
Optimizing Large Data Transfers over 100Gbps Wide Area Networks
Anupam Rajendran1, Parag Mhashilkar2, Hyunwoo Kim2, Dave Dykstra2, Gabriele Garzoglio2, Ioan Raicu1, 3

arajend5@hawk.iit.edu, parag@fnal.gov, hyunwoo@fnal.gov, dwd@fnal.gov, garzoglio@fnal.gov,
iraicu@cs.iit.edu

1Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA
2Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia IL, USA

3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

Abstract— The Advanced Networking Initiative (ANI) project
from the Energy Services Network provides a 100 Gbps
testbed, which offers the opportunity for evaluating
applications and middleware used by scientific experiments.
This testbed is a prototype of a 100 Gbps wide-area network
backbone, which links several Department of Energy (DOE)
national laboratories, universities and other research
institutions. These scientific experiments involve movement of
large datasets for collaborations among researchers at
different sites and thus require advanced infrastructure for
supporting large and fast data transfers. A 100 Gbps network
testbed is a key component of the ANI project and is used for
DOE’s science research programs. This work presents results
towards obtaining maximum throughput in large data
transfers by optimizing and fine-tuning scientific applications
and middleware to use this advanced infrastructure efficiently.
A detailed performance evaluation is discussed measuring both
applications, from High Energy Physics (HEP) and from data
transfer middleware (GridFTP, Globus Online, Storage
Resource Management, XrootD and Squid) at 100 Gbps speeds
and 53 ms of latency. Results show that up to 97% efficiency of
such high bandwidth high latency network is possible,
achieving 80-90 Gbps in most test cases with a peak transfer
rate of 100 Gbps.

Keywords- ANI Testbed; Grid Computing; Big Data;
Caching; Wide Area Network

I. INTRODUCTION
In 2011 Energy Services Network (ESnet) [1] deployed a

100 Gbps wide-area network backbone linking several
Department of Energy (DOE) [2] National Laboratories,
universities and research institutions. ESnet also provided a
100 Gbps cross-country prototypical testbed as a part of
Advanced Networking Initiative (ANI) [3]. This testbed
helps network researchers validate the infrastructure by
testing the scalability of different applications and
middleware in such a high-speed environment.

Fermilab hosts the US Tier-1 Center for the Large
Hadron Collider (LHC) Compact Muon Solenoid (CMS)
experiment. This experiment running at CERN, the European
Organization for Nuclear Research, in Geneva, Switzerland,
generates large data that must be distributed for collaboration
purposes. Fermilab acts as the tier 1 site for CMS in US and
is responsible for distribution of the data over the WAN to
different institutions for further processing. The current scale
of data produced from these experiments is 40 PB with a
WAN traffic of 30 Gbps and 140 Gbps of LAN traffic from
archive to local processing farms. Apart from the HEP
communities, Fermilab is also involved with other Grid

initiatives like Extreme Science and Engineering Discovery
Environment (XSEDE) [4] and the Open Science Grid
(OSG) [5].

In preparation for Fermilab connecting to the 100 Gbps
backbone, we have been running the High Throughput Data
Program (HTDP) since 2011. The HTDP project is driven by
three major thrusts; (1) Evaluate Grid middleware on 100
Gbps to prepare lab and its stakeholders for the transition (2)
Foster the process to make network a manageable resource
by actively participating in OSG Networking activity (3)
Integrate network intelligence with data and job management
middleware.

This paper describes the work done as part of the HTDP
project in context of evaluating Grid applications and
middleware on the 100 Gbps ANI testbed. The contribution
of this paper is the evaluation of different layers and
services (GridFTP, Globus Online, Storage Resource
Management, XrootD and Squid) involved in end-to-end
analysis systems at 100 Gbps speeds in a wide-area network
testbed, showing that it is feasible with careful tuning to
utilize high bandwidth high latency networks. This work
aims to make effective use of the advanced infrastructure and
ensure maximum throughput possible across each layer and
service. This work also includes technological investigations
to identify gaps in the middleware components integrated
with the analysis systems and the development of system
prototypes to adapt to the high-speed network.

The rest of the paper is organized as follows: Section II
describes the related work about the tests conducted for
evaluating the Grid middleware. In Section III, we present
the essential overview of different middleware namely
GridFTP [6][7][8], Globus Online[12], Storage Resource
Management (SRM) [13][14], XrootD [15] and Squid [16].
Section IV describes the 100 Gbps prototype used for
middleware evaluation. It also shows the evaluation and
experimental results of performance. Conclusions are drawn
and future work is envisioned in Section V.

II. RELATED WORK
One of the goals of HTDP is to analyze the performance

of the end-to-end analysis systems of stakeholders by
performing large data transfers over the 100 Gbps ANI
testbed. The experimental results would reveal the gaps in
different middleware that needs to be corrected for making
them adaptable in the high-speed environment.

In [6], the authors reported the design and performance
of the Globus Striped GridFTP Framework on a 30 Gbps
network. The tests showed that this framework achieved

90% efficiency and is hence faster and scalable than other
FTP servers.

The authors of [7] demonstrated transfer of Grid datasets
on a 20 Gbps network during Super Computing 2009
Bandwidth Challenge. They achieved a sustained rate of 15
Gbps when moving 10 TB of data.

In [8], network performance of WAN data transfer was
characterized using GridFTP and FDT protocols. The tests
utilized two 10 Gbps links and achieved a data transfer rate
of 15 Gbps. These results were used to analyze WAN data
transfer issues related to a Hadoop Distributed File System
(HDFS) storage.

In 2010, a data management framework suitable for
distributed biomedical research environments was proposed
in [9]. It is a distributed data-sharing system and is used by
medical researchers at Bioinformatics Research Network
(BIRN). The framework includes security tools, catalogs for
managing datasets, and a secure data transfer service.

Most of the studies to date have been done on 30 Gbps
networks or slower. Besides our own work, there was just
one other study that showed 100 Gbps evaluations. The
authors of [10] discuss the application issues and host tuning
strategies for enabling applications to scale to 100 Gbps
rates. They also demonstrated a climate data movement over
100 Gbps network at Super Computing 2011[17] and
observed an average performance of 85 Gbps. The work
presented in this paper shows that with the right middleware
stack, as well as with careful tuning, a peak transfer rate of
99 Gbps can be achieved on a 100 Gbps network.

III. PROPOSED WORK
As one of the three driving thrusts, the High Throughput

Data Program (HTDP) at Fermilab aims to test the
performance of end-to-end analysis systems of the
stakeholders by identifying gaps in various tools used by
researchers and ensure that they get corrected and function
effectively at 100 Gbps scale.

In Grid Computing, Storage Element refers to a physical
site hosting a storage infrastructure for storing and accessing
data using standard interfaces with the required authorization
policies. It also enables transfer of large amounts of data
between grid jobs. The main services provided by the storage
element are shown in Figure 1.

Figure 1: Storage Element

This paper discusses the various tests conducted to
analyze the performance of different Grid middleware used
by storage elements to identify the gaps that affect the
throughput of data transfer on the 100 Gbps testbed. Here we

present an essential overview of the different middleware
(GridFTP, Globus Online, Storage Resource Management,
XrootD and Squid) that were tested for their scalability.

A. GridFTP
GridFTP [6][7][8] builds on top of FTP and is a high

performance, secure, reliable data transfer protocol
optimized for high bandwidth, wide-area networks. It
provides a uniform way of accessing data. GridFTP adds an
abstraction layer that encompasses different modes of access
and exposes one single API for accessing data. FTP was
chosen for its widespread use and for its well defined
architecture for extensions to the protocol. Other features
include
• GSI Security for file transfers authentication/encryption
• Data channel reuse
• Third-party transfers: C can initiate transfers from A to B
• Parallel, Concurrent, Striped transfers
• Partial file transfer, Restart failed transfers
• Tunable network and I/O parameters

In 2011, prior to the tests conducted on the 100 Gbps
testbed, HTDP used the Long Island Metropolitan Area
Network (LIMAN) testbed, a 30 Gbps ANI prototype, for
testing GridFTP and Globus Online. The LIMAN testbed
was one of the two fast network test environments
connecting Brookhaven National Laboratory (BNL) and
New York.

The goal of the evaluation was to maximize the
utilization of the 30 Gbps network bandwidth using GridFTP
and Globus Online. The throughput of the system is limited
by the latency of the network prototype. The commands
flowing on the control channel also add to the overhead for
each file transferred over the network. This overhead
becomes predominant when the size of file being transferred
is small. Therefore the tests were conducted for three
different datasets namely large, medium, and small files. The
network utilization was low for small files when compared to
large and medium files. With similar tests performed for
Globus Online, the control channel latency was found to be
higher than for the GridFTP tests. Also, the ANI testbed was
accessible only through a Virtual Private Network (VPN)
whereby a machine at Fermilab was designated as VPN
gateway and implemented port forwarding mechanism to
forward the accepted control port connections to the server
machines. To have a fair comparison, the GridFTP client was
also tested in the same condition by having it outside the
network and handled using port forwarding.

Throughput for small files suffered when compared to
large and medium files due to higher control channel
overhead on per file basis combined with high latency.
Globus Online auto-tuning appears to be more effective on
medium files than on large ones.

The second fast-network environment was a full 100
Gbps network showcased at Super Computing 2011[17].
With an allocated bandwidth of 60 Gbps, the Grid & Cloud
Computing Department of Fermilab, in collaboration with
UCSD, demonstrated the transfer of 30 TB of CMS data in
one-hour window with GridFTP, achieving a sustained rate
of 66 Gbps.

B. Storage Resource Management (SRM)
SRM [13][14] is a web service protocol operating over

http and is the most common protocol for interfacing storage
on the Grid. Its main purpose includes

1. Metadata operations
2. Data movement between storage elements
3. Generic management of backend storage

SRM is not designed for high throughput transfers, so it
simply redirects the client to a transfer protocol such as
GridFTP. This can also effectively load balance transfers
over multiple nodes and thus shows good scalability. Figure
2 shows the interaction between GridFTP/SRM client and
the underlying storage system.

Figure 2: Storage Access by GridFTP and SRM client [14]

C. XrootD
XrootD [15] is a popular data location and transfer tool

used by the HEP community. XrootD provides the capability
to manage a cluster of hosts as storage nodes as well as a
basic data transfer protocol. The XrootD package consists of
the storage server xrootd and the client tool xrdcp.

D. Squid
Squid [16] is a web proxy and cache that is used by the

HEP community to reduce wide-area network traffic.
Caching can improve response time through data reuse. It
can also be used for load balancing web servers. It
implements a Least Recently Used (LRU) algorithm to
replace data items in cache.

IV. PERFORMANCE EVALUATION
This section gives a brief description on the ANI 100

Gbps testbed. It then discusses the various experiments
performed on this testbed using the Grid middleware
explained in the previous section. All the tests were
conducted to identify and correct the bottlenecks in the
different applications and middleware used by the HEP
community, so that they can function effectively at the 100
Gbps scale. All tests involved large data transfers and the
throughput of these transfers was measured to evaluate the
performance of the middleware.

A. Testbed Description
The ANI 100 Gbps testbed has three sets of hosts:

physical performance I/O servers, memory performance

servers, and virtual machines. Virtual machines were not
involved in testing. Figure 3 shows the network
configuration of the testbed.

The machines at NERSC are disk performance servers
and machines at ANL are memory performance servers. We
had access to three machines at NERSC (nersc-diskpt-1,
nersc-diskpt-2 and nersc-diskpt-3) and three machines at
ANL (anl-mempt-1, anl-mempt-2 and anl-mempt-3). Each
machine had four 10 Gbps interfaces through which it
connected to the 100 Gbps cross country link. Figure 4
illustrates the connection between the two sites and the
subnet configuration of the network.

Figure 3: ANI 100 Gbps Test Bed [3]

Figure 4: Illustration of connections between NERSC and ANL nodes

ANL machines had two AMD 6140 Opteron Processor
with 16 cores (8 cores each) at 2.6 GHz and 64GB memory.

NERSC machines 1 and 2 had Intel Xeon X5650 with 12
cores at 2.67 GHz and 48 GB of memory while NERSC 3
had Intel Xeon E5530 with 8 cores at 2.4 GHz and 24 GB of
memory.

The round trip time between NERSC and ANL machines
was measured to be 53 ms. Figure 5 shows the round trip
time (RTT) between the hosts involved.

Figure 5: Testbed connections with RTT

10 Gbps interfaces on the performance hosts at NERSC
and ANL are part of a 100 Gbps private network not

accessible from the public network. Each of these hosts also
has one 1 Gbps interface connected to the respective site
routers through a switch. Traffic to the 1 Gbps interfaces is
fully routed within the ANI network and is used for port
forwarding. Inbound access to the hosts is only available
through a VPN. A machine at Fermilab, anidev.fnal.gov,
provides access to the 100 Gbps testbed through the VPN.
The VPN gateway ran the VPN software, accepted GridFTP
control port connections from the Internet, and forwarded
them to the network control interfaces (1 Gbps) of the three
server machines, using xinetd port forwarding. In turn, again
using xinted, the three server machines forwarded those
connections to their own GridFTP control ports, bound to the
10 Gbps interfaces.

B. GridFTP and Globus Online
There were three different datasets used in the tests. In

each dataset file size increased in powers of 2.
1. Small - 8KB to 4MB (Total: almost 8MB)
2. Medium - 8MB to 1GB (Total: almost 2GB)
3. Large - 2GB to 8GB (Total: 14GB)
All tests involved repeatedly transferring the datasets

from NERSC hosts to ANL hosts. The operating system’s
RAM buffer cache was big enough to hold the entire dataset,
so disk access was not a bottleneck. The GridFTP tests were
done in three ways:

1. Local Client-Server: Each NERSC host invoked
GridFTP client command to transfer files to every 10
Gbps interfaces of all the ANL hosts.

2. Local Server-Server: Third-party transfer of files
from every 10 Gbps interface of each NERSC hosts
to every 10 Gbps interface of all the ANL hosts.

3. Remote Server-Server: Same as local server-server
but the client initiating third-party transfers was
outside the VPN and used port forwarding.

Globus Online tests were similar to Remote server-server
tests but the Globus Online machine initiated the third-party
transfers.

TABLE 1: GRIDFTP & GLOBUS ONLINE PERFORMANCE MEASUREMENTS

Dataset

Local:
Client-
Server
(Gbps)

Local:
Server-
Server
(Gbps)

Remote:
Server-
Server
(Gbps)

Globus
Online
(Gbps)

Large 87.92 92.74 91.19 62.90
Medium 76.90 90.94 81.79 28.49

Small 2.99 2.57 2.11 2.30

Table 1 and Figure 6 summarize the throughput results

of all the tests.
Large and Medium Files: With proper tuning of

concurrency (-cc 4) and parallelism (-p 4) options, GridFTP
performed well. Globus Online showed relatively lower
performance. This is possibly due to higher control channel
latency (> 150ms) between Globus Online servers and the
testbed. There was also not much control over the tuning
options compared to GridFTP.

Small Files: GridFTP performance was affected by the
Lots Of Small Files (LOSF) problem. Although GridFTP
Pipelining [11] is aimed at solving this problem, it did not

work as explained when transferring individual files. It
works only when directories are transferred. Figure 7 shows
the GridFTP profile (throughput variation with file size
from 1 MB to 1 GB).

Figure 6: GridFTP & Globus Online performance comparison

At 100 Gbps speeds, medium is the new small. From
Figure 7, it is quite clear that at higher network speeds, even
the medium file sizes suffer from the LOSF problem,
because of the problem with pipelining (see 3b above).

Figure 7: GridFTP Performance on ANI Testbed

To better understand the potential shortcomings for small
file sizes, we analyzed the message flow of the GridFTP
protocol over the data and control channels.

For a local server-server third-party transfer, there were
two control channels and one data channel formed as shown
in Figure 8.

Figure 8: Control and Data Channel in Third-Party Transfer

Through tcpdump analysis, the series of commands that
flow on control channel can be summarized as
1. Initially GSSAPI authentication takes place on both

control channels.
2. Client sends a STOR command on control channel 2 to

destination.
3. Client sends a RETR command to source server on

control channel 1. Source server replies with Beginning
transfer.

4. Destination server also replies Beginning transfer to the
client and then sends the first Performance Marker.

5. Then data starts flowing on the data channel.
6. If the file is big enough, the destination server keeps

sending Performance Marker and Range Marker every
5 seconds on the control channel 2.

7. When the source server has finished sending data, it
sends Transfer Complete to client on control channel 1.

8. After receiving all data on data channel, the destination
server sends the final Performance Marker, Range
Marker and Transfer Complete status on the control
channel 2.

9. If there are more files to send, then the process repeats
from step 2.

Performance Marker is the instantaneous state of transfer
indicating the number of bytes that have been transferred on
a stripe at a given timestamp. Extended block mode (MODE
E) uses Performance Marker to monitor the performance of
data transfer.

Range Marker is the concatenation the number of bytes
received on all stripes in a transfer. This can be used as
Restart Marker if a client needs to restart the transfer of a
particular range of data using the REST command. It is
present to ensure backward compatibility with BLOCK
mode.

The above analysis was done with the following options:
1. Pipelining (-pp)
2. One parallel stream (-p 1)
3. One connection (-cc 1)
4. No data channel authentication (- nodcau)

If the pipelining option (-pp) is removed, then the client
sends SIZE command to source server and ALLO command
to the destination server before sending the STOR command
on the control channel 2. The source server replies with the
size of the file. The destination server after receiving ALLO
command sends back an “ALLO command successful” to
the client. Then the above process continues from step 2. The
complete flow diagram of above steps is show in Figure 9.

A more abstract and high-level way of looking at the
above steps is shown in Figure 10 and Figure 11. Figure 10
shows how an ideal third-party transfer should take place and
Figure 11 shows how it actually happened.

The throughput is limited by the STORE command that
needs to be sent for every file only after receiving the
Transfer Complete response for previous file sent on the
same data channel. This causes a delay of one RTT between
every file transfers. For small files, this wait time is larger
than the actual time required for data transfer. When there
are many small files, this overhead affects the throughput
substantially. Thus we see a low throughput of 2.5 Gbps for

small files.

Figure 9: Command Flow Sequence in Third-Party Transfer

Figure 10: Ideal Third-Party Transfer

Figure 11: Actual Third-Party Transfer

C. Storage Resource Management
The dataset used is same as that in GridFTP and Globus

Online tests. Throughput measurements were made only for
Local Server-Server Third-Party tests. The tests were
conducted similarly to the GridFTP tests. There were no
options available for controlling concurrency, but the option
for multiple streams (parallelism) was enabled. Table 2 and
Figure 12 show the throughput comparison of GridFTP,
Globus Online and SRM Performance on the ANI Testbed.

TABLE 2: GRIDFTP, GLOBUS ONLINE AND SRM PERFORMANCE ON ANI
TESTBED

Dataset GridFTP (Gbps) Globus Online (Gbps) SRM (Gbps)
Large 92.74 62.9 87.36

Medium 90.94 28.49 77.15
Small 2.51 2.3 0.5

Figure 12 GridFTP, Globus Online and SRM Performance on ANI Testbed

SRM adds one more additional layer on top of GridFTP
for transferring data. SRM has its own overhead, for example
it needs to handle URL conversion (srm:// to gsiftp://). Hence
the throughput for data transfer using SRM is bounded by
that of GridFTP. Further, it has no data channel caching, i.e.
it closes data channel after every file transfer and opens a
new data channel for next file transfer. This affects the
throughput. This is clearly seen in the case of lots of small
files as a reduction in performance.

D. XrootD
XrootD server supports concurrent and multi-stream

transfers. Multiple clients were used in order to implement
concurrency. Multi-stream transfers did not improve
performance in our testing. Unlike GridFTP, xrootd does not
allow writing data to a null device (/dev/null) and hence a
RAM disk was used at the destination in order to avoid disk
overhead. The size of RAM disk, therefore, becomes the
bottleneck for the amount of data that can be transferred.
Hence for file size greater than 2 GB aggregate throughput
was estimated by scaling the results for one NIC. For other
file sizes, a direct measurement was made.

From Table 3, XrootD server performed better with
increased number of clients with almost 80% bandwidth
utilization with 4 clients. As shown in Table 4, the scale
factor was estimated using throughput measurements of
small files (510 MB and 1 GB) for 1 NIC and 12 NICs
(aggregate). This scale factor was then applied to files of
sizes 4 GB and 8 GB.

As with GridFTP, XrootD shows poor performance for
small files. Figure 13 shows actual (for small and medium
files) and scaled (for large files) throughput measurements
for XrootD server.

TABLE 3: XROOTD PERFORMANCE (DIRECT MEASUREMENTS) ON ANI
TESTBED

Dataset 1 Client
(Gbps)

2 Clients
(Gbps)

4 Clients
(Gbps)

8 Clients
(Gbps)

Large 1-NIC
(8 GB) 3 5 7.9 N / A

Large, 1-NIC
(2 / 4 GB) 2.3 – 2.7 3.5 – 4.4 5.6 – 6.9 7.7 – 8.7

Medium
(64 MB / 256

MB)
2.9 – 8.8 5.7 – 14.7 11.2 – 23.9 22 – 39

Small
(256 KB / 4

MB)
0.03 – 0.19 0.07 – 0.38 0.11 – 0.76 0.1 – 1.4

TABLE 4: AGGREGATE THROUGHPUT ESTIMATION USING A SCALE FACTOR
FROM MEDIUM SIZE FILES

Dataset
(GB)

1 NIC
measurements

(Gb/s)

Aggregate
Measurements
(12 NIC) (Gb/s)

Scale
Factor

per
NIC

Aggregate
estimate
(12 NIC)

(Gb/s)
0.512 4.5 46.9 0.87 –

1 6.2 62.4 0.83 –
4 8.7 (8 clients) – 0.83 86.7
8 7.9 (4 clients) – 0.83 78.7

Figure 13: XrootD Performance on ANI Testbed

E. Squid
The testing of Squid is done by repeatedly fetching a

8MB file stored in a database at CERN using the wget
command and using the Squid server as proxy. Only for the
first request, the proxy fetches the file from the CERN
database. All future requests for the same file are completed
using the cached copy. Since the 8MB file is always in the
file system buffers, disk access is not necessary. The
parameter space in the tests involved was:

1. Transferring data in both directions (NERSC 
ANL)

2. Client to Server connection
a. One to One transfer - nersc-diskpt-1 client requesting

8MB file to anl-mempt-1 server, nersc-diskpt-2 to
anl-mempt-2 and nersc-diskpt-3 to anl-mempt-3

b. All to All transfer - each diskpt client requesting
8MB file to all mempt servers

3. Number of Squid processes running in each host. We
used squid2 that is single threaded, but ran multiple
squid server processes listening on the same port for
connections coming in to all 4 NICs.

4. With and without Core Affinity for Squid instances. Core
affinity was enabled using the taskset command. Each
instance of Squid was pinned to one core. Once a Squid
instance is pinned to a core, it will always use the same
caching layer. Core affinity can help minimize the number
of L2 cache misses and in turn prevents the data being
copied from one CPU to another.

In all-to-all transfers, for each NIC on the server side,
there are 250 parallel processes running on the client side.
There are 12 NICs in total on the server side. So there are
250 x 12 = 3000 clients per machine and three machines on
the client side; therefore, there are 9000 clients in total. Each
client repeatedly does wgets to fetch the 8MB file using the
Squid server as http proxy.

In one-to-one transfers, each machine on the client end
connects to only one machine on the server end. The number
of NICs contacted is reduced from 12 to 4. So we increase
the number of parallel processes from 250 to 750 per NIC to
maintain the same total number of clients. The tests were
also repeated for half the number of clients for some cases.

Table 5, Table 6, Figure 14, and Figure 15 summarize
the throughput results of the Squid tests. As we increase the
number of Squid servers per host, the throughput increases in
both directions. When there is lesser capacity at the server
end, more clients overload the server thus bringing down the
throughput; therefore, fewer clients maximize the utilization
of that capacity. In addition, enabling core affinity increased
the throughput.

ANL to NERSC: One-to-one gave lower performance
than all-to-all. One possible reason could be that nersc-
diskpt-3 is a slower machine and had one 10 Gbps
NIC(eth2) with frequent problems. This decreased the
utilization with more client load. Core affinity improved
performance slightly, especially when there were higher
numbers of Squid servers per host.

NERSC to ANL: One-to-one performance was almost
the same as all-to-all. When the servers were running on the
NERSC side, even the one bad NIC did not cause any issue

because the other three NICs were compensating by sending
more data.

For both direction benchmarks, it is worthwhile noting
that the core-affinity optimization was able to improve the
overall performance by up to 21%. Furthermore, increasing
the number of Squid servers per machine also improved
aggregate performance, with some speeds approaching 100
Gbps.

Figure 14: Squid Performance on ANI Testbed (ANL to NERSC)

CPM – Clients per machine, CA – Core Affinity

Figure 15: Squid Performance on ANI Testbed (NERSC to ANL)

CPM – Clients per machine, CA – Core Affinity

TABLE 5: ANL TO NERSC

No. of Squid
servers per
ANL host

Core Affinity Disabled Core Affinity Enabled
One to One

3000 clients per
machine (Gbps)

All to All (Gbps) One to One
3000 clients per
machine (Gbps)

All to All (Gbps)
3000 clients per

machine
1500 clients per

machine
3000 clients per

machine
1500 clients per

machine
10 52 50 55 55 50 54
12 62 60 68 62 58 64
14 66 88 85 78 88 84
16 77 96 90 83 100 90

TABLE 6: NERSC TO ANL

No. of Squid servers
on each of 3 hosts at

NERSC

Core Affinity Disabled Core Affinity Enabled
One to One (Gbps) All to All (Gbps) One to One (Gbps) All to All (Gbps)

3000 clients
per machine

1500 clients
per machine

3000 clients
per machine

1500 clients
per machine

3000 clients
per machine

1500 clients
per machine

3000 clients
per machine

1500 clients
per machine

8, 8, 8 70 83 70 80 75 83 76 83
10, 10, 8 76 90 75 90 99 95 97 96
12, 12, 8 80 91 79 91 98 96 98 98

V. CONCLUSION AND FUTURE WORK
The purpose of the High Throughput Data Program at

Fermilab is to prepare Fermilab and its stakeholders to
transition to the 100 Gbps network backbone by evaluating
different layers and services involved in end-to-end analysis
systems. The middleware components tested include
GridFTP, Globus Online, SRM, XrootD and Squid.

The analysis of results indicates that the different
middleware technologies have the potential and could scale
up to 100 Gbps in certain cases. It also reveals the cases
where the middleware performs poorly and the features that
need to be improved for better performance.

In GridFTP, to improve the performance for small and
medium files, implementation of “pipelining” needs to
support moving “individual” files between two GridFTP
servers, rather than directories only.

In Globus Online, the control channel latency is very
high, since the tests involved forwarding the commands in
the control channel to the GridFTP servers through VPN.
Another factor that might be responsible for lower
performance is that there are fewer available tuning options
as compared to GridFTP.

In SRM, since it uses the GridFTP protocol internally for
transferring data, the performance is limited by the GridFTP
implementation. Besides, its own implementation adds some
overhead that causes lower performance than GridFTP.
Finally the absence of Data Channel Caching shows its
impact in the case of small files, where the throughput
attained is much less than that of GridFTP.

XrootD performance for small files was poor, similarly to
GridFTP, but has the potential to scaling up to over 85 Gbps
with sufficient number of clients.

Squid utilized the full throughput of the testbed reaching
nearly full bandwidth of 100 Gbps, when 3000 clients on
ANL performed the All-to-All requests to NERSC servers.
Most of the other cases also showed good throughput. The
tuning strategy consists in having the right number of clients
in different settings so as not to overload the server. When
the number of servers is less than the available CPU
capacity, this number forms the bottleneck. When there were
sufficient servers, the number of parallel clients decides the
throughput.

As a part of future work, we plan to test other
technologies used in Grid Computing, such as CVMFS [18],
iRODS [19], dCache [20], NFS v4.1 and Lustre [21]. The list
is mainly driven by the stakeholders needs.

VI. ACKNOWLEDGMENTS
This work is supported by the National Science

Foundation under Grant No. 1007115, ExTENCI: Extending
Science Through Enhanced National Cyber Infrastructure.
This research used resources of the ESnet Testbed, which is
supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-05CH11231. This work is
supported by the U.S. Department of Energy under contract
No. DE- AC02-07CH11359. We thank the Globus Team for
their availability and support.

REFERENCES
[1] Energy Sciences Network. Accessed on Jun 1, 2012.

http://www.es.net
[2] The U.S. Department of Energy. Accessed on Jun 1, 2012.

http://energy.gov
[3] The Advanced Networking Initiative. Accessed on Jun 1, 2012.

http://www.es.net/RandD/advanced-networking-initiative/.
[4] F. Bachmann et al, “XSEDE Architecture – Level 1 and 2

Decomposition” Feb 21, 2012. White paper. https://www.xsede.org/
[5] R.Pordes et al. “The Open Science Grid”. In Proceedings of the

CHEP’04 Conference, Interlaken, Switzerland, September 27th -
October 1st, 2004 2004. Published on InDiCo.

[6] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu, I. Foster, The Globus Striped GridFTP Framework and Server,
in Proc. of the 2005 ACM/IEEE conference on Supercomputing,
pp.54-64, Seattle, Washington USA, November 2005.

[7] Lessons learned from moving Earth System Grid data sets over a 20
Gbps wide-area network, Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC
2010), June 2010.

[8] Haifeng Pi 2010 High Throughput WAN Data Transfer with Hadoop-
based Storage (PS23-4-071) CHEP 2010, October 18-22, 2010
Taipei, Taiwan

[9] A Data Management Framework for Distributed Biomedical
Research Environments, IEEE eScience Workshop on High-
Performance Computing in the Life Sciences, Australia, Dec 2010

[10] Experiences with 100Gbps Network Applications, Proceedings of the
fifth international workshop on Data-Intensive Distributed
Computing, 2012

[11] GridFTP Pipelining, John Bresnahan, Michael Link, Rajkumar
Kettimuthu, Dan Fraser and Ian Foster, Proceedings of the 2007
TeraGrid Conference, June 2007

[12] Foster, I. Globus Online: Accelerating and democratizing science
through cloud-based services. IEEE Internet
Computing(May/June):70-73, 2011.

[13] Storage Resource Managers: Essential Components for the Grid, A.
Shoshani, A. Sim, J. Gu, 2003

[14] Storage Infrastructure Software. Accessed on Jun 1, 2012.
https://www.opensciencegrid.org/bin/view/Documentation/StorageInf
rastructureSoftware

[15] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky. XROOTD-A
Highly scalable architecture for data access. WSEAS Transactions on
Computers, 1(4.3), 2005.

[16] D. Wessels, Squid: The Definitive Guide, O'Reilly & Associates, Inc.
Sebastopol, CA, USA ©2004, ISBN:0596001622

[17] SuperComputing 2011. Accessed on Jun 1, 2012.
http://sc11.supercomputing.org/

[18] P Buncic et al, CernVM – a virtual software appliance for LHC
applications, 2010 J. Phys.: Conf. Ser. 219 042003

[19] Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C.A., Marciano, R., de
Torcy, A., Wan, M., Schroeder, W., Chen, S.-Y., Gilbert, L., Tooby,
P. and Zhu, B. iRODS Primer: Integrated Rule-Oriented Data System.
Morgan and Claypool Publishers, 2010.

[20] P. Fuhrmann. dCache: the commodity cache. In Twelfth NASA
Goddard and Twenty First IEEE Conference on Mass Storage
Systems and Technologies, Washington DC, Spring 2004.

[21] Philip Schawn, Cluster File Systems, Inc., Lustre: Building a File
System for 1,000-node Clusters, 2003.

