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Outline

« Extreme-Scale Distributed Computing (XSD)
— Status Quo: Understanding the landscape of XDC-2013
— Beyond HPC/HTC: Requirements for “many simulations” scenarios
« Abstractions, Models and Implementations for many-simulations
— Five Myths associated with Pilot-Jobs
« Address using Abstractions, Models and Implementations
* P* Model of Pilot-Abstractions
« Future Directions: Next Generation Middleware (NGMW)

— Many aspects and considerations, but focus on resource
management for many simulations




Why Distributed Extreme Scale Computing?

« Support new science at the next scale(s)
— Flexible Coupling X-flops of distributed compute with X-bytes of data
« Simulations integrated with distributed data analysis

« Real-time computing coupled with distributed data from scientific
experiments (LSST, SKA)

« New execution modes for efficient and effective utilization of collective
set of resources

— Off-load workloads from leadership to less powerful machines
— On-load workloads from distributed systems onto leadership
« Strategically and synergistically, not competitively

« Support the “long tail of science”




XDC: ATLAS

* Observation:
— “.. Distributed computing will persist ” for integrated HPC + HTC
Richard Mount (SLAC), c.f. http://goo.gl/pJzljH
« Requirement:
— ATLAS in >2018 needs:
* Non-monolithic extreme-scale and integrated HPC + HTC

« Challenges:
— Mostly economic, but also how to manage workload decomposition
— Development and deployment of future supercomputing applications
* Role for flexible execution strategies
* Question:

— “.. Are systems of the complexity of ATLAS Distributed Computing
sustainable long-term?”




XDC in Relation to “Traditional” EC

Many applications as opposed to a set of kernels that need to optimized
— Metrics of performance varied, i.e. not just peak performance

Capture different modes of extreme-scale computing:
« Couple X-flops with X-byte: both simulation and analysis.
 Integrate multiple large-scale resources as an aggregated capability.

Application structure simple, but infrastructural requirements difficult
— Task-level composition and coordination is important and varied
— External data infrastructure, repositories

Important role for middleware, explains why DC SW environment is complex

— Middleware: Platform to build common and integrated services, whilst hiding
heterogeneous software & system access layers

Design to support extreme scale collectively for many scalable applications
— Community (HEP) applications, essentially similar




Extreme Scale Distributed Computing in 2013

» First generation of DC characterized by “gluing it” together
— Many local solutions, lack of end-to-end solutions

 Inability to reason about spatio-temporal execution properties

— Given a general workload there is an inability to estimate how long
a workload will take? And where (and why) it will execute?

— Complete absence of analytical models of applications,
infrastructure

* And we do not know how wrong our estimates would be!

 We are still learning how to architect large-scale systems

— Scaling remains difficult for individual scientists
« < 1% can do O(100) tasks of O(10GB) over O(10) nodes

— Macroscopic vs microscopic theory of distributed systems!




“Many Simulations” Pathway to Extreme Scale

« Problems in computational science naturally amenable to “many
simulations” model of computing:

— Many free energy calculations, enhanced sampling problems.
— Many multi-physics simulations are also multi components.

« Single “application” might be broken into many smaller simulations
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From Many Simulations to Complex Applications

« Starting from uncoupled heterogeneous simulations, varying levels
of coordination and dependency can be gradually added and “tuned”

— Homogeneous/Heterogeneous A
— Complexity of simulation-resources mapping D
— Coupling between simulations
— Different coordination mechanism
— Dependencies >
— Constraints, scheduling, data transfer

H
« Depending upon the above properties, the importance and feasibility

of distribution varies

* Need abstractions that:
A1: Decouple workload and resource utilization
A2: Dynamic Resource Utilization (Growing/shinking resource pool)




Abstractions, Models and Implementations




Pilot Abstractions

Working definition: A system that generalizes a placeholder job to provide

multi-level scheduling to allow application-level control over the system
scheduler via a scheduling overlay.
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Introduction to Pilot-Abstraction (2)

« Working definitions:

— A system that generalizes a placeholder job to provide multi-level
scheduling to allow application-level control over the system scheduler
via a scheduling overlay

— “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

» Advantages of Pilot-Abstractions:
— The Perfect Pilot: Decouples workload from resource management
— Flexible Resource Management
« Enables the fine-grained (ie “slicing and dicing”) of resources

» Tighter temporal control and other advantages of application-level
Scheduling (avoid limitations of system-level only scheduling)

« Build higher-level capabilities without explicit resource management




Landscape of Pilot-Job Systems

There are many PJS offerings, often semantically distinct
— PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob...
« Why do you think there has been a proliferation of PJs?

Conceptual & practical barriers to extensibility (& interoperability)

— The landscape of PJS reflects, in addition to PJS specifics, the broader
eco-system of distributed middleware & infrastructure

— Software Engineering issues, interfaces, standardization

Difference in the execution models of the PJ
— We know “what” pilot-jobs do, but the “how” remains less clear
* How to map tasks to pilot-jobs? How to choose/map optimal resource?
« How to “slice and dice” resources?

Data remains a dependent variable, not a primary variable

— Introduce the conceit of Pilot-data




Pilot-Jobs (PJ): Five Myths

PJs do not need well defined architecture, model and semantics, or PJs are
such a simple concept, it doesn't need more “attention”

— Not to confuse “simple to use” with simple to design”

* PJ have to be tied to specific DCI; DCI are tied to specific PJ
— Extensibility and interoperability have been difficult to establish

« PJs are passive (system) tools, as opposed to user-space, active and
extensible components of a Cl

— PJs can be user-controlled “programmable elements

« PJs are only about meta-scheduling/reducing Q delays/unfairly game HPC
— There are interesting usage modes beyond “cycle stealing”

PJ do not help with next-generation “data-intensive” applications
— PJ for NGS O(10-100) GB per task on existing DCI




P* Model: Elements, Characteristics and API

| 1) submit pilot
 Elements: Application description Pilot-Manager
— Pilot-Compute (PC). — 4) submit CU

— Pilot-Data (PD). /2) submit pilot
B CompUte Unit (CU) Resource Manager Resource
— Data Unit (DU) 3) start pilot 5) schedule SU to pilot

— Scheduling Unit (SU).
— Pilot-Manager (PM).

e Characteristics:
— Coordination.
— Communication.
— Scheduling.

Application

+ Pilot-API. T I

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012




BigJob: Architecture
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Supported Infrastructures
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SAGA Interoperability Layer for BigJob




BigJob: (Partial) Usage on XSEDE Machines
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> 10M SUs/year (and increasing) on XSEDE machines




Scaling Along Many Dimensions
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Async Replica-Exchange Library

 Built to perform file-based asynchronous parallel replica exchange.
« Example of a Platform independent library.

Filesystem

Job Management
and allocation

ci c2 c3 CPU Resources

https://github.com/saga-project/asyncre-bigjob




Async Replica-Exchange Library
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 l|deal performance considered to be zero coupling in this case.
* Diminished results due to coordination overheads.

« Scientists are free to choose the best tradeoff between simulation speed
and number of concurrent replicas.

« BigJob-based Repex: Amongst the earliest QM/MM.




Scalabale online Genomics
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Computational Workflow

« 20ns simulation broken into chained sequence of 20 1ns
simulations
— Output of each required as input to next

« Hierarchical directory structure
| -> Common Config files (one for each sequence)
| -> 5 nucleosome-free regions of chromosome
| - - Common Param files for each system
| - -> 21 threading position
| - - - 20 chained sequences

« PData flow
— COOR, VEL, XSC > COOR’, VEL, XSC’ + DCD, DVD, XST, OUT, ERR
\ /

 Determining successful completion
— “WallClock” at end of OUT, and no “FATAL”
— Size of DCD




HT-HPC on Kraken

126 ensembles, each of 192 cores = 24192 cores

400
350
300
=250
= 200
= 150
100
50

M wait time
run time
3 4 5 7 8 9

6
Experiment #

Subjobs
1

4
Run Time (hrs)



Scale-Out
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“Coarse-Grained” BigJob Performance

 Number of zero-payload tasks that BJ can dispatch per second:
— Distributed: O(1)
— Locally: > O(10)
« Number of Pilots (Pilot-Agents) that can be marshaled
— Locally/Distributed: O(100)
« Typical number of tasks per Pilot-Agent:
— Locally/distributed: O(1000)

« Number of tasks concurrently managed = Number of Pilot-Agents x
tasks per each agent :

— 0O(100) x O(1000)
« (Obviously) The above depends upon data per task:

— BigJob has been used over O(1)--O(10°) bytes/task, for tasks
of duration O(1) second to O(10°) seconds




Scalable, Extensible HT Binding Energy Calculation

GUI Client + Platform independent library.
CLI » Suggestions for other libraries are welcome!

Web Interface |
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Single Tool Multiple Tools P Coupled Pipeline/WF
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SAGA Runtime
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File Adaptors u Job Adaptors u Adaptors e Adaptors

Compute and Data Infrastructure
e.g. UK-NGS/Hector, Campus
resources, US-XSEDE, Clouds

In consultation with Peter Coveney and
Charlie Laughton.




Pilot-Data: Design Objectives

« Abstraction for managing the computing requirements of
distributed dynamic data
— Dynamic Data: spatio-temporal variations, source/destination

« Enable reasoning about distributed and dynamic resources
compute, storage and network

 Remove lower-level details:
— Access to heterogeneous backend infrastructures
— file 1/0 and networking
— synchronization between compute and data
 Enable data-aware decision making:
— Exploit data locality whenever possibly.
— Enable “applications” to control typical trade-offs:
« data movement, anticipated compute-time




What is Pilot-Data?

« Manage (dynamic) storage resources in conjunction with
computational task placement

« Unified access layer to different heterogeneous storage backend
and access layers: SRM, iRODS, Globus Online, S3

« Higher-level abstraction to manage distributed and dynamic data/
compute in (geographically) distributed systems:
— Data Unit: Grouping of files that are accessed together

— Manage complex data flows consisting of multiple steps of compute across
(geographically) distributed resources

Co-location and co-scheduling of compute and data




Pilot-Data on OSG

« OSG proposes three usage modes for data-intensive applications:
— Condor-based file staging
— SRM
— iRODS

« Complex Decision Matrix:

Condor SRM iRODS Pilot-Data

Filestaging
Data Volume Low High High Backend-specific
Complexity Low High Medium Backend-specific
Data Distribution Local Local Local, Local,

Geographic Geographic )
Data Replication No No Yes PD and System- PIIOt-Data_ en.ables the
specific replication user/appllcatlon to

Flexibility (Multi-stage  Low Low Low High tradeoff the different
dppiications; cdta characteristics of data

reuse, multiple
infrastructure)

cyberinfrastructures




Pilot-Data: Controlled, Coordinated Replication
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Towards NGMW: A RADICAL Perspective




NGMW Functional Aims and Requirements

* Functional Aims
— “Beyond glue” to support spatio-temporal execution reasoning
 What to distribute? Where/how to distribute? When to distribute?
« Estimate time to completion?
- Exposes well-defined capabilities rather than technology

Capability: Well-defined and aggregated functionality, without
regard to how, or the specific approach used, e.g., num. of
tasks, throughput, probabilistic bounds on time-to-completion

* Functional Requirement
— Support adaptive applications in conjunction with dynamic resources

— Federate heterogeneous infrastructure to provide well-defined
capabilities




NGMW Schematic




NGMW Schematic




NGMW Schematic




Design Objective: Multi-level Integrated

Reasoning

« Transformation of application
workload via system workload to

infrastructure capability T A
* Application requests R(100, T, !
10), say 100 tasks, of type T, | w-

complete within 10 units of time

« Federation Layer/Manager ¢
responds with collective '
capability of C(50, T, 10) or C
(100, T, 20) ,

« Adaptive Application i

— Adaptivity can be either at A, W level

— Application may self-throttle number
of tasks, or type of task generated Ri | Re | Rs | Ra [«

— Or workload description can be
changed to meet the capability




AIMES: Demonstration of Flexible Federation
(SC’13)

Application say Bag-of-Tasks
— Say BoT(100, H, 10)

« Generate similar workload
description from different
application representations

« Bundles currently support
federation

— Info on resource availability
— Eventually resource properties

« Ultimately bundles (and I*) should
be consistent with C*

« Formalize the advantages of
dynamic and flexible federation

— Performance improvements

Skeleton/A*

Static Workload

Overlay Manager |—

A

Pilot Compute

Bundles
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Conclusion

« Extreme-Scale Distributed Computing (XSD)
— Status Quo: Understanding the landscape of XDC-2013
— Beyond HPC/HTC: Requirements for “many simulations” scenarios
« Abstractions, Models and Implementations for many-simulations
— Five Myths associated with Pilot-Jobs
« Address using Abstractions, Models and Implementations
* P* Model of Pilot-Abstractions
« Future Directions: Next Generation Middleware (NGMW)

— Many aspects and considerations, but focus on resource
management for many simulations
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