
FRONTIER: HIGH PERFORMANCE DATABASE ACCESS USING
STANDARD WEB COMPONENTS IN A SCALABLE MULTI-TIER

ARCHITECTURE

S. Kosyakov, J. Kowalkowski, D. Litvintsev, L. Lueking, M. Paterno, S.P. White, Fermilab, Batavia, IL 60510, USA

Lauri Autio, Rovaniemi Polytechnic, Rovaniemi, Finland*

B. Blumenfeld, P. Maksimovic, M. Mathis, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract
A high performance system has been assembled using
standard web components to deliver database information
to a large number of broadly distributed clients. The CDF
Experiment at Fermilab is establishing processing centers
around the world imposing a high demand on their
database repository. For delivering read-only data, such
as calibrations, trigger information, and run conditions
data, we have abstracted the interface that clients use to
retrieve data objects. A middle tier is deployed that
translates client requests into database specific queries
and returns the data to the client as XML datagrams. The
database connection management, request translation, and
data encoding are accomplished in servlets running under
Tomcat. Squid Proxy caching layers are deployed near
the Tomcat servers, as well as close to the clients, to
significantly reduce the load on the database and provide
a scalable deployment model. Details the system’s
construction and use are presented, including its
architecture, design, interfaces, administration,
performance measurements, and deployment plan.*

INTRODUCTION
The CDF experiment has a widely distributed

environment for data processing and analysis. Access to
their centralized database repository is critical, and a
model using database replication [1], while successful,
was difficult to sustain while meeting the ever-increasing
load. Long distance network transactions with the
database encountered very high latencies for processing
farms located far from the Fermilab site. An effort was
initiated to find a solution that would provide a multi-tier
delivery system to distribute the load on the central
system, and provide much improved performance for both
local and distant clients. Experience in D0 with a multi-
tier approach [2] seemed inappropriate for CDF due to its
CORBA-based client interface and other implementation
details specific to D0.

* Through collaboration with Fermilab and The
University of Helsinki

Requirements and Technology Choices
The requirements for the system include many aspects

from design to performance and support. The system must
be easily installed, maintained, and administered. It must
fit easily within the existing experiment framework, and
provide a library that will link seamlessly into CDF C++
client code. The system must be highly available with no
single points of failure, and readily scalable to thousands
of simultaneous clients while minimizing the number of
open connections to the database. It should provide a
caching mechanism that will enable remote clients to
operate even while decoupled from the central Fermilab
database. Remote caches must be easily managed and
support features like cache purging or refresh. Database
schema changes should not affect the client API or client
access and adding new table access should not affect
basic server code. In other words, old clients do not need
to be rebuilt to accommodate a database or schema
change. The system must be capable of operating on
private networks and behind firewalls.

In addition, it is required that the system includes tools
for deployment and administration, and monitoring
facilities so the overall health of the system can be
assessed. It is also highly desirable that the system be
built with as many commodity components as possible to
reduce the development time, improve reliability, promote
reusability, and reduce maintenance costs. For a more
complete discussion of the use cases and requirements, as
well as additional details of the design refer to the
Frontier Roadmap document [3].

Several existing technologies were examined to
understand which might be appropriate for our needs.
Tomcat [4] was chosen as the servlet container engine
because it is under active development and provides many
features satisfying our needs, including database
connection pool management, and JDBC as the database
API. HTTP was the obvious choice as the server-client
transport protocol because of its ubiquity in web
applications, and cURL was originally employed in our
client library, although it has been replaced with our own
simpler implementation of the needed functionality.
Several existing approaches were explored for the
framework for the client-server exchange including
SOAP, Apache Axis [5], and Java JDO [6]. It was

decided that a simple framework could be built to provide
an efficient capability for requesting and delivering very
large data objects.

Including a proxy-caching server layer in the system
brings many of the systems most important features,
including low latency, high scalability, ease of
deployment and maintainability. Several proxy caching
products were examined, but squid[7] meets the large
majority of our needs. It is widely used, highly
configurable, and freely available. It provides extensive
access control, a variety of cache sharing protocols, and
an array of monitoring options. Although such a service
is generally not used for caching dynamic content pages,
i.e. content coming from web service such as Tomcat, it is
very effective in providing read-only access to the static
database information we are serving.

DESIGN AND IMPLEMENTATION

The overall view of the system is shown in Figure 1.
The principal components are a server hierarchy that
application clients contact with requests for desired data
objects. The server layer, in turn, translates the client
request into a data query and returns to the client the
desired information in a serialized form. The Frontier
client library receives the encoded object, de-serializes its
contents, and delivers it to the client.

Figure 1 Overall view of the Frontier system.

CDF had an existing framework that starts with a
template, written in JAVA, specifying the persistent
objects stored in their database. With this template, they
build their database tables, client C++ Headers, and
interface to the database through OTL, MySQL, or more
recently ODBC. Frontier converted CDF’s existing tools
for generating the client components to now generate the
Frontier client interface, and what is needed in the middle
tier servlet to map the client request to the database
schema.

Client Request Protocol
The request, which the client sends to the server layer,

uses a standard URI with name-value parameters we refer

to as the client request protocol. The simple protocol
includes a description of the needed data object and
includes a type, encoding format, and key or keys. It has
the form:

type (’’string_name:version_number’’ &
encoding=BLOB|CVS|XML & key1=value1 &
key2=value2 …

The string_name:version_number is the type name and its
version number appended into one string. This forces the
type and versioning information to ride together and
prevents conflict with other versioning that will be
present in the requests and results. The encoding
parameter expresses the format of the returned result.
There is no default, it must be supplied for each request in
the URI and may be different for each. The keys are used
to identify particular instance of the data objects. Each of
these keys is specific to a type, such as “CID” for a
calibration type and “DataRun” for a CDF query for a
particular set of calibration runs.

There is an implicit, or hidden, parameter in this style
of request, which is the method name. The request can be
viewed as a method call and the method name is implicit
in this request - it is always assumed to be “Retrieve
Data”. This query works for locating class definitions and
catalog information as well as for the data itself. If a
definition of a type or class is viewed as an instance of a
type called ”Description”, then the instance could be the
name of the type. Using the query for type information
and by using the attributes argument, one can construct a
generic browsing tool that allows one to transfer the
information into a statistical analysis tool such as R [8] or
ROOT [9].

Structure of Reply and Returned Data Format
The Frontier server reply to the client consists of

metadata describing the enclosed data payload(s), and a
reply can consist of a sequence of zero or more individual
payloads. Different types or instances of data objects are
never coalesced into a single payload bundle; they are
received as distinct items. The reply is an XML datagram
in which the XML serves as a descriptive wrapper around
the data payload. The datagram XML’s protocol identifies
the data being returned, detailing the contents of each
section of data being returned and the quality of the data
section.

The datagram provides identifying information about
the product including name, version, and XML protocol
version. There is a wrapper around data being returned
which describes the number of payloads being returned,
their types, versions, and encoding method. The actual
data payload follows, then a summary of the quality,
which identifies any errors encountered in producing the
data, including syntax errors, and the number of records
in the payload. An MD5 checksum is included so the
client can verify the integrity of the data.

Frontier Servlet Design
The Frontier servlet’s responsibility is to translate client

requests into data queries, and return the resulting

information in serialized form. The overall design is
shown in Figure 2 with a sequence illustrating the flow of
a request through the servlet. First, the client sends its
request to the servlets’ URI (1). The servlets’ Command
Parser parses the request and sends the information to a
Servicer Factory (2), which gets an XML Server
Descriptor (XSD)(3) from the database, and uses its
content to create a Servicer.(4). The Servicer, in-turn,
queries the database for the desired object information,
and forwards it to an Encoder. The Encoder serializes the
information with the wrapper, and sends a response back
to the client.

Figure 2 Frontier servlet design and operation.

The servlet is built using ANT and each module has an
associated JUnit test. The servlets are deployed using the
standard Tomcat administration deployment and
application management tools.

An important feature provided by the XSD is data
objects can be described and made available to the system
without modifying the servlet code itself. The Frontier
server can obtain data from virtually any data source for
which there exists a JDBC driver. This also includes a
wide range of ODBC sources, including flat files, which
can be accessed through a JDBC-ODBC bridge. In fact,
the XSD does not limit the server to read-only access - it
could be easily extended to support object creation and
updates.

XSD - XML Server Descriptor
The XSD itself contains a complete set of information

describing 1) the object structure along with hints for
marshalling, de-marshalling, and instantiation in the client
address space, 2) the source of the object, for example
table name, and 3) how to get the object from the source,
i.e. a set of parameters or keys. The format of the current
version of XSD was chosen to be optimal for use with
JDBC API compatible data sources. The actual XSD’s are
stored in the database for consistency and version
management.

The Frontier server architecture was designed to be
open for adding new methods of describing and obtaining
objects. Those methods could include descriptor-based
methods (like XSD) or plugin-based methods if there

would be requirement for very complex server-side data
processing. Plugins are Java classes combined in a single
or multiple Jar files. Those Jar files are stored in a
database in the same way as XSD, and are dynamically
loaded into JVM upon request.

The XSDs provide flexible way of writing schema and
database technology-independend applications. In the
case of CDF, XSDs are auto-generated based on the their
primary data template description of each object.
However, XSDs are flexible enough to describe complex
forms of data retrieval. In the case of relational databases
(specifically Oracle for CDF) it includes complex joins,
sub-queries, stored PL/SQL function and procedure calls.
In all cases, XSDs take full responsibility for obtaining
the persistent objects for user applications.

The format of the XSD is shown below, followed by a
description of each element.

<descriptor type="CalibRunLists“
 version="1" xsdversion="1">
<attribute position="1“ type="int“
 field="calib_run" />
<attribute position="2" type="int“
 field="calib_version" />
<attribute position="3" type="string“
 field="data_status" />
<select>
 calib_run, calib_version, data_status </select>
<from> CalibRunLists </from>
<where>
 <clause> cid = @param </clause>
 <param position="1" type="int“
 key="cid"/>
</where>
<final> </final>

</descriptor>

• descriptor - Top level tag describing the data;
type - Name of the specific object type, version -
Version number of the object, xmlversion - The
version of XML which is being used to process the
descriptor.

• attribute - Describes a datum which is being
returned; position - The location of the datam in
the select tag this attribute is decribing; type -
How the data will be marshalled out. This is also
the value returned when the client requests a
description. Valid values are: int, long, double,
float, string, bytes, date; field - The name of the
field provided to the client when asked for a
description.

• select - The fields returned from a query.
• where - A wrapper around tags which describe a

specific where clause or clauses.
• clause - The SQL for the where clause to be used

in the query; arameters may be passed in by using
the keyword “@param”.

• param - Identifies which “@param” keyword to
replace with what value; position - Which
keyword to replace with this parameter; type -
How that keyword string is to be translated. Valid

values are: int, long, double, string, date; key -
What key, supplied on the URL, which is being
substituted into the parameter.

• final - Any final SQL clause which in the query.

Frontier Client Library API
Frontier provides a convenient C/C++ client API that

clients can use to communicate with the Frontier service.
The API provides a uniform, portable, reliable, and
transparent way to obtain data from Frontier. The API
supports a basic set of datatypes employed in a typical
database, and also allows user applications to extend the
datatype set to support application specific data
structures. In addition, the API provides multiple ways to
specify the Frontier servers and squid proxies to be
contacted, and facilitates automatic failover if a server or
proxy is unavailable. It allows requesting many objects
of any type in a single query.

The API automatically parses and de-multiplexes
responses into object instances, validates responses, and
verifies the MD5 checksum of each object instance to
eliminate possible transfer errors. The interface
accommodates hardware architecture specifics, such as
byte order, and operand 32/64 word bit widths. It provides
typed access methods to the object data (de-marshalling),
and warns, or signal errors, when a type mismatch occurs.
A forced refresh of any object in squid cache can be
requested and a fresh copy of the object obtained directly
from the Frontier server. The API is compatible with
C++ and C programs, and the C++ API can be compiled
with or without C++ exceptions support.

TESTING
Extensive testing was performed to verify that the

system would satisfy the desired functionality, reliability,
and performance requirements. Many configurations of
servers and caching proxies were assembled to test
various features of the system, cache stability, and overall
data throughput. Tests were done to stress the Tomcat
server and squid proxy by running multiple clients and
filling the cache. In one set of tests all the CDF
calibration data, representing 10.9 GB, was loaded into a
squid cache with no performance degradation.

In another set of tests CDF reconstruction jobs were run
on a processing farm at the San Diego Super Computing
Center. In the test, 100 clients ran and requested data
objects. In one case the data was accessed directly from
the Oracle server at Fermilab, and in a second case the
calibration data was obtained through the Frontier system
with a squid cache server located at San Diego. Access
durations for the 75 object types needed in the processing
job were compared, and a factor of nearly 1000 in
decreased access time for many objects is observed for
the Frontier case relative to direct Oracle.

DEPLOYMENT
The Frontier system is being deployed for CDF at the

present time. A general overview is shown in Figure 4. A

high availability system of two or more server machines
is being installed at Fermilab, each machine running a
Tomcat-Squid pair of services. A network load balancing
and failover box provides access to the servers from CDF
systems throughout the world through a single domain
name. We refer to the installation at Fermilab as the
launchpad, as it represents the starting point for all
objects. Squid caching servers are established at remote
processing facilities and configured to allow access for
clients local to them, to the Fermilab launchpad. The
Squid installation procedure is straightforward and we
anticipate many more in the near future, as the Fronteir
client is propagated through the CDF code-base and used
at CDF collaboration sites.

Figure 3 Overview of Frontier Deployment.

ACKNOWLEDGMENTS
We would like to thank the CDF Experiment and the

Fermilab Computing Division for their support and
cooperation throughout this project. Special thanks go to
Frank Weurthwein, Elliot Lipeles, and the Run II
hardware support team for their contributions in our
testing on the CDF CAF facilities at Fermilab and UCSD.

REFERENCES
[1] D. Bonham, et al,”Database Usage and

Performance for the Fermilab Run II
Experiments,” CHEP04, Interlaken Switzerland,
Sept. 27 – Oct 1, 2004.

[2] J. Kowalkowski, et. al., ”Serving Database
Information Using a Flexible Server in a Three
Tier Architecture,” CHEP03, UCSD, La Jolla
CA, March 24-28, 2003, THKT003.

[3] The Frontier Roadmap: http://whcdf03/ntier-
wiki/ProjectDescription?action=AttachFile&do=
get&target=TheNewFroNtier1_2.pdf

[4] The Jakarta project http://jakarta.apache.org
[5] The Axis project http://ws.apache.org/axis
[6] JDO http://java.sun.com/products/jdo/ .
[7] Squid home page http://www.squid-cache.org/ .
[8] The “R” project page http://www.r-project.org .
[9] The ROOT home page http://root.cern.ch .

http://whcdf03/ntier-wiki/ProjectDescription?action=AttachFile&do=get&target=TheNewFroNtier1_2.pdf
http://whcdf03/ntier-wiki/ProjectDescription?action=AttachFile&do=get&target=TheNewFroNtier1_2.pdf
http://whcdf03/ntier-wiki/ProjectDescription?action=AttachFile&do=get&target=TheNewFroNtier1_2.pdf
http://jakarta.apache.org/
http://java.sun.com/products/jdo/
http://www.squid-cache.org/
http://www.r-project.org/
http://root.cern.ch/

	FRONTIER: HIGH PERFORMANCE DATABASE ACCESS USING STANDARD WEB COMPONENTS IN A SCALABLE MULTI-TIER ARCHITECTURE
	INTRODUCTION
	Requirements and Technology Choices

	DESIGN AND IMPLEMENTATION
	Client Request Protocol
	Structure of Reply and Returned Data Format
	Frontier Servlet Design
	XSD - XML Server Descriptor
	Frontier Client Library API

	TESTING
	DEPLOYMENT
	ACKNOWLEDGMENTS
	REFERENCES

