
Study of a Fine
Grained Threaded
Framework Design

Christopher Jones
FNAL

On behalf of the CMS Offline Organization

1

Threaded Framework CHEP 2012

Outline
Motivation

Framework Design

Threading Model

Framework Implementation

Measurements

Conclusion

2

Threaded Framework CHEP 2012

Why Threads?
Cost of Memory
CPU designs double cores every 18 months
Memory cost halves each 18 months
Therefore, memory per core is now constant (2GB/core)
Complexity of LHC events is only going up with high pileup
May not be able to afford enough memory per core to use 1 event/core

End of 2011 CMS could only use 6 of 8 cores in T0

Forking Is Not Enough
Forking allows sharing of initial setup and conditions
Each core still only handles one event
Memory used by one event will increase as pileup increases

This year shared memory between forked processes is less than private memory

Need to Use Multiple Cores/Event
Naturally accommodated by threading

3

Framework Design

Threaded Framework CHEP 2012

Framework Pieces
Events can be processed in parallel

An Event is filtered by Paths
Paths run in parallel

Paths hold a list of Filters
Filter runs only if previous Filter passes

EndPaths hold OutputModules
EndPaths run in parallel after Paths finish

Producers make data
Run first time their data is requested
Producers run in parallel

Filters, Producers & OutputModules
All are referred to as Modules
Run only after their input data is available

5

A

B

C

F2

D

F1 F3

O

Threaded Framework CHEP 2012

Parallelization

6

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

7

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

8

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

9

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

10

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

11

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

12

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

13

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

14

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

15

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

16

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

17

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

18

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

19

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

20

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

21

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

22

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

23

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Threaded Framework CHEP 2012

Parallelization

24

A

B

C

F2

D

F1

F3

O

1

2

1

1

1

0

0

0

1 0

1 0

1

0 1

1 0

0

0 1

1 0

2

Concurrency is Limited by Dependencies
Between Modules

Threading Model

Threaded Framework CHEP 2012

libdispatch
Developed by Apple Inc
Port is available for Linux and Windows

Task Queue based system
Task is a C/C++ function plus context

Context can be any data you want
Tasks are placed in a light weight queue

Can easily support more than 100,000 queues in one process
Tasks are pulled from queues and then run
System guarantees that cores are not oversubscribed

26

Threaded Framework CHEP 2012

Central Concepts
Global Concurrent Queue

Private Serial Queues

Task Groups

27

Threaded Framework CHEP 2012

Global Concurrent Queue

28

Cores

G
Queue

One concurrent queue per process

Tasks pulled in order and run concurrently

Threaded Framework CHEP 2012

Global Concurrent Queue

29

Cores

G
Queue

One concurrent queue per process

Tasks pulled in order and run concurrently

Threaded Framework CHEP 2012

Global Concurrent Queue

30

Cores

G
Queue

One concurrent queue per process

Tasks pulled in order and run concurrently

Threaded Framework CHEP 2012

Global Concurrent Queue

30

Cores

G
Queue

One concurrent queue per process

Tasks pulled in order and run concurrently

Threaded Framework CHEP 2012

Global Concurrent Queue

30

Cores

G
Queue

One concurrent queue per process

Tasks pulled in order and run concurrently

Threaded Framework CHEP 2012

Private Serial Queue

31

Cores

S
Queue

Can use many per process

Tasks pulled in order with only one run at a time

Threaded Framework CHEP 2012

Private Serial Queue

32

Cores

S
Queue

Can use many per process

Tasks pulled in order with only one run at a time

Threaded Framework CHEP 2012

Can use many per process

Tasks pulled in order with only one run at a time

Private Serial Queue

33

Cores

S
Queue

Threaded Framework CHEP 2012

Can use many per process

Tasks pulled in order with only one run at a time

Private Serial Queue

33

Cores

S
Queue

Threaded Framework CHEP 2012

Can use many per process

Tasks pulled in order with only one run at a time

Private Serial Queue

33

Cores

S
Queue

Threaded Framework CHEP 2012

Can use many per process

Tasks pulled in order with only one run at a time

Private Serial Queue

33

Cores

S
Queue

Guarantees sequential behavior without having to use
thread primitives

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

34

Cores

G
Queue

2

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

35

Cores

G
Queue

2

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

36

Cores

G
Queue

2

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

37

Cores

G
Queue

1

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

38

Cores

G
Queue

0

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

39

Cores

G
Queue

Threaded Framework CHEP 2012

Task Group
Add new task to a queue once other tasks have finished

39

Cores

G
Queue

Provides a synchronization mechanism between tasks

Framework
Implementation

Threaded Framework CHEP 2012

Implementation
Events
Run N Event instances simultaneously

N is configurable

Paths
Path starts a task for the first Filter on the Path
When Filter finishes it launches a task to run the next Filter on the Path

Modules
Modules have a list of data they will request from Event

Used to do parallel prefetching
Modules are shared between all Event instances

Keeps memory overhead as low as possible

ModuleWrappers
One per Module per Event
Has serial queue used to guarantee module is run only once per event
Has a task group used to notify when data prefetches have completed

ProducerWrappers
One per Producer per Event
Remembers if Producer has already run for that Event
Has a task group used to notify others when Producer has made its data

41

Threaded Framework CHEP 2012

Cores

Simple Example

42

S F 1 2G
Queues

One Path
Contains Filter F

Two Producers
F needs data from 1 and 2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

43

S F 1 2G
Queues

One global concurrent queue
Labelled G

Each module has own serial queue
Label and color match module

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

44

S F 1 2G
Queues

Machine has two cores

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

45

S F 1 2G
Queues

Job starts by requesting new Event

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

46

S F 1 2G
Queues

Job starts by requesting new Event

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

47

S F 1 2G
Queues

Job starts by requesting new Event

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

48

S F 1 2G
Queues

Task creates new task for source to
read next event

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

49

S F 1 2G
Queues

Task creates new task for source to
read next event
The task is placed on the source queue

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

49

S F 1 2G
Queues

Task creates new task for source to
read next event
The task is placed on the source queue

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

50

S F 1 2G
Queues

Task creates new task for source to
read next event
The task is moved to the global queue
The source queue is blocked
The previous task finishes

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

50

S F 1 2G
Queues

Task creates new task for source to
read next event
The task is moved to the global queue
The source queue is blocked
The previous task finishes

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

51

S F 1 2G
Queues

The source reads the file

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

52

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

52

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

53

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

53

S F 1 2G
Queues

The source reads the file
Once done, starts task to run Paths

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

54

S F 1 2G
Queues

Path task determines F must be run

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

55

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

55

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

56

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

56

S F 1 2G
Queues

Path task determines F must be run
Runs task to prefetch F’s data

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

57

S F 1 2G
Queues

Prefetch queues data requests

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

57

S F 1 2G
Queues

Prefetch queues data requests

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

58

S F 1 2G
Queues

Prefetch queues data requests
Creates group to wait for both data requests

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

58

S F 1 2G
Queues

Prefetch queues data requests
Creates group to wait for both data requests

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

59

S F 1 2G
Queues

Prefetch queues data requests

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

59

S F 1 2G
Queues

Prefetch queues data requests

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

60

S F 1 2G
Queues

Prefetch queues data requests
Producer queues are halted

Makes sure only run once per event

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

61

S F 1 2G
Queues

Producers do their work

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

61

S F 1 2G
Queues

Producers do their work

2

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

62

S F 1 2G
Queues

Producers do their work

1

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

62

S F 1 2G
Queues

Producers do their work

1

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

63

S F 1 2G
Queues

Group runs task to run F

0

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

64

S F 1 2G
Queues

Group runs task to run F

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

65

S F 1 2G
Queues

Group runs task to run F
F’s queue is halted

If F were on many paths it would be called once
1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

65

S F 1 2G
Queues

Group runs task to run F
F’s queue is halted

If F were on many paths it would be called once
1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

66

S F 1 2G
Queues

Filter F is run

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

67

S F 1 2G
Queues

Filter F is run
Once done, runs task to advance Path

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

68

S F 1 2G
Queues

Filter F is run
Once done, runs task to advance Path

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

68

S F 1 2G
Queues

Filter F is run
Once done, runs task to advance Path

1 2

S F

Job

Threaded Framework CHEP 2012

Cores

Simple Example

69

S F 1 2G
Queues

Path task sees Path has finished
Submits new task to get next event

1 2

S F

Job

Threaded Framework CHEP 2012

Module Thread Safety
Fully Re-entrant
Same Module instance can be run simultaneously for different events
ModuleWrapper’s serial queue is unique for each event instance

One event at a time
Module can only handle one event at a time

E.g. it uses member data to store event info temporarily
All ModuleWrappers for the same Module share the same serial queue

Thread-unsafe
Module can’t run at the same time as other thread-unsafe Modules

E.g. all the modules call the same third party non-thread safe library
ModuleWrapper for thread-unsafe module share the same serial queue

70

Measurements

Threaded Framework CHEP 2012

Measurement Strategy
Approximate reconstruction behavior
489 Producers
2 OutputModules
278 Producers have their data requested directly from OutputModule

Module Dependencies
What data each module uses
Such information is recorded by CMS framework already

Module Timing
Get per event module timing for 2011 high pileup data

~30 interactions per crossing

Feed dependencies and timing to demo framework

Compare timing to a simple single threaded demo framework

72

Threaded Framework CHEP 2012

Testing System
Physical Machine
Intel(R) Xeon(R) CPU E5620
16 physical cores @ 2.40GHz

4Cores/CPU with 4 CPUs
47 GB RAM

Virtual Machine
16 virtual cores
15 GB RAM
Scientific Linux 6

73

Threaded Framework CHEP 2012

Scaling: 16 Cores

All Producers are doing numeric integration
calibrated how many seconds per integral length

Thread-unsafe scales to 95+% of single threaded
Both are running N processes rather than N events in one process

Fully re-entrant peaks at 30% faster
74

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 4 8 12 16 20

Relative to Single Threaded

Th
ro

ug
hp

ut
/S

in
gl

e
Th

re
ad

ed
 T

hr
ou

gh
pu

t
Number of Simultaneous Events

Single Threaded
Fully Re-entrant
Thread-Unsafe

0

0.1

0.2

0.3

0.4

0.5

0 4 8 12 16 20

Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

Single Threaded
Fully Re-entrant
Thread-Unsafe

Threaded Framework CHEP 2012

Scaling: Infinite Cores

75

0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

Single Threaded
One Event per Module
One Event I/O
Fully Re-entrant

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Scaled Througput

Ev
en

ts
/S

ec
/S

im
ul

ta
ne

ou
s

Ev
en

t

Number of Simultaneous Events

Simultaneous Jobs
One Event per Module
One Event I/O
Fully Re-entrant

All Producers are calling usleep
One event per module slower after 2 simultaneous events (se)
One event I/O turns over at 25se and stops growing at 44se
Fully re-entrant stays 30% faster till runs out of system threads
Single threaded runs out of memory at 800se

Threaded Framework CHEP 2012

Concurrency Limit

Short periods of high module level parallelism

Long periods with only 1 or 2 modules
First period is tracking
Second period is photon conversion finding

Parallelizing within those module would be beneficial
76

0

5

10

15

20

25

30

0 8 16 24 32

Number of Running Modules vs Time for High Pileup RECO
Nu

m
be

r o
f c

on
cu

rre
nt

ly
ru

nn
in

g
m

od
ul

es

Average timeline for processing one event (sec)

Threaded Framework CHEP 2012

Conclusion
Task queue based systems can be used for HEP frameworks
Technology scales well
Can transition code to be thread safe one module at a time
Don’t expose thread primitives to physicists

Can use task queues internal to their own modules which are simpler than locks

Concurrency limited by dependencies between modules
Parallelizing tasks within long running modules would be beneficial
Development and Evaluation of Vectorised and Multi-Core Event Reconstruction Algorithms within the CMS Software
Framework Software by Thomas Hauth
 Session: Engineering, Data Stores and Databases Thursday 5PM

Presently testing additional threading technologies
OpenMP
Intel’s Threading Building Blocks

CMS will choose a threading technology this year
Start transitioning CMS’ framework to use threads in 2013

77

