FIFE Architecture Committee

Databases
Draft by Igor Mandrichenko, version 1, 6/11/2013

Challenges and Goals

Typically, databases are used to store calibration or conditions data. These data are
necessary for data processing and analysis, vast majority of which is done in batch
environment, often on the grid. Typical data processing job retrieves calibration or
conditions data related to the event or a group of events it is processing.

There are 3 major challenges presented by HEP and Astrophysiocs data processing
and analysis in the area of databases:

* Data access performance - database access must by robust and provide low
latency in data delivery so that the (otherwise CPU-bound) batch job can
utilize grid resources in most efficient way. In other words, time spent by the
job waiting for the data to be delivered must be significantly less than time
spent performing data processing and calculations.

* Resource management - the whole point of using grid resources for data
processing and analysis is to run as many data processing jobs as possible in
parallel. In this case any resource, which becomes a bottleneck slows down
the data processing and on the other hand, any resource must be able to
sustain large numbers of simultaneous requests.

* Remote data delivery - in the grid or cloud environment, often, data
processing is performed at remote sites, connected to the database location
via WAN. Data access via WAN can be more challenging because the WAN
may not be able to provide as large throughput as LAN. However, conditions
and calibration data tend to be much smaller than actual event data, and
therefore low WAN throughput does not always create significant problems.

Obviously these challenges are very tightly coupled. If individual data access
transaction is very short in time, or a typical job accesses the database only few
times during its life, that creates less load on the database and its interface. In other
words, number of simultaneously processed data requests by the database interface
is:

Load = Njobs * Naccess * (t / T) (1)

Where Njobs is number of jobs running simultaneously, Naccess is number of times
each job accesses the database during its life, t is duration of each individual data
transaction and T is job lifetime. So by reducing Naccess and or t, one can allow more
simultaneously running jobs without increasing the load on the server. In the same



time, data access performance requirement means that Naccess * t/T ratio should be
minimized. So obviously minimization of Naccess * t/T is the ultimate goal in designing
the database access system for batch data processing.

Web Services
Web services or their predecessors have been used by HEP experiments as a
convenient and flexible tool to build database interfaces since more than 10 years
ago. DO has been using CORBA-based calibration database servers and CDF uses
HTTP-based Frontier. Modern trend in the industry is to use simple REST
(representational sate transfer) style of HTTP-based services. Using REST with
HTTP has many advantages:
e HTTP is a univerally accepted standard used by Internet, developed and
supported by W3C and [ETF.
e HTTP is extremely simple protocol
* There are numerous libraries implementing the protocol available for all
popular programming languages
e HTTP can be used to transfer data represented in practically any format,
from plain text to encrypted compressed binary data
* There are such well developed and supported frameworks as Apache httpd,
Tomcat, which make publishing an application as a web service very easy

Other important advantages of using a REST web service as an interface to the
database are:

* Web service can make implementation of the client completely independent
of the database implementation. The client can be implemented in terms of
the application abstractions and data representation and the web service will
translate the application specific representation to the database
representation and back

* Web services technology is very well developed in the area of resource
management. Frameworks like Apache httpd make it very easy to control and
manage large number of incoming data requests, whereas databases
themselves tend to be much more easy to overload.

Data Caching
In certain cases when data processing is done remotely, it may be beneficial to
consider using local data caching. Data caching can be used to increase data transfer
efficiency under 2 conditions:
* Datais cacheable - same request is expected to produce same results. This is
often the case, but not always.
* Requests are correlated - there is significant probability that 2 batch jobs
running (almost) in the same time will request same, cacheable data.

These two requirements can be combined into one formula:



Tiite > Thit (2)
Here, Tife is average lifetime of the cached data. Data lifetime is determined by
several factors:
¢ Validity of data - sometimes data get overridden, e.g. when calibration
constants are updated due to recalibration
* (Cache preemption - new data requests preempt data left in the cache by
previous requests
Thit is average time between requests for the same data. This quantity depends on
the pattern of data processing. Unfortunately, typical data processing pattern (as
opposed to data analysis) may not always lead to repeating requests for calibration
or conditions data, because batch jobs cover their own data validity time intervals
and never share calibration or conditions data.

There are 2 approaches to caching data delivered via web services:

* Application specific - data can cached on by the web server internally so that
not every request to the web service causes a database transaction; also data
can be cached privately by the client application

* Application independent - data are cached using standard HTTP caching
proxy mechanism

Recommendations

We recommend using web services as a general approach to building application
interfaces to databases.

Unless it is required that the client application must be aware of the implementation
details of the database (platform used, database structure, schema) we recommend
to implement web service interface in terms of application specific data
representation rather than database representation such as SQL.

In case it is required that the client application is aware of the database
implementation details, CMS-style Frontier should be considered.

When possible and beneficial, use of caching should be considered. Application
independent HTTP caching can be performed by product called Squid. In cases when
there are no benefits in using caching, i.e. when (2) is not satisfied, cache should not
be used, because it increases communication latencies, complexity of the application
and support cost.



