
ART + GEANT4 = ARTG4
A Generic Framework for Geant4 Simulations

Adam Lyon & Tasha Arvanitis*

Fermilab Scientific Computing Division/Muon g-2 experiment
CHEP October 2013

* Currently Harvey Mudd College Undergraduate Student

g-2

×

μ

A. Lyon / March 2013

Overview

2

o Science demands reproducibility.
 We must have control over our software

o We want to work together.
 Share ideas through code

o We want to do physics, not computing.
 We just wanna make plots! Somehow, that should
 be easy and sane

A. Lyon / March 2013

What does a framework do?

3

Your
physics
code

More
physics
code

Your
friend’s
code

Dynamic
library loading I/O handling Event Loop &

paths

Run/Subrun/
Event stores Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

A. Lyon / March 2013

Fermilab’s common framework from the
Scientific Computing Division

4

The art Framework
Chris Green
Fermilab Scientific Software
Infrastructure Group
CHEP 2012
21 May, 2012

Architecture

4 / 13

ART
A “lite” forked version of the CMS framework

Supplies all expected framework services as
well as links between data objects
(Ptr’s and Assn’s)

Used by many Fermilab Intensity
Frontier Experiments (NOvA,
Muon g-2, Mu2e, MicroBoone,
LBNE) and some others (e.g. DS50)

Written by SCD/CET department

Currently being adapted for
multi-processing and DAQ

A. Lyon / March 2013

Our first task

5

Convert our simulation code to Art

So first, let me tell you about the simulation code;

But more first, a little about Muon g-2 ...

A. Lyon / March 2013

Muon g-2 in one slide

6

o Muon spin precesses in a magnetic field
o g-2 characterizes the precession rate
o All known particles contribute to the Standard Model prediction of g-2
o Measure a difference from the SM –– indication of new particles!
E821 Muon g-2 ring at Brookhaven National Laboratory, now at Fermilab

> 3�

o 0.54 ppm result at Brookhaven (1999-2001) Hint of new physics!
o Redo at Fermilab with 0.14 ppm precision for definitive result

A. Lyon / March 2013

The g2migtrace simulation

7

Muon Injection Geometry TRacking
And Capture Efficiency

A very detailed Geant4 simulation
of the entire g-2 storage ring
elements, magnetic fields, and
detectors

Simulates the muon injection
sequence (from inflector, to
kickers, to scraping, to storing)

Converts Geant hit objects
to objects in ROOT branches

Started in 2005 by
Kevin Lynch (York College, CUNY/g-2
and Mu2e)
Zach Hartwig (MIT/Fusion)

A. Lyon / March 2013

It contains incredibly valuable code

8

Geometry is mostly hard-coded
with some JSON files

Interaction via Geant’s
messenger facility and
command prompt

Extremely detailed simulation –
would not want to rewrite

Valuable notes and comments

BUT - is a monolithic program.

Hard to integrate new ideas without lots of switches and if statements

And wait till you see this...

A. Lyon / March 2013

Test beam in April 2012

9

SiPM%

Fast%PMT%

Pb Glass

W/SciFi

PbF2
 Array

Testing calorimeters & readout at the Fermilab Test Beam Facility

Needed a simulation. g2migtrace already has calorimeters, so...

A. Lyon / March 2013

In g2migtrace/src/primaryConstruction.cc

10

// constructionMaterials is essentially a "materials library" class.
// Passing to to construction functions allows access to all materials

 /**** BEGIN CONSTRUCTION PROCESS ****/

 // Construct the world volume
 labPTR = lab -> ConstructLab();
 // Construct the "holders" of the actual physical objects
#ifdef TESTBEAM
 ArcH.push_back(labPTR);
#else
 ArcH = arc->ConstructArcs(labPTR);
#endif
 // Build the calorimeters
 // cal -> ConstructCalorimeters(ArcH);
 station->ConstructStations(ArcH);
#ifndef TESTBEAM
 // Build the physical vacuum chambers and the vacuum itself
 VacH = vC -> ConstructVacChamber(ArcH);

A. Lyon / March 2013

In g2migtrace/src/primaryConstruction.cc

11

// constructionMaterials is essentially a "materials library" class.
// Passing to to construction functions allows access to all materials

 /**** BEGIN CONSTRUCTION PROCESS ****/

 // Construct the world volume
 labPTR = lab -> ConstructLab();
 // Construct the "holders" of the actual physical objects
#ifdef TESTBEAM
 ArcH.push_back(labPTR);
#else
 ArcH = arc->ConstructArcs(labPTR);
#endif
 // Build the calorimeters
 // cal -> ConstructCalorimeters(ArcH);
 station->ConstructStations(ArcH);
#ifndef TESTBEAM
 // Build the physical vacuum chambers and the vacuum itself
 VacH = vC -> ConstructVacChamber(ArcH);

I don’t think we can’t simultaneously
maintain this code and our sanity

A. Lyon / March 2013

In g2migtrace/src/primaryConstruction.cc

12

// constructionMaterials is essentially a "materials library" class.
// Passing to to construction functions allows access to all materials

 /**** BEGIN CONSTRUCTION PROCESS ****/

 // Construct the world volume
 labPTR = lab -> ConstructLab();
 // Construct the "holders" of the actual physical objects
#ifdef TESTBEAM
 ArcH.push_back(labPTR);
#else
 ArcH = arc->ConstructArcs(labPTR);
#endif
 // Build the calorimeters
 // cal -> ConstructCalorimeters(ArcH);
 station->ConstructStations(ArcH);
#ifndef TESTBEAM
 // Build the physical vacuum chambers and the vacuum itself
 VacH = vC -> ConstructVacChamber(ArcH);

What if we have a
different test beam?

What if I want a
different detector
configuration?

this kind of code is
hard to excise later

I don’t think we can’t simultaneously
maintain this code and our sanity

A. Lyon / March 2013

Maintaining sanity is hard

13

It’s hard to blame the person who did this

He just wanted results!

We don’t have a system that tries to make this easy

It’s not the system’s fault - it wasn’t written for that

Writing such a system is hard (need experts)

Learning such a system is non-trivial too

A. Lyon / March 2013

Use a system that makes this easy

14

Want a system that makes it easy to work together

ART

Modular (you write modules that piece together)
Built in Root i/o
Built in Configuration System
C++11

The idea:
Using ART, build a modular Geant4 system where the
configuration file defines the simulation

Here’s a little bit about ART (not a full tutorial)...

A. Lyon / March 2013

What does a framework do?

15

Your
physics
code

More
physics
code

Your
friend’s
code

Dynamic
library loading I/O handling Event Loop &

paths

Run/Subrun/
Event stores Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

A. Lyon / March 2013

What do you write?

16

You write modules that can access data and do things at certain times

Begin job

Begin runR1

Begin subrunS1

Process event (produce, filter, analyze)E1

Process event (produce, filter, analyze)E2

Process event (produce, filter, analyze)E3

End subrun
End run...

End job

Types of MODULES:
(All modules can read data from the event)

o Input source:
A source for data. E.g. a ROOT file or
Empty for start of simulated data

o Producers:
Create new event data from scratch or by
running algorithms on existing data

o Filters:
Like producers, but can stop running of
downstream modules

o Analyzers:
Cannot save to event. For, e.g. diagnostics
plots

o Output module:
Writes data to output file (ROOT). Can
specify conditions and have many files Output file(s)

Input source

All modules can make
and write out ROOT
histograms and Trees

A. Lyon / March 2013

Chain modules - but an important golden gule

17

Modules must only pass data to each other via the EVENT

EVENT

Hits

Si
m

ul
at

io
n

Clustered
Hits

C
lu

st
er

in
g

Tr
ac

ki
ng

Tracks

Diagnostics

Modules should not communicate
with each other, except through the
event.

Restriction is necessary to break
chain, handle multiprocessor
processing and for sanity.

 There are RUN and
 SUBRUN buckets too

A. Lyon / March 2013

Services – an extremely useful feature

18

Globally accessible objects can be managed by ART as Services

Provide functionality to many modules (same object is accessible to all modules)
 Examples:
 Message facility, timers, memory checkers, Random numbers, Geometry information

Since a service is an ordinary C++ object, it can hold data and state

BUT - Remember the golden rule! Event information goes into the EVENT, not a service

Easy to create:
 Your class .cc file simply needs

Easy to use:

The handle acts
just like a pointer to
the object

A. Lyon / March 2013
19

A. Lyon / March 2013

How to marry ART and Geant4?

20

GEANT4 is a huge library for detailed simulations of particles
 traversing materials

GEANT4 Basic pieces:
 Detectors:
 Geometry, materials, hierarchy
 Shapes, G4LogicalVolume, G4VPhysicalVolume
 Sensitive detectors make hits

 Actions (Code hooks to run my code at certain points in the simulation):
 Begin/end run and event
 Generating first particles
 Upon a new trajectory
 On each simulation step

 Other stuff:
 Physics lists (specify allowable particles and how they behave)

A. Lyon / March 2013

Adapting g2MIGTRACE to ART

21

Preserve the valuable parts
 detector and magnetic fields construction
 coordinate system
 algorithms for simulation (Sensitive detectors)
 Want to cut and paste as much Geant code as possible

Reorganize the code to fit with ART

Requirements:
 Modularity: Detectors and Actions are “plug and play”
 Configuration: Simulation is defined by config file
 Can make changes without recompiling
 Store Geant “products” to ART event
 Of course old & new output must be identical

Allow us to easily work together using the ART framework

A. Lyon / March 2013

A model using SERVICES works!

22

One producer that handles Geant: ArtG4Main

To make it generic, ArtG4Main delegates lots of responsibilities
to SERVICES that are ONLY used by ArtG4Main. Since only one
producer for Geant, we satisfy the golden rule.

The configuration files says what Services to load

ArtG4Main
Producer

World

Calo-
rimeter

MyEvent
Action

RecordStep
Action

MyPhysics
List

A. Lyon / March 2013

Detector Services

23

o Must load DetectorHolder_service – manages detectors and does
registration behind the scenes
o Every detector must have name, category, mother category

o This organization seems simple, but is quite powerful
o DetectorHolder service makes this truly modular
o Framework knows nothing about detectors (don’t need to bake them in)
o This is a re-organization – most code (the hard stuff) remains untouched

DetectorBase

doBuildLVs
doPlaceToPVs

doCallArtProduces
doFillEventWithArtHits

World Ring Calorimters Trackers

A. Lyon / March 2013

Example Configuration File

24

...

A. Lyon / March 2013

N04 Example

25

From config, don’t include
calorimeter and make 8 muon
planes
[No rebuild necessary]

A. Lyon / March 2013

Action Services

26

Must load ActionHolder_service – manages actions
There are 6 action base classes
 EventActionBase: beginOfEventAction, endOfEventAction*
 RunActionBase: beginOfRunAction, endOfRunAction
 PrimaryGeneratorActionBase: generatePrimaries (mandatory)
 TrackingActionBase: preUserTrackingAction, postUserTrackingAction
 SteppingActionBase: userSteppingAction
 StackingActionBase: killNewTrack

* There’s an internal endOfEventAction that tells the detectors to write out their data to
ART

Actions are useful for diagnostics and truth information. Every action can write out
information (callArtProduces, fillEventWithArtStuff,
 fillRunAtBeginWithArtStuff, fillRunAtEndWithArtStuff)

Can combine actions into one object with multiple inheritance

Examples: TrackingTruth, GDMLGenerator, KillCrystalTracks, MuonStorageStatus

A. Lyon / March 2013

gm2ringsim

27

Started 10/12
2.5 months with
5 active people

Now have many
more analyzing

A. Lyon / March 2013

A “Test Beam” Simulation

28

A fiber harp test WITH NO CODE CHANGES (no #ifdefs)

A. Lyon / March 2013

Calorimeter Test Beam

29

(no #ifdefs)

A. Lyon / March 2013

Summary

30

ArtG4 is a generic simulation infrastructure for Geant4 within the ART
Framework

All detectors and actions are plug-and-play and the configuration file
defines the simulation

Though written with Muon g-2 in mind, it should be useful for many
experiments

We are now in the process of validating gm2ringsim and using it for
studies

Where you can learn more (see Repository and Wiki):
https://cdcvs.fnal.gov/redmine/projects/artg4 and
https://cdcvs.fnal.gov/redmine/projects/artg4example and
https://cdcvs.fnal.gov/redmine/projects/artg4geantn02 (see various branches)

https://cdcvs.fnal.gov/redmine/projects/artg4
https://cdcvs.fnal.gov/redmine/projects/artg4
https://cdcvs.fnal.gov/redmine/projects/artg4example
https://cdcvs.fnal.gov/redmine/projects/artg4example
https://cdcvs.fnal.gov/redmine/projects/artg4geantn02
https://cdcvs.fnal.gov/redmine/projects/artg4geantn02

A. Lyon / March 2013

Requirements on physics software for
physicists – solutions

31

o Science demands reproducibility.
 Official results come from version controlled software

o We want to work together.
 Code repositories; modular frameworks

o We want to do physics, not computing.
 Infrastructure in a framework + an easy build system

A. Lyon / March 2013

Services must be in your config file

32

e.g. Gm2PhysicsList_service.cc

Build system creates
artg4example_Gm2PhysicsList_service.so

Specifying Gm2PhysicsList in config will
find it in your LD_LIBRARY_PATH

A. Lyon / March 2013

Steal from others?

33

What did NOvA do? They
have a GDML based
simulation; incompatible
with g2MIGTRACE

What did Mu2e do?
They ported their simulation
to ART some time ago.
Some very useful routines,
but they have “uber” code
[classes that know about
EVERY aspect of the
simulation]. e.g. A zillion
#includes

/ Mu2e include files
#include "GeometryService/inc/GeometryService.hh"
#include "GeometryService/inc/DetectorSystem.hh"
#include "GeometryService/src/DetectorSystemMaker.hh"
#include "GeometryService/inc/WorldG4.hh"
#include "GeometryService/inc/WorldG4Maker.hh"
#include "Mu2eBuildingGeom/inc/BuildingBasics.hh"
#include "Mu2eBuildingGeom/inc/BuildingBasicsMaker.hh"
#include "Mu2eBuildingGeom/inc/Mu2eBuilding.hh"
#include "Mu2eBuildingGeom/inc/Mu2eBuildingMaker.hh"
#include "ProductionTargetGeom/inc/ProductionTarget.hh"
#include "ProductionTargetGeom/inc/ProductionTargetMaker.hh"
#include "ProductionSolenoidGeom/inc/ProductionSolenoid.hh"
#include "ProductionSolenoidGeom/inc/ProductionSolenoidMaker.hh"
#include "ProductionSolenoidGeom/inc/PSEnclosure.hh"
#include "ProductionSolenoidGeom/inc/PSEnclosureMaker.hh"
#include "ProductionSolenoidGeom/inc/PSVacuum.hh"
#include "ProductionSolenoidGeom/inc/PSVacuumMaker.hh"
#include "ProductionSolenoidGeom/inc/PSShield.hh"
#include "ProductionSolenoidGeom/inc/PSShieldMaker.hh"
#include "ProtonBeamDumpGeom/inc/ProtonBeamDump.hh"
#include "ProtonBeamDumpGeom/inc/ProtonBeamDumpMaker.hh"
#include "TargetGeom/inc/Target.hh"
#include "TargetGeom/inc/TargetMaker.hh"
#include "LTrackerGeom/inc/LTracker.hh"
#include "LTrackerGeom/inc/LTrackerMaker.hh"
#include "TTrackerGeom/inc/TTracker.hh"
#include "TTrackerGeom/inc/TTrackerMaker.hh"
#include "ITrackerGeom/inc/ITracker.hh"
#include "ITrackerGeom/inc/ITrackerMaker.hh"
#include "CalorimeterGeom/inc/Calorimeter.hh"
#include "CalorimeterGeom/inc/DiskCalorimeterMaker.hh"
#include "CalorimeterGeom/inc/DiskCalorimeter.hh"
#include "CalorimeterGeom/inc/VaneCalorimeterMaker.hh"
#include "CalorimeterGeom/inc/VaneCalorimeter.hh"
#include "BFieldGeom/inc/BFieldConfig.hh"
#include "BFieldGeom/inc/BFieldConfigMaker.hh"
#include "BFieldGeom/inc/BFieldManager.hh"
#include "BFieldGeom/inc/BFieldManagerMaker.hh"
#include "BeamlineGeom/inc/Beamline.hh"
#include "BeamlineGeom/inc/BeamlineMaker.hh"
#include "GeometryService/inc/VirtualDetector.hh"
#include "GeometryService/inc/VirtualDetectorMaker.hh"
#include "CosmicRayShieldGeom/inc/CosmicRayShield.hh"
#include "CosmicRayShieldGeom/inc/CosmicRayShieldMaker.hh"
#include "ExtinctionMonitorFNAL/Geometry/inc/ExtMonFNALBuilding.hh"
#include "ExtinctionMonitorFNAL/Geometry/inc/ExtMonFNALBuildingMaker.hh"
#include "ExtinctionMonitorFNAL/Geometry/inc/ExtMonFNAL.hh"
#include "ExtinctionMonitorFNAL/Geometry/inc/ExtMonFNAL_Maker.hh"
#include "ExtinctionMonitorUCIGeom/inc/ExtMonUCI.hh"
#include "ExtinctionMonitorUCIGeom/inc/ExtMonUCIMaker.hh"
#include "MECOStyleProtonAbsorberGeom/inc/MECOStyleProtonAbsorber.hh"
#include "MECOStyleProtonAbsorberGeom/inc/MECOStyleProtonAbsorberMaker.hh"
#include "MBSGeom/inc/MBS.hh"
#include "MBSGeom/inc/MBSMaker.hh"
#include "GeometryService/inc/Mu2eEnvelope.hh"

A. Lyon / March 2013

Special services

34

PhysicsListHolder_service/PhysicsList_service – manages physics lists

Geometry_service – manages geometry configuration for detectors (right
now uses configuration file, future database)

python
script

