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Why Threads?
Cost of  Memory
CPU designs double cores every 18 months
Memory cost halves each 18 months
Therefore, memory per core is now constant (2GB/core)
Complexity of LHC events is only going up with high pileup
May not be able to afford enough memory per core to use 1 event/core

End of 2011 CMS could only use 6 of 8 cores in T0

Forking Is Not Enough
Forking allows sharing of initial setup and conditions
Each core still only handles one event
Memory used by one event will increase as pileup increases

This year shared memory between forked processes is less than private memory

Need to Use Multiple Cores/Event
Naturally accommodated by threading
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Framework Pieces
Events can be processed in parallel

An Event is filtered by Paths
Paths run in parallel

Paths hold a list of  Filters
Filter runs only if previous Filter passes

EndPaths hold OutputModules
EndPaths run in parallel after Paths finish

Producers make data
Run first time their data is requested
Producers run in parallel

Filters, Producers & OutputModules 
All are referred to as Modules
Run only after their input data is available
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Parallelization
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libdispatch
Developed by Apple Inc
Port is available for Linux and Windows

Task Queue based system
Task is a C/C++ function plus context

Context can be any data you want
Tasks are placed in a light weight queue

Can easily support more than 100,000 queues in one process
Tasks are pulled from queues and then run
System guarantees that cores are not oversubscribed
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Central Concepts
Global Concurrent Queue

Private Serial Queues

Task Groups
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Global Concurrent Queue
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Private Serial Queue
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Private Serial Queue
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Can use many per process

Tasks pulled in order with only one run at a time

Private Serial Queue
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Can use many per process

Tasks pulled in order with only one run at a time

Private Serial Queue
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Task Group
Add new task to a queue once other tasks have finished
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Task Group
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Task Group
Add new task to a queue once other tasks have finished
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Task Group
Add new task to a queue once other tasks have finished
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Task Group
Add new task to a queue once other tasks have finished
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Task Group
Add new task to a queue once other tasks have finished
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Implementation
Events
Run N Event instances simultaneously

N is configurable

Paths
Path starts a task for the first Filter on the Path
When Filter finishes it launches a task to run the next Filter on the Path

Modules
Modules have a list of data they will request from Event

Used to do parallel prefetching
Modules are shared between all Event instances

Keeps memory overhead as low as possible

ModuleWrappers
One per Module per Event
Has serial queue used to guarantee module is run only once per event
Has a task group used to notify when data prefetches have completed

ProducerWrappers
One per Producer per Event
Remembers if Producer has already run for that Event
Has a task group used to notify others when Producer has made its data
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Simple Example

43

S F 1 2G
Queues

One global concurrent queue
Labelled G

Each module has own serial queue
Label and color match module

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

44

S F 1 2G
Queues

Machine has two cores

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

45

S F 1 2G
Queues

Job starts by requesting new Event

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

46

S F 1 2G
Queues

Job starts by requesting new Event

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

47

S F 1 2G
Queues

Job starts by requesting new Event

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

48

S F 1 2G
Queues

Task creates new task for source to 
read next event

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

49

S F 1 2G
Queues

Task creates new task for source to 
read next event
The task is placed on the source queue

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

49

S F 1 2G
Queues

Task creates new task for source to 
read next event
The task is placed on the source queue

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

50

S F 1 2G
Queues

Task creates new task for source to 
read next event
The task is moved to the global queue
The source queue is blocked
The previous task finishes

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

50

S F 1 2G
Queues

Task creates new task for source to 
read next event
The task is moved to the global queue
The source queue is blocked
The previous task finishes

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

51

S F 1 2G
Queues

The source reads the file

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

52

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

52

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

53

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

53

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

54

S F 1 2G
Queues

Path task determines F must be run

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

55

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

55

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

56

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

56

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

57

S F 1 2G
Queues

Prefetch queues data requests

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

57

S F 1 2G
Queues

Prefetch queues data requests

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

58

S F 1 2G
Queues

Prefetch queues data requests
Creates group to wait for both data requests

2

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

58

S F 1 2G
Queues

Prefetch queues data requests
Creates group to wait for both data requests

2

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

59

S F 1 2G
Queues

Prefetch queues data requests

2

1 2

S F

Job



Threaded Framework CHEP 2012

Cores

Simple Example

59

S F 1 2G
Queues

Prefetch queues data requests

2

1 2

S F

Job



Threaded Framework CHEP 2012
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Module Thread Safety
Fully Re-entrant
Same Module instance can be run simultaneously for different events
ModuleWrapper’s serial queue is unique for each event instance

One event at a time
Module can only handle one event at a time

E.g. it uses member data to store event info temporarily
All ModuleWrappers for the same Module share the same serial queue

Thread-unsafe
Module can’t run at the same time as other thread-unsafe Modules

E.g. all the modules call the same third party non-thread safe library
ModuleWrapper for thread-unsafe module share the same serial queue
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Measurement Strategy
Approximate reconstruction behavior
489 Producers
2 OutputModules
278 Producers have their data requested directly from OutputModule

Module Dependencies
What data each module uses
Such information is recorded by CMS framework already

Module Timing
Get per event module timing for 2011 high pileup data

~30 interactions per crossing

Feed dependencies and timing to demo framework

Compare timing to a simple single threaded demo framework
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Testing System
Physical Machine
Intel(R) Xeon(R) CPU E5620
16 physical cores  @ 2.40GHz

4Cores/CPU with 4 CPUs
47 GB RAM

Virtual Machine
16 virtual cores
15 GB RAM
Scientific Linux 6
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Scaling: 16 Cores

All Producers are doing numeric integration
calibrated how many seconds per integral length

Thread-unsafe scales to 95+% of  single threaded
Both are running N processes rather than N events in one process

Fully re-entrant peaks at 30% faster
74
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Scaling: Infinite Cores
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All Producers are calling usleep
One event per module slower after 2 simultaneous events (se)
One event I/O turns over at 25se and stops growing at 44se
Fully re-entrant stays 30% faster till runs out of  system threads
Single threaded runs out of  memory at 800se
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Concurrency Limit

Short periods of  high module level parallelism

Long periods with only 1 or 2 modules
First period is tracking
Second period is photon conversion finding

Parallelizing within those module would be beneficial
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Conclusion
Task queue based systems can be used for HEP frameworks
Technology scales well
Can transition code to be thread safe one module at a time
Don’t expose thread primitives to physicists

Can use task queues internal to their own modules which are simpler than locks

Concurrency limited by dependencies between modules
Parallelizing tasks within long running modules would be beneficial
Development and Evaluation of Vectorised and Multi-Core Event Reconstruction Algorithms within the CMS Software 
Framework Software by Thomas Hauth
    Session: Engineering, Data Stores and Databases Thursday 5PM

Presently testing additional threading technologies
OpenMP
Intel’s Threading Building Blocks

CMS will choose a threading technology this year 
Start transitioning CMS’ framework to use threads in 2013
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