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Abstract— The Advanced Networking Initiative (ANI) project 
from the Energy Services Network provides a 100 Gbps 
testbed, which offers the opportunity for evaluating 
applications and middleware used by scientific experiments. 
This testbed is a prototype of a 100 Gbps wide-area network 
backbone, which links several Department of Energy (DOE) 
national laboratories, universities and other research 
institutions. These scientific experiments involve movement of 
large datasets for collaborations among researchers at 
different sites and thus require advanced infrastructure for 
supporting large and fast data transfers. A 100 Gbps network 
testbed is a key component of the ANI project and is used for 
DOE’s science research programs. This work presents results 
towards obtaining maximum throughput in large data 
transfers by optimizing and fine-tuning scientific applications 
and middleware to use this advanced infrastructure efficiently. 
A detailed performance evaluation is discussed measuring both 
applications, from High Energy Physics (HEP) and from data 
transfer middleware (GridFTP, Globus Online, Storage 
Resource Management, XrootD and Squid) at 100 Gbps speeds 
and 53 ms of latency. Results show that up to 97% efficiency of 
such high bandwidth high latency network is possible, 
achieving 80-90 Gbps in most test cases with a peak transfer 
rate of 100 Gbps. 

Keywords- ANI Testbed; Grid Computing; Big Data; 
Caching; Wide Area Network 

I.  INTRODUCTION 
In 2011 Energy Services Network (ESnet) [1] deployed a 

100 Gbps wide-area network backbone linking several 
Department of Energy (DOE) [2] National Laboratories, 
universities and research institutions. ESnet also provided a 
100 Gbps cross-country prototypical testbed as a part of 
Advanced Networking Initiative (ANI) [3]. This testbed 
helps network researchers validate the infrastructure by 
testing the scalability of different applications and 
middleware in such a high-speed environment.  

Fermilab hosts the US Tier-1 Center for the Large 
Hadron Collider (LHC) Compact Muon Solenoid (CMS) 
experiment. This experiment running at CERN, the European 
Organization for Nuclear Research, in Geneva, Switzerland, 
generates large data that must be distributed for collaboration 
purposes. Fermilab acts as the tier 1 site for CMS in US and 
is responsible for distribution of the data over the WAN to 
different institutions for further processing. The current scale 
of data produced from these experiments is 40 PB with a 
WAN traffic of 30 Gbps and 140 Gbps of LAN traffic from 
archive to local processing farms. Apart from the HEP 
communities, Fermilab is also involved with other Grid 

initiatives like Extreme Science and Engineering Discovery 
Environment (XSEDE) [4] and the Open Science Grid 
(OSG) [5]. 

In preparation for Fermilab connecting to the 100 Gbps 
backbone, we have been running the High Throughput Data 
Program (HTDP) since 2011. The HTDP project is driven by 
three major thrusts; (1) Evaluate Grid middleware on 100 
Gbps to prepare lab and its stakeholders for the transition (2) 
Foster the process to make network a manageable resource 
by actively participating in OSG Networking activity (3) 
Integrate network intelligence with data and job management 
middleware. 

This paper describes the work done as part of the HTDP 
project in context of evaluating Grid applications and 
middleware on the 100 Gbps ANI testbed. The contribution 
of this paper is the evaluation of different layers and 
services (GridFTP, Globus Online, Storage Resource 
Management, XrootD and Squid) involved in end-to-end 
analysis systems at 100 Gbps speeds in a wide-area network 
testbed, showing that it is feasible with careful tuning to 
utilize high bandwidth high latency networks. This work 
aims to make effective use of the advanced infrastructure and 
ensure maximum throughput possible across each layer and 
service. This work also includes technological investigations 
to identify gaps in the middleware components integrated 
with the analysis systems and the development of system 
prototypes to adapt to the high-speed network. 

The rest of the paper is organized as follows: Section II 
describes the related work about the tests conducted for 
evaluating the Grid middleware. In Section III, we present 
the essential overview of different middleware namely 
GridFTP [6][7][8], Globus Online[12], Storage Resource 
Management (SRM) [13][14], XrootD [15] and Squid [16]. 
Section IV describes the 100 Gbps prototype used for 
middleware evaluation. It also shows the evaluation and 
experimental results of performance. Conclusions are drawn 
and future work is envisioned in Section V. 

II. RELATED WORK 
One of the goals of HTDP is to analyze the performance 

of the end-to-end analysis systems of stakeholders by 
performing large data transfers over the 100 Gbps ANI 
testbed. The experimental results would reveal the gaps in 
different middleware that needs to be corrected for making 
them adaptable in the high-speed environment. 

In [6], the authors reported the design and performance 
of the Globus Striped GridFTP Framework on a 30 Gbps 
network. The tests showed that this framework achieved 



90% efficiency and is hence faster and scalable than other 
FTP servers. 

The authors of [7] demonstrated transfer of Grid datasets 
on a 20 Gbps network during Super Computing 2009 
Bandwidth Challenge. They achieved a sustained rate of 15 
Gbps when moving 10 TB of data. 

In [8], network performance of WAN data transfer was 
characterized using GridFTP and FDT protocols. The tests 
utilized two 10 Gbps links and achieved a data transfer rate 
of 15 Gbps. These results were used to analyze WAN data 
transfer issues related to a Hadoop Distributed File System 
(HDFS) storage. 

In 2010, a data management framework suitable for 
distributed biomedical research environments was proposed 
in [9]. It is a distributed data-sharing system and is used by 
medical researchers at Bioinformatics Research Network 
(BIRN). The framework includes security tools, catalogs for 
managing datasets, and a secure data transfer service. 

Most of the studies to date have been done on 30 Gbps 
networks or slower. Besides our own work, there was just 
one other study that showed 100 Gbps evaluations. The 
authors of [10] discuss the application issues and host tuning 
strategies for enabling applications to scale to 100 Gbps 
rates. They also demonstrated a climate data movement over 
100 Gbps network at Super Computing 2011[17] and 
observed an average performance of 85 Gbps. The work 
presented in this paper shows that with the right middleware 
stack, as well as with careful tuning, a peak transfer rate of 
99 Gbps can be achieved on a 100 Gbps network.  

III. PROPOSED WORK 
As one of the three driving thrusts, the High Throughput 

Data Program (HTDP) at Fermilab aims to test the 
performance of end-to-end analysis systems of the 
stakeholders by identifying gaps in various tools used by 
researchers and ensure that they get corrected and function 
effectively at 100 Gbps scale.  

In Grid Computing, Storage Element refers to a physical 
site hosting a storage infrastructure for storing and accessing 
data using standard interfaces with the required authorization 
policies. It also enables transfer of large amounts of data 
between grid jobs. The main services provided by the storage 
element are shown in Figure 1. 

 

 
Figure 1: Storage Element 

This paper discusses the various tests conducted to 
analyze the performance of different Grid middleware used 
by storage elements to identify the gaps that affect the 
throughput of data transfer on the 100 Gbps testbed. Here we 

present an essential overview of the different middleware 
(GridFTP, Globus Online, Storage Resource Management, 
XrootD and Squid) that were tested for their scalability. 

A. GridFTP 
GridFTP [6][7][8] builds on top of FTP and is a high 

performance, secure, reliable data transfer protocol 
optimized for high bandwidth, wide-area networks. It 
provides a uniform way of accessing data. GridFTP adds an 
abstraction layer that encompasses different modes of access 
and exposes one single API for accessing data. FTP was 
chosen for its widespread use and for its well defined 
architecture for extensions to the protocol. Other features 
include 
• GSI Security for file transfers authentication/encryption 
• Data channel reuse 
• Third-party transfers: C can initiate transfers from A to B 
• Parallel, Concurrent, Striped transfers 
• Partial file transfer, Restart failed transfers 
• Tunable network and I/O parameters 

In 2011, prior to the tests conducted on the 100 Gbps 
testbed, HTDP used the Long Island Metropolitan Area 
Network (LIMAN) testbed, a 30 Gbps ANI prototype, for 
testing GridFTP and Globus Online. The LIMAN testbed 
was one of the two fast network test environments 
connecting Brookhaven National Laboratory (BNL) and 
New York.  

The goal of the evaluation was to maximize the 
utilization of the 30 Gbps network bandwidth using GridFTP 
and Globus Online. The throughput of the system is limited 
by the latency of the network prototype. The commands 
flowing on the control channel also add to the overhead for 
each file transferred over the network. This overhead 
becomes predominant when the size of file being transferred 
is small. Therefore the tests were conducted for three 
different datasets namely large, medium, and small files. The 
network utilization was low for small files when compared to 
large and medium files. With similar tests performed for 
Globus Online, the control channel latency was found to be 
higher than for the GridFTP tests. Also, the ANI testbed was 
accessible only through a Virtual Private Network (VPN) 
whereby a machine at Fermilab was designated as VPN 
gateway and implemented port forwarding mechanism to 
forward the accepted control port connections to the server 
machines. To have a fair comparison, the GridFTP client was 
also tested in the same condition by having it outside the 
network and handled using port forwarding. 

Throughput for small files suffered when compared to 
large and medium files due to higher control channel 
overhead on per file basis combined with high latency. 
Globus Online auto-tuning appears to be more effective on 
medium files than on large ones. 

The second fast-network environment was a full 100 
Gbps network showcased at Super Computing 2011[17]. 
With an allocated bandwidth of 60 Gbps, the Grid & Cloud 
Computing Department of Fermilab, in collaboration with 
UCSD, demonstrated the transfer of 30 TB of CMS data in 
one-hour window with GridFTP, achieving a sustained rate 
of 66 Gbps. 



B. Storage Resource Management (SRM) 
SRM [13][14] is a web service protocol operating over 

http and is the most common protocol for interfacing storage 
on the Grid. Its main purpose includes 

1. Metadata operations 
2. Data movement between storage elements 
3. Generic management of backend storage 

SRM is not designed for high throughput transfers, so it 
simply redirects the client to a transfer protocol such as 
GridFTP. This can also effectively load balance transfers 
over multiple nodes and thus shows good scalability. Figure 
2 shows the interaction between GridFTP/SRM client and 
the underlying storage system. 

 
Figure 2: Storage Access by GridFTP and SRM client [14] 

C. XrootD 
XrootD [15] is a popular data location and transfer tool 

used by the HEP community. XrootD provides the capability 
to manage a cluster of hosts as storage nodes as well as a 
basic data transfer protocol. The XrootD package consists of 
the storage server xrootd and the client tool xrdcp. 

D. Squid 
Squid [16] is a web proxy and cache that is used by the 

HEP community to reduce wide-area network traffic. 
Caching can improve response time through data reuse. It 
can also be used for load balancing web servers. It 
implements a Least Recently Used (LRU) algorithm to 
replace data items in cache. 

IV. PERFORMANCE EVALUATION 
This section gives a brief description on the ANI 100 

Gbps testbed. It then discusses the various experiments 
performed on this testbed using the Grid middleware 
explained in the previous section. All the tests were 
conducted to identify and correct the bottlenecks in the 
different applications and middleware used by the HEP 
community, so that they can function effectively at the 100 
Gbps scale. All tests involved large data transfers and the 
throughput of these transfers was measured to evaluate the 
performance of the middleware. 

A. Testbed Description 
The ANI 100 Gbps testbed has three sets of hosts: 

physical performance I/O servers, memory performance 

servers, and virtual machines. Virtual machines were not 
involved in testing. Figure 3 shows the network 
configuration of the testbed. 

The machines at NERSC are disk performance servers 
and machines at ANL are memory performance servers. We 
had access to three machines at NERSC (nersc-diskpt-1, 
nersc-diskpt-2 and nersc-diskpt-3) and three machines at 
ANL (anl-mempt-1, anl-mempt-2 and anl-mempt-3). Each 
machine had four 10 Gbps interfaces through which it 
connected to the 100 Gbps cross country link. Figure 4 
illustrates the connection between the two sites and the 
subnet configuration of the network. 

 
Figure 3: ANI 100 Gbps Test Bed [3] 

 
Figure 4: Illustration of connections between NERSC and ANL nodes 

ANL machines had two AMD 6140 Opteron Processor 
with 16 cores (8 cores each) at 2.6 GHz and 64GB memory. 

NERSC machines 1 and 2 had Intel Xeon X5650 with 12 
cores at 2.67 GHz and 48 GB of memory while NERSC 3 
had Intel Xeon E5530 with 8 cores at 2.4 GHz and 24 GB of 
memory. 

The round trip time between NERSC and ANL machines 
was measured to be 53 ms. Figure 5 shows the round trip 
time (RTT) between the hosts involved. 

 
Figure 5: Testbed connections with RTT 

10 Gbps interfaces on the performance hosts at NERSC 
and ANL are part of a 100 Gbps private network not 



accessible from the public network. Each of these hosts also 
has one 1 Gbps interface connected to the respective site 
routers through a switch. Traffic to the 1 Gbps interfaces is 
fully routed within the ANI network and is used for port 
forwarding. Inbound access to the hosts is only available 
through a VPN. A machine at Fermilab, anidev.fnal.gov, 
provides access to the 100 Gbps testbed through the VPN. 
The VPN gateway ran the VPN software, accepted GridFTP 
control port connections from the Internet, and forwarded 
them to the network control interfaces (1 Gbps) of the three 
server machines, using xinetd port forwarding. In turn, again 
using xinted, the three server machines forwarded those 
connections to their own GridFTP control ports, bound to the 
10 Gbps interfaces. 

B. GridFTP and Globus Online 
There were three different datasets used in the tests. In 

each dataset file size increased in powers of 2. 
1. Small - 8KB to 4MB (Total: almost 8MB) 
2. Medium - 8MB to 1GB (Total: almost 2GB) 
3. Large - 2GB to 8GB (Total: 14GB) 
All tests involved repeatedly transferring the datasets 

from NERSC hosts to ANL hosts. The operating system’s 
RAM buffer cache was big enough to hold the entire dataset, 
so disk access was not a bottleneck. The GridFTP tests were 
done in three ways: 

1. Local Client-Server: Each NERSC host invoked 
GridFTP client command to transfer files to every 10 
Gbps interfaces of all the ANL hosts. 

2. Local Server-Server: Third-party transfer of files 
from every 10 Gbps interface of each NERSC hosts 
to every 10 Gbps interface of all the ANL hosts. 

3. Remote Server-Server: Same as local server-server 
but the client initiating third-party transfers was 
outside the VPN and used port forwarding. 

Globus Online tests were similar to Remote server-server 
tests but the Globus Online machine initiated the third-party 
transfers. 

TABLE 1: GRIDFTP & GLOBUS ONLINE PERFORMANCE MEASUREMENTS 

Dataset 

Local: 
Client-
Server 
(Gbps) 

Local: 
Server-
Server 
(Gbps) 

Remote: 
Server-
Server 
(Gbps) 

Globus 
Online 
(Gbps) 

Large 87.92 92.74 91.19 62.90 
Medium 76.90 90.94 81.79 28.49 

Small 2.99 2.57 2.11 2.30 
 
Table 1 and Figure 6 summarize the throughput results 

of all the tests.  
Large and Medium Files: With proper tuning of 

concurrency (-cc 4) and parallelism (-p 4) options, GridFTP 
performed well. Globus Online showed relatively lower 
performance. This is possibly due to higher control channel 
latency (> 150ms) between Globus Online servers and the 
testbed. There was also not much control over the tuning 
options compared to GridFTP. 

Small Files: GridFTP performance was affected by the 
Lots Of Small Files (LOSF) problem. Although GridFTP 
Pipelining [11] is aimed at solving this problem, it did not 

work as explained when transferring individual files. It 
works only when directories are transferred. Figure 7 shows 
the GridFTP profile (throughput variation with file size 
from 1 MB to 1 GB). 

 
Figure 6: GridFTP & Globus Online performance comparison 

At 100 Gbps speeds, medium is the new small. From 
Figure 7, it is quite clear that at higher network speeds, even 
the medium file sizes suffer from the LOSF problem, 
because of the problem with pipelining (see 3b above). 

 

 
Figure 7: GridFTP Performance on ANI Testbed 

To better understand the potential shortcomings for small 
file sizes, we analyzed the message flow of the GridFTP 
protocol over the data and control channels. 

For a local server-server third-party transfer, there were 
two control channels and one data channel formed as shown 
in Figure 8. 

 
Figure 8: Control and Data Channel in Third-Party Transfer 



Through tcpdump analysis, the series of commands that 
flow on control channel can be summarized as 
1. Initially GSSAPI authentication takes place on both 

control channels. 
2. Client sends a STOR command on control channel 2 to 

destination. 
3. Client sends a RETR command to source server on 

control channel 1. Source server replies with Beginning 
transfer. 

4. Destination server also replies Beginning transfer to the 
client and then sends the first Performance Marker. 

5. Then data starts flowing on the data channel. 
6. If the file is big enough, the destination server keeps 

sending Performance Marker and Range Marker every 
5 seconds on the control channel 2. 

7. When the source server has finished sending data, it 
sends Transfer Complete to client on control channel 1. 

8. After receiving all data on data channel, the destination 
server sends the final Performance Marker, Range 
Marker and Transfer Complete status on the control 
channel 2. 

9. If there are more files to send, then the process repeats 
from step 2. 

Performance Marker is the instantaneous state of transfer 
indicating the number of bytes that have been transferred on 
a stripe at a given timestamp. Extended block mode (MODE 
E) uses Performance Marker to monitor the performance of 
data transfer. 

Range Marker is the concatenation the number of bytes 
received on all stripes in a transfer. This can be used as 
Restart Marker if a client needs to restart the transfer of a 
particular range of data using the REST command. It is 
present to ensure backward compatibility with BLOCK 
mode. 

The above analysis was done with the following options: 
1. Pipelining (-pp) 
2. One parallel stream (-p 1) 
3. One connection (-cc 1) 
4. No data channel authentication (- nodcau) 

If the pipelining option (-pp) is removed, then the client 
sends SIZE command to source server and ALLO command 
to the destination server before sending the STOR command 
on the control channel 2. The source server replies with the 
size of the file. The destination server after receiving ALLO 
command sends back an “ALLO command successful” to 
the client. Then the above process continues from step 2. The 
complete flow diagram of above steps is show in Figure 9.  

A more abstract and high-level way of looking at the 
above steps is shown in Figure 10 and Figure 11. Figure 10 
shows how an ideal third-party transfer should take place and 
Figure 11 shows how it actually happened. 

The throughput is limited by the STORE command that 
needs to be sent for every file only after receiving the 
Transfer Complete response for previous file sent on the 
same data channel. This causes a delay of one RTT between 
every file transfers. For small files, this wait time is larger 
than the actual time required for data transfer. When there 
are many small files, this overhead affects the throughput 
substantially. Thus we see a low throughput of 2.5 Gbps for 

small files. 

 
Figure 9: Command Flow Sequence in Third-Party Transfer 

 
Figure 10: Ideal Third-Party Transfer 

 
Figure 11: Actual Third-Party Transfer 

C. Storage Resource Management 
The dataset used is same as that in GridFTP and Globus 

Online tests. Throughput measurements were made only for 
Local Server-Server Third-Party tests. The tests were 
conducted similarly to the GridFTP tests. There were no 
options available for controlling concurrency, but the option 
for multiple streams (parallelism) was enabled. Table 2 and 
Figure 12 show the throughput comparison of GridFTP, 
Globus Online and SRM Performance on the ANI Testbed. 



TABLE 2: GRIDFTP, GLOBUS ONLINE AND SRM PERFORMANCE ON ANI 
TESTBED 

Dataset GridFTP (Gbps) Globus Online (Gbps) SRM (Gbps) 
Large 92.74 62.9 87.36 

Medium 90.94 28.49 77.15 
Small 2.51 2.3 0.5 

 

 
Figure 12 GridFTP, Globus Online and SRM Performance on ANI Testbed 

SRM adds one more additional layer on top of GridFTP 
for transferring data. SRM has its own overhead, for example 
it needs to handle URL conversion (srm:// to gsiftp://). Hence 
the throughput for data transfer using SRM is bounded by 
that of GridFTP. Further, it has no data channel caching, i.e. 
it closes data channel after every file transfer and opens a 
new data channel for next file transfer. This affects the 
throughput. This is clearly seen in the case of lots of small 
files as a reduction in performance. 

D. XrootD 
XrootD server supports concurrent and multi-stream 

transfers. Multiple clients were used in order to implement 
concurrency. Multi-stream transfers did not improve 
performance in our testing. Unlike GridFTP, xrootd does not 
allow writing data to a null device (/dev/null) and hence a 
RAM disk was used at the destination in order to avoid disk 
overhead. The size of RAM disk, therefore, becomes the 
bottleneck for the amount of data that can be transferred. 
Hence for file size greater than 2 GB aggregate throughput 
was estimated by scaling the results for one NIC. For other 
file sizes, a direct measurement was made. 

From Table 3, XrootD server performed better with 
increased number of clients with almost 80% bandwidth 
utilization with 4 clients. As shown in Table 4, the scale 
factor was estimated using throughput measurements of 
small files (510 MB and 1 GB) for 1 NIC and 12 NICs 
(aggregate). This scale factor was then applied to files of 
sizes 4 GB and 8 GB. 

As with GridFTP, XrootD shows poor performance for 
small files. Figure 13 shows actual (for small and medium 
files) and scaled (for large files) throughput measurements 
for XrootD server. 

 

TABLE 3: XROOTD PERFORMANCE (DIRECT MEASUREMENTS)  ON ANI 
TESTBED 

Dataset 1 Client 
(Gbps) 

2 Clients 
(Gbps) 

4 Clients 
(Gbps) 

8 Clients 
(Gbps) 

Large 1-NIC 
(8 GB) 3 5 7.9 N / A 

Large, 1-NIC 
(2 / 4 GB) 2.3 – 2.7 3.5 – 4.4 5.6 – 6.9 7.7 – 8.7 

Medium 
(64 MB / 256 

MB) 
2.9 – 8.8 5.7 – 14.7 11.2 – 23.9 22 – 39 

Small 
(256 KB / 4 

MB) 
0.03 – 0.19 0.07 – 0.38 0.11 – 0.76 0.1 – 1.4 

TABLE 4: AGGREGATE THROUGHPUT ESTIMATION USING A SCALE FACTOR 
FROM MEDIUM SIZE FILES 

Dataset 
(GB) 

1 NIC 
measurements 

(Gb/s) 

Aggregate 
Measurements 
(12 NIC) (Gb/s) 

Scale 
Factor 

per 
NIC 

Aggregate 
estimate 
(12 NIC) 

(Gb/s) 
0.512 4.5 46.9 0.87 – 

1 6.2 62.4 0.83 – 
4 8.7 (8 clients) – 0.83 86.7 
8 7.9 (4 clients) – 0.83 78.7 
 

 
Figure 13: XrootD Performance on ANI Testbed 

E. Squid 
The testing of Squid is done by repeatedly fetching a 

8MB file stored in a database at CERN using the wget 
command and using the Squid server as proxy. Only for the 
first request, the proxy fetches the file from the CERN 
database. All future requests for the same file are completed 
using the cached copy. Since the 8MB file is always in the 
file system buffers, disk access is not necessary. The 
parameter space in the tests involved was: 

1. Transferring data in both directions (NERSC  
ANL) 

2. Client to Server connection 
a. One to One transfer - nersc-diskpt-1 client requesting 

8MB file to anl-mempt-1 server, nersc-diskpt-2 to 
anl-mempt-2 and nersc-diskpt-3 to anl-mempt-3 

b. All to All transfer - each diskpt client requesting 
8MB file to all mempt servers 

3. Number of Squid processes running in each host. We 
used squid2 that is single threaded, but ran multiple 
squid server processes listening on the same port for 
connections coming in to all 4 NICs. 



4. With and without Core Affinity for Squid instances. Core 
affinity was enabled using the taskset command. Each 
instance of Squid was pinned to one core. Once a Squid 
instance is pinned to a core, it will always use the same 
caching layer. Core affinity can help minimize the number 
of L2 cache misses and in turn prevents the data being 
copied from one CPU to another. 

In all-to-all transfers, for each NIC on the server side, 
there are 250 parallel processes running on the client side. 
There are 12 NICs in total on the server side. So there are 
250 x 12 = 3000 clients per machine and three machines on 
the client side; therefore, there are 9000 clients in total. Each 
client repeatedly does wgets to fetch the 8MB file using the 
Squid server as http proxy. 

In one-to-one transfers, each machine on the client end 
connects to only one machine on the server end. The number 
of NICs contacted is reduced from 12 to 4. So we increase 
the number of parallel processes from 250 to 750 per NIC to 
maintain the same total number of clients. The tests were 
also repeated for half the number of clients for some cases. 

Table 5, Table 6, Figure 14, and Figure 15 summarize 
the throughput results of the Squid tests. As we increase the 
number of Squid servers per host, the throughput increases in 
both directions. When there is lesser capacity at the server 
end, more clients overload the server thus bringing down the 
throughput; therefore, fewer clients maximize the utilization 
of that capacity. In addition, enabling core affinity increased 
the throughput. 

ANL to NERSC: One-to-one gave lower performance 
than all-to-all. One possible reason could be that nersc-
diskpt-3 is a slower machine and had one 10 Gbps 
NIC(eth2) with frequent problems. This decreased the 
utilization with more client load. Core affinity improved 
performance slightly, especially when there were higher 
numbers of Squid servers per host. 

NERSC to ANL: One-to-one performance was almost 
the same as all-to-all. When the servers were running on the 
NERSC side, even the one bad NIC did not cause any issue 

because the other three NICs were compensating by sending 
more data. 

For both direction benchmarks, it is worthwhile noting 
that the core-affinity optimization was able to improve the 
overall performance by up to 21%. Furthermore, increasing 
the number of Squid servers per machine also improved 
aggregate performance, with some speeds approaching 100 
Gbps.   

 

 
Figure 14: Squid Performance on ANI Testbed (ANL to NERSC) 

CPM – Clients per machine, CA – Core Affinity 

 
Figure 15: Squid Performance on ANI Testbed (NERSC to ANL) 

CPM – Clients per machine, CA – Core Affinity 

TABLE 5: ANL TO NERSC 

No. of Squid 
servers per 
ANL host 

Core Affinity Disabled  Core Affinity Enabled 
One to One 

3000 clients per 
machine (Gbps) 

All to All (Gbps) One to One 
3000 clients per 
machine (Gbps) 

All to All (Gbps) 
3000 clients per 

machine 
1500 clients per 

machine 
3000 clients per 

machine 
1500 clients per 

machine 
10 52 50 55 55 50 54 
12 62 60 68 62 58 64 
14 66 88 85 78 88 84 
16 77 96 90 83 100 90 

TABLE 6: NERSC TO ANL 

No. of Squid servers 
on each of 3 hosts at 

NERSC 

Core Affinity Disabled Core Affinity Enabled 
One to One (Gbps) All to All (Gbps) One to One (Gbps) All to All (Gbps) 

3000 clients 
per machine 

1500 clients 
per machine 

3000 clients 
per machine 

1500 clients 
per machine 

3000 clients 
per machine 

1500 clients 
per machine 

3000 clients 
per machine 

1500 clients 
per machine 

8, 8, 8 70 83 70 80 75 83 76 83 
10, 10, 8 76 90 75 90 99 95 97 96 
12, 12, 8 80 91 79 91 98 96 98 98 



V. CONCLUSION AND FUTURE WORK 
The purpose of the High Throughput Data Program at 

Fermilab is to prepare Fermilab and its stakeholders to 
transition to the 100 Gbps network backbone by evaluating 
different layers and services involved in end-to-end analysis 
systems. The middleware components tested include 
GridFTP, Globus Online, SRM, XrootD and Squid. 

The analysis of results indicates that the different 
middleware technologies have the potential and could scale 
up to 100 Gbps in certain cases. It also reveals the cases 
where the middleware performs poorly and the features that 
need to be improved for better performance.  

In GridFTP, to improve the performance for small and 
medium files, implementation of “pipelining” needs to 
support moving “individual” files between two GridFTP 
servers, rather than directories only. 

In Globus Online, the control channel latency is very 
high, since the tests involved forwarding the commands in 
the control channel to the GridFTP servers through VPN. 
Another factor that might be responsible for lower 
performance is that there are fewer available tuning options 
as compared to GridFTP. 

In SRM, since it uses the GridFTP protocol internally for 
transferring data, the performance is limited by the GridFTP 
implementation. Besides, its own implementation adds some 
overhead that causes lower performance than GridFTP. 
Finally the absence of Data Channel Caching shows its 
impact in the case of small files, where the throughput 
attained is much less than that of GridFTP. 

XrootD performance for small files was poor, similarly to 
GridFTP, but has the potential to scaling up to over 85 Gbps 
with sufficient number of clients. 

Squid utilized the full throughput of the testbed reaching 
nearly full bandwidth of 100 Gbps, when 3000 clients on 
ANL performed the All-to-All requests to NERSC servers. 
Most of the other cases also showed good throughput. The 
tuning strategy consists in having the right number of clients 
in different settings so as not to overload the server. When 
the number of servers is less than the available CPU 
capacity, this number forms the bottleneck. When there were 
sufficient servers, the number of parallel clients decides the 
throughput. 

As a part of future work, we plan to test other 
technologies used in Grid Computing, such as CVMFS [18], 
iRODS [19], dCache [20], NFS v4.1 and Lustre [21]. The list 
is mainly driven by the stakeholders needs. 
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