
GPU-Based Network Traffic
Monitoring & Analysis Tools

Wenji Wu; Phil DeMar
wenji@fnal.gov, demar@fnal.gov

CHEP 2013
October 17, 2013

Background

•  Main uses for network traffic monitoring & analysis
tools:

•  Operations & management
•  Capacity planning
•  Performance troubleshooting

•  Levels of network traffic monitoring & analysis:
•  Device counter level (snmp data)
•  Traffic flow level (flow data)
•  At the packet inspection level The focus of this work

•  Security analysis
•  Application performance analysis
•  Traffic characterization studies

2

Coarse

Detailed

•  Emerging high-performance network environments:
•  40GE/100GE link technologies now in LAN & WAN
•  Servers becoming 10GE-connected by default
•  n x 100GE / 400GE backbone links & 40GE host connections

loom on the horizon.

•  Current flow-based & packet-based traffic monitoring &
analysis tools break down at 40GE/100GE:

•  Flow data is sampled:
•  Implemented in device hardware
•  May be too coarse for computer security forensics & detailed traffic

characterization studies
•  Packet-based analysis runs into resource issues:

•  10Gb/s = ~14M 64-bytes packets per sec

Problem Space

3

•  Our preferred choice for 40/100GE traffic analysis:
•  Flow data limitations (sampled) constrain flow-based analysis

•  Characteristics of packet-based network monitoring &
analysis applications

•  Time constraints on packet processing.
•  Highly compute and I/O throughput-intensive

•  High levels of data parallelism.
•  Each packet can be processed independently

•  Extremely poor temporal locality for data
•  Typically, data processed once in sequence; rarely reused

Packet-Based Analysis

4

•  Computing platform requirements monitoring & analysis
applications within high performance network :
•  High Compute power
•  Ample memory bandwidth
•  Capability of handing data parallelism inherent with

network data
•  Easy programmability

Platforms for Packet-Based Analysis (I)

5

•  Three types of computing platforms:
•  NPU/ASIC
•  CPU
•  GPU

Architecture Comparison

6

Platforms for Packet-Based Analysis (II)

Features NPU/ASIC CPU GPU
High compute power Varies ✖ ✔

High memory bandwidth Varies ✖ ✔

Easy programmability ✖ ✔ ✔

Data-parallel execution model ✖ ✖ ✔

Our Solution

•  Use GPU-based Traffic Monitoring & Analysis Tools:
•  Note: This is currently a research area

•  Highlights of our work:
•  Demonstrated GPUs can significantly accelerate network

traffic monitoring & analysis
•  11 million+ pkts/s without drops (single Nvidia M2070)

•  Designed/implemented a generic I/O architecture to move
network traffic from wire into GPU domain

•  Implemented a GPU-accelerated library for network traffic
capturing, monitoring, and analysis.

•  Dozens of CUDA kernels, which can be combined in a variety
of ways to perform monitoring and analysis tasks

7

Key Technical Issues

•  GPU’s relatively small memory size:
•  Nvidia M2070 has 6 GB Memory
•  Workarounds:

•  Mapping host memory into GPU with zero-copy technique?
•  Partial packet capture approach ✔

•  Need to capture & move packets from wire into GPU
domain without packet loss

•  Need to design data structures that are efficient for
both CPU and GPU

8

System Architecture

...

1. Traffic Capture 2. Preprocessing GPU Domain

Monitoring & Analysis
Kernels

Output

User Space

Output
Output

3. Monitoring & Analysis

4. Output Display
Packet
Buffer

Network Packets

NICs

Packet
Buffer Output

...

Capturing

Captured
Data

Packet Chunks

•  Traffic Capture
•  Preprocessing

Four Types of Logical Entities:
•  Monitoring & Analysis
•  Output Display

9

Packet I/O Engine for Capture

Free Packet Buffer Chunks

OS Kernel

User Space

...

Capture

Attach

Recycle

Recv Descriptor Ring

Packet Buffer Chunk

Incoming PacketsNIC

...

Descriptor Segments

Processing Data
•  Key techniques

•  Pre-allocated large
packet buffers

•  Packet-level batch
processing

•  Memory mapping
based zero-copy

10

Key Operations

•  Open
•  Capture

•  Recycle
•  Close

GPU-based Network Traffic
Monitoring & Analysis Algorithms

•  A GPU-accelerated library for network traffic
capturing, monitoring, and analysis apps.

•  Dozens of CUDA kernels
•  Can be combined in a variety of ways to perform

intended monitoring & analysis operations
•  Examples in following slides

11

Packet-Filtering Kernel

1

raw_pkts []

filtered_pkts []

filtering_buf []

scan_buf []

index

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

index

index

0 1 2 3

Filtering
1

Scan
2

Compact
3

p2p1 p3 p5p4 p6 p8p7

0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

p1 p3 p4 p7

x x xx

•  Advanced packet filtering capabilities necessary so that
we only analyze packets of interest

•  We use Berkeley
Packet Filter
(BPF) as the
packet filter

•  A few basic GPU
operations, such
as sort, prefix-
sum, and
compact.

12

Traffic-Aggregation Kernel

765432

dst2

raw_pkts[]

inc_scan_buf[]

sorted_pkts[]

0 1 2 3 4 5 6 7index

1diff_buf[]

1 1 444321

0
src1
dst1

1
src1 src2

dst4
src1
dst1

src1
dst1

src1
dst3

src2
dst4

src2
dst4

76543 2

dst2

0
src1
dst1

1
src1 src2

dst4
src1
dst1

src1
dst1

src1
dst3

src2
dst4

src2
dst4

0 0 1 1 1 0 0

key_value[]
value
key1
key2

value
key1
key2

IP_Traffic []
stats stats stats stats

index 0 1 2 3

src1
dst1 dst2

src1 src1
dst3

src2
dst4

•  Reads an array of n packets at pkts[] and aggregates
traffic for same src & dst IP addresses. Exports list of
entries; each entry records a src/dst address pair, with
associated traffic statistics

Use to build
IP conversations

Multikey-Value Sort

Inclusive Scan

13

Unique-IP-Addresses Kernel

1. for each i∈[0,n-1] in parallel do
 IPs[i] ≔ src or dst addr of pkts[i];
 end for

2. perform sort on IPs[] to determine sorted_IPs[];
3. diff_results[0] =1;

 for each i∈[1,n-1] in parallel do
 if(sorted_IPs[i] ≠sorted_IPs[i-1]) diff_buf[i]=1;
 else diff_buf[i]=0;
 end for

4. perform exclusive prefix sum on diff_buf[];
5. for each i∈[0,n-1] in parallel do

 if(diff_buf[i] ==1) Output[scan_buf[i]]=sorted_IPs[i];
 end for

•  Reads an array of n packets at pkts[] and outputs a list
of unique src or dst IP addresses seen on the packets

14

C
U

D
A

A Sample Use Case

•  Using our GPU-accelerated library, we developed a
sample use case to monitor network status:

•  Monitor networks at different levels:
•  from aggregate of entire network down to one node

•  Monitor network traffic by protocol
•  Monitor network traffic information per node:

•  Determine who is sending/receiving the most traffic
•  For both local and remote addresses

•  Monitor IP conversations:
•  Characterizing by volume, or other traits.

15

A Sample Use Case – Data Structures

•  Three key data structures were created at GPU:
•  protocol_stat[]

•  an array used to store protocol statistics for network
traffic, with each entry associated with a specific protocol.

•  ip_snd[] and ip_rcv[]
•  arrays that are used to store traffic statistics for IP

conversations in send & receive directions respectively
•  ip_table

•  a hash table that is used to keep track of network traffic
information of each IP address node

These data structures are designed to reference themselves and
each other with relative offsets such as array indexes

16

A Sample Use Case – Algorithm

1.  Call Packet-filtering kernel to filter packets of interest

2.  Call Unique-IP-addresses kernel to obtain IP
addresses

3.  Build the ip_table with a parallel hashing algorithm

4.  Collect traffic statistics for each protocol and each IP
node

5.  Call Traffic-Aggregation kernel to build IP
conversations

17

Prototyped System

P0 P1

I
O
H

I
O
H

10G-NIC

M2070

MemMem QPI

QPI

QPI

QPI

PCI-E
10G-NIC

PCI-E

No
de

 0

No
de

 1

PCI-E

Prototyped System

•  Our application is developed on
Linux.

•  CUDA 4.2 programming
environment.

•  The packet I/O engine is
implemented on Intel 82599
10GigE NIC

•  A two-node NUMA system
•  Two 8-core 2.67GHz Intel X5650 processors.

•  Two Intel 82599-based 10GigE NICs
•  One Nvidia M2070 GPU.

18

Performance Evaluation
Packet I/O Engine

0%#

20%#

40%#

60%#

80%#

100%#

120%#

1.6#GHz# 2.0#GHz# 2.4#GHz#

Pa
ck
et
#C
ap

tu
re
#R
at
e#

CPU#Frequencies#

PacketShader# Netmap# GPUCI/O#

0%#

20%#

40%#

60%#

80%#

100%#

120%#

1.6#GHz# 2.0#GHz# 2.4#GHz#

CP
U
#U
sa
ge
#

CPU#Frequencies#

PacketShader# Netmap# GPUCI/O#

Packet Capture Rate CPU Usage

•  Our Packet I/O engine (GPU-I/O) vs CPU-based
packet analysis tools
•  No packet drops
•  Least CPU usage

19

0"
200"
400"
600"
800"

1000"
1200"
1400"
1600"
1800"
2000"

1" 2" 3" 4"

Ex
ec
u.

on
"T
im

e"
(U
ni
t:"
M
ill
is
ec
on

d)
"

Experiment"Data"Set"

standardBgpuBexp" mmapBgpuBexp"
cpuBexpB1.6G" cpuBexpB2.0G"
cpuBexpB2.4G"

Performance Evaluation
GPU-based Packet Filtering Algorithm

20

•  Our packet filtering algorithm (red) vs CPU-based
& memory-mapped GPU-based tools

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

IP" TCP" NET"131.225.107" NET"129.15.30"

Ex
ec
u4

on
"T
im

e"
(U
ni
t:"
M
ill
is
ec
on

d)
"

BPF"Filters"

gpuGexp" cpuGexpG1.6G"

cpuGexpG2.0G" cpuGexpG2.4G"

Performance Evaluation
GPU-based Sample Use Case

21

•  Our GPU-analysis (red) vs CPU-based analysis

Conclusion
•  Our GPU-based network traffic monitoring & analysis

tools seem effective in high-performance network
technology environments

•  Next steps:
•  Continue to develop these tools toward production-quality
•  Investigate ways to work around limitations (ie., IDS) of

partial packet capture

•  Always looking for potential collaborators in this
technology area

22

Questions

?

Email: wenji@fnal.gov and demar@fnal.gov

Thank You!

23

