
COBRA-format event data. There is very little interactive functionality in such a tool—
while the created TTree is used interactively, the creation tool itself is not.

Upon reflection, it seems to us that such a tool may be more suitable for a batch
environment. A project to create a COBRA framework executable, which the user would
configure (perhaps via an .orcarc file) to select the RecObj classes to be written to the
output TTree, would have nearly the same utility. Such a project would be significantly
easier (and quicker) to complete. If CMS wants a tool that provides an easy means for
users to write RecObj instances to ROOT TTrees, we recommend this alternative rather
than Proposal A.

5 Proposal B: The COBRA Framework in ROOT

This Proposal B would create what might be called a ROOT-based analysis framework.
By this we mean to provide a class TCobra

• that would open and read COBRA-format data files,
• that would provide an event loop, and
• that would allow a user-defined function to be called for each event in the sequence

of events.

The user code would be given access to the event, and would use the standard COBRA

EDM mechanisms to access elements in the event.

5.1 Connecting to CMS Event Data

During creation of a TCobra object, the user specifies the data to be read. Construction
of the TCobra object does not cause the data to be read; reading is delayed until a later
step in the use of the object. It is possible to create multiple TCobra objects, and it is
possible (but seems to be not useful) to copy a TCobra object.

1 // Specify the data to be read . Only system input collection
2 // specifiers shall be supported in the initial version .
3 TCobra c(" / System / aaa / bbb / ccc " ,
4 " InputFileCatalogURL1 InputFileCatalogURL2 ");

Two Proposals 9

5.2 The User’s Code

We propose that both the following two mechanisms be available to a user in producing
his code, and that each user be free to choose whichever one best meets his needs. The
first option is function-oriented, and the second is class-oriented.

Under the first option, the user would write a function taking a pointer to an event.4

There are no arbitrary restrictions placed upon the user code in this function. If the
user code calls upon any other facilities of COBRA, it will be his responsibility to ensure
that the necessary libraries are loaded.

Under the second option, the user would write a class inheriting from an abstract
base class (TCobraAnalysisModule) provided as part of Proposal B. The user’s class must
implement the member function handleEvent , taking the same argument as the free
function described above. There are no other restrictions placed upon the user’s class.

5.3 Running the User’s Code

The TCobra “event loop” member function execute is used to invoke the user’s code
(whether a free function or class) once per event in the input data.

If userfunc is the name of either

1. a free function, as described above, or
2. an instance of the user’s class, as described above,

then the following shows how the TCobra “event loop” is executed.

1 c. execute (userfunc); // to read all events , or
2 c. execute (userfunc , 100); // to read only 100 events

After executing the code above, the user may have histograms, TTree instances, or
any other artifacts created by the user’s code available in the ROOT session.

For example, the user could create and fill the same TTree instance as discussed
in the exposition of Proposal A, by creating a branch for RecObj type in which he is
interested, and filling the branches in his user code. It would be a straightforward
addition to Proposal B to provide a software component that simplifies this task even
further.

5.4 Caveats

It is likely that the memory demands of this use of ROOT will be quite large, albeit slightly
less than those for Proposal A. The memory demands should approximate those of the
CMS reconstruction program.

4The exact type of the pointer needs to be determined by future analysis.

10 CD-doc-468-v1

Reading data files with this software shall be no faster than when done with the
COBRA framework; the same technology is being used.

5.5 Comparison between Proposal B and the COBRA

Framework

We may describe Proposal B as embedding the COBRA framework’s event loop in an
interactive ROOT session. Users of Proposal B would need knowledge very similar to that
needed to make direct use of the COBRA framework. Because the user of Proposal B
would need to compile and link analysis code, similar problems arise in the software
build phase. Some of the tasks handled by SCRAM would have to be handled directly by
the user of Proposal B—or the functionality of SCRAM would have to be duplicated.

The reading of COBRA data may be very time-consuming, especially for large data
samples, or for jobs that require additional reconstruction to be done. Such jobs seem
less suitable for interactive use than for batch use, especially for those users on systems
which limit the CPU time available for interactive jobs.

The main difference between use of Proposal B and direct use of the COBRA frame-
work is that ROOT artifacts (histograms, TTree instances, etc.) created in the user code
of Proposal B would be immediately available in the current ROOT session, while such
artifacts written in a COBRA framework program would be written to a file. While this
presents some additional convenience for the user, we are concerned that it might also
foster poor C++ programming. Because ROOT silently manages the lifetime of many
ROOT artifacts, it seems likely that users will become accustomed to this behavior. User
code developed in the interactive environment of Proposal B will most likely need careful
scrutiny for resource leaks before its inclusion in any widely-used COBRA framework
program.

6 Conclusion

If CMS wants an easy-to-use tool for the creation of ROOT TTrees filled with ORCA recon-
struction objects, we recommend this be achieved by the development of a COBRA/ORCA

based application that fills such a TTree with user-specified collections of RecObj in-
stances. We believe that a project to create such an application will be easier and
quicker to complete than Proposal A, while providing the same basic functionality.

If CMS wants a simple-to-use event loop, to invoke the user’s code in analysis, then
we recommend looking into the underlying reasons for the perceived difficulty of use of
the COBRA/ORCA framework.5 We believe that wrapping the existing event loop to allow
its use from within ROOT, while it may have some utility, does not solve the underlying
problems.

5This may require a large effort, and considerable time.

	1 Introduction
	2 Desiderata
	3 Overview of the Two Proposals
	4 Proposal A: RecCollections in TTrees
	5 Proposal B: The Cobra Framework in Root
	6 Conclusion

