A Fresh Perspective on Distributed Applications and
Infrastructure: Abstractions, Models and Implementations

Shantenu Jha
http://radical.rutgers.edu

Outline

« Extreme-Scale Distributed Computing (XSD)
— Status Quo: Understanding the landscape of XDC-2013
— Beyond HPC/HTC: Requirements for “many simulations” scenarios
« Abstractions, Models and Implementations for many-simulations
— Five Myths associated with Pilot-Jobs
« Address using Abstractions, Models and Implementations
* P* Model of Pilot-Abstractions
« Future Directions: Next Generation Middleware (NGMW)

— Many aspects and considerations, but focus on resource
management for many simulations

Why Distributed Extreme Scale Computing?

« Support new science at the next scale(s)
— Flexible Coupling X-flops of distributed compute with X-bytes of data
« Simulations integrated with distributed data analysis

« Real-time computing coupled with distributed data from scientific
experiments (LSST, SKA)

« New execution modes for efficient and effective utilization of collective
set of resources

— Off-load workloads from leadership to less powerful machines
— On-load workloads from distributed systems onto leadership
« Strategically and synergistically, not competitively

« Support the “long tail of science”

XDC: ATLAS

* Observation:
— “.. Distributed computing will persist ” for integrated HPC + HTC
Richard Mount (SLAC), c.f. http://goo.gl/pJzljH
« Requirement:
— ATLAS in >2018 needs:
* Non-monolithic extreme-scale and integrated HPC + HTC

« Challenges:
— Mostly economic, but also how to manage workload decomposition
— Development and deployment of future supercomputing applications
* Role for flexible execution strategies
* Question:

— “.. Are systems of the complexity of ATLAS Distributed Computing
sustainable long-term?”

XDC in Relation to “Traditional” EC

Many applications as opposed to a set of kernels that need to optimized
— Metrics of performance varied, i.e. not just peak performance

Capture different modes of extreme-scale computing:
« Couple X-flops with X-byte: both simulation and analysis.
 Integrate multiple large-scale resources as an aggregated capability.

Application structure simple, but infrastructural requirements difficult
— Task-level composition and coordination is important and varied
— External data infrastructure, repositories

Important role for middleware, explains why DC SW environment is complex

— Middleware: Platform to build common and integrated services, whilst hiding
heterogeneous software & system access layers

Design to support extreme scale collectively for many scalable applications
— Community (HEP) applications, essentially similar

Extreme Scale Distributed Computing in 2013

» First generation of DC characterized by “gluing it” together
— Many local solutions, lack of end-to-end solutions

 Inability to reason about spatio-temporal execution properties

— Given a general workload there is an inability to estimate how long
a workload will take? And where (and why) it will execute?

— Complete absence of analytical models of applications,
infrastructure

* And we do not know how wrong our estimates would be!

 We are still learning how to architect large-scale systems

— Scaling remains difficult for individual scientists
« < 1% can do O(100) tasks of O(10GB) over O(10) nodes

— Macroscopic vs microscopic theory of distributed systems!

“Many Simulations” Pathway to Extreme Scale

« Problems in computational science naturally amenable to “many
simulations” model of computing:

— Many free energy calculations, enhanced sampling problems.
— Many multi-physics simulations are also multi components.

« Single “application” might be broken into many smaller simulations

100000

 Thisis not just HTC or HPC, but .
complex application objectives

* lIsn’t about just peak perf,
nor maximal throughput

 Given access to X cores/ e L
nodes — slice/dice or s

IDEAL

1
1000 | —-—-—-—-

100

number of ensembles

1 10 100 1000 10000 100000

distribute aS needed size of ensemble (core)

From Many Simulations to Complex Applications

« Starting from uncoupled heterogeneous simulations, varying levels
of coordination and dependency can be gradually added and “tuned”

— Homogeneous/Heterogeneous A
— Complexity of simulation-resources mapping D
— Coupling between simulations
— Different coordination mechanism
— Dependencies >
— Constraints, scheduling, data transfer

H
« Depending upon the above properties, the importance and feasibility

of distribution varies

* Need abstractions that:
A1: Decouple workload and resource utilization
A2: Dynamic Resource Utilization (Growing/shinking resource pool)

Abstractions, Models and Implementations

Pilot Abstractions

Working definition: A system that generalizes a placeholder job to provide

multi-level scheduling to allow application-level control over the system
scheduler via a scheduling overlay.

o § User Application Pilot-Job System
(7)) -
> & Pilot-Job Pilot-Job " O1¢iS
Fesource Managsr
5 3
23
) (0))
Resource A Resource B Resource C Resource D

Introduction to Pilot-Abstraction (2)

« Working definitions:

— A system that generalizes a placeholder job to provide multi-level
scheduling to allow application-level control over the system scheduler
via a scheduling overlay

— “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

» Advantages of Pilot-Abstractions:
— The Perfect Pilot: Decouples workload from resource management
— Flexible Resource Management
« Enables the fine-grained (ie “slicing and dicing”) of resources

» Tighter temporal control and other advantages of application-level
Scheduling (avoid limitations of system-level only scheduling)

« Build higher-level capabilities without explicit resource management

Landscape of Pilot-Job Systems

There are many PJS offerings, often semantically distinct
— PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob...
« Why do you think there has been a proliferation of PJs?

Conceptual & practical barriers to extensibility (& interoperability)

— The landscape of PJS reflects, in addition to PJS specifics, the broader
eco-system of distributed middleware & infrastructure

— Software Engineering issues, interfaces, standardization

Difference in the execution models of the PJ
— We know “what” pilot-jobs do, but the “how” remains less clear
* How to map tasks to pilot-jobs? How to choose/map optimal resource?
« How to “slice and dice” resources?

Data remains a dependent variable, not a primary variable

— Introduce the conceit of Pilot-data

Pilot-Jobs (PJ): Five Myths

PJs do not need well defined architecture, model and semantics, or PJs are
such a simple concept, it doesn't need more “attention”

— Not to confuse “simple to use” with simple to design”

* PJ have to be tied to specific DCI; DCI are tied to specific PJ
— Extensibility and interoperability have been difficult to establish

« PJs are passive (system) tools, as opposed to user-space, active and
extensible components of a Cl

— PJs can be user-controlled “programmable elements

« PJs are only about meta-scheduling/reducing Q delays/unfairly game HPC
— There are interesting usage modes beyond “cycle stealing”

PJ do not help with next-generation “data-intensive” applications
— PJ for NGS O(10-100) GB per task on existing DCI

P* Model: Elements, Characteristics and API

| 1) submit pilot
 Elements: Application description Pilot-Manager
— Pilot-Compute (PC). — 4) submit CU

— Pilot-Data (PD). /2) submit pilot
B CompUte Unit (CU) Resource Manager Resource
— Data Unit (DU) 3) start pilot 5) schedule SU to pilot

— Scheduling Unit (SU).
— Pilot-Manager (PM).

e Characteristics:
— Coordination.
— Communication.
— Scheduling.

Application

+ Pilot-API. T I

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012

BigJob: Architecture

Application

Pilot-API

1) create pilot

2) submit du/cu

User Desktop

Pilot-
Manager

Distributed
Coordination
Service

A4

Resource Manager

Resource

- e - - - == — - - e e = — -

v

Pilot-Agent

! Compute Unit

: App
| | Kernel
|
|

! Compute Unit

: App
I | Kernel
|
|

[U U U A

RUTGERS

Resource

Il BigJob
[] Application

Supported Infrastructures

Distributed Application

)
®
Pilot API/BigJob Q
P
:
(72]
o JIE

XSEDE FutureGrid HTC (OSG/EGI) Amazon
Local GFES Local Blob Local SRM Local Amazon HE
(SSH/GO) (SSH) (Walrus) (iRODS) (iRODS) (SSH) S3 =
S
Node EUCA VM Node EC2 VM @
i il i NE

SAGA Interoperability Layer for BigJob

BigJob: (Partial) Usage on XSEDE Machines

XSEDE Weekly Hours by User XSEDE Weekly Hours by User
51 Weeks from Week 49 of 2011 to Week 49 of 2012 51 Weeks from Week 09 of 2012 to Week 08 of 2013
T T T T T T T T T T T T T T

160,000 - ¥ ¥ ™ 160,000 - -

140,000 140,000 fu -
120,000 120,000 = -
100,000 fu -

100,000

80,000 80,000

60,000
60,000

40,000

40,000

20,000
20,000

Apr2012 May 2012 jun2012 2012 Aug2012 Sep2012 Oct2012 Nov2012 Dec 2012 Jan2013 Feb 2013

M Charles Laughton LI James Solow 11 Emilio Gallicchio M David Wright 11 Jack Smith
M Charles Laughton L_|Emilio Gallicchio 121 David Wright M Melissa Romanus 1 Thomas C Bishop M David Kelly [Z Glen Hocky M Melissa Romanus [Brian Radak [Ketan Maheshwari
B Ole Weidner [Jack Smith M Ashley Zebrowski [0 Ole Weidner [Thomas C Bishop M Ashley Zebrowski [Michael Wilde B Preston Smith
Maximum: 142,251 , Minimum: 12.47 , Current: 83,630 Maximum: 142,251 , Minimum: 40.03 , Current: 66,878

> 10M SUs/year (and increasing) on XSEDE machines

Scaling Along Many Dimensions

100000 £\

10000

Coupling
between
Tasks

1000

Number of Tasks o

10

Size of Each Task

o>

1 10 100 1000 10000 100000

Regular vs
Irregular
communication

Homogenous
Vs
Heteregenous

Duration of Each Task

Async Replica-Exchange Library

 Built to perform file-based asynchronous parallel replica exchange.
« Example of a Platform independent library.

Filesystem

Job Management
and allocation

ci c2 c3 CPU Resources

https://github.com/saga-project/asyncre-bigjob

Async Replica-Exchange Library

AMBER RE-US MD (576 total replicas/720 cores) Scaling of AMBER QM/MM MD Simulations
L] L] ¥ | | 80.00 T T T T T T L 200
. 1800 p m(s) - _ 70.00 k //,e
& 1600 (Ideal)O e - g ol {110 3
2 1400} 50 - 2 oo o 5
g 1200 f 120 . oo 1 3
% 1$: -.e: § 30.00 | 4 140 g
2 — 3 2000} ' e
= 600 F — " £ ' 4 120 =
g 400} /‘ A 10.00 2~
.m " 2 o‘m L 1 Il 'l L 1 1 1m
208 l' . . 1 20 40 60 80 100 120 140

of concurrent replicas

20 40 60 80 100 120
of concurrent replicas

 l|deal performance considered to be zero coupling in this case.
* Diminished results due to coordination overheads.

« Scientists are free to choose the best tradeoff between simulation speed
and number of concurrent replicas.

« BigJob-based Repex: Amongst the earliest QM/MM.

Scalabale online Genomics

Nucleus Chromosome

‘:SA% ldDNﬁl
c 25 ouble
N A)

heli_x

Computational Workflow

« 20ns simulation broken into chained sequence of 20 1ns
simulations
— Output of each required as input to next

« Hierarchical directory structure
| -> Common Config files (one for each sequence)
| -> 5 nucleosome-free regions of chromosome
| - - Common Param files for each system
| - -> 21 threading position
| - - - 20 chained sequences

« PData flow
— COOR, VEL, XSC > COOR’, VEL, XSC’ + DCD, DVD, XST, OUT, ERR
\ /

 Determining successful completion
— “WallClock” at end of OUT, and no “FATAL”
— Size of DCD

HT-HPC on Kraken

126 ensembles, each of 192 cores = 24192 cores

400
350
300
=250
= 200
= 150
100
50

M wait time
run time
3 4 5 7 8 9

6
Experiment #

Subjobs
1

4
Run Time (hrs)

Scale-Out

4000 T T T T T T
3500
3000
2500
c
E
< 2000
£
= 1500 1800
1600
1000 1400 |
1200 +
500 1000
800 r
0 600 -
KRL KL KR K R L 400 |
¢ > 200 | |
- 1 =
21 42 63 21 42 63 21 42 63

Ranger (32 cores) Lonestar (32 cores) Kraken (36 cores)

“Coarse-Grained” BigJob Performance

 Number of zero-payload tasks that BJ can dispatch per second:
— Distributed: O(1)
— Locally: > O(10)
« Number of Pilots (Pilot-Agents) that can be marshaled
— Locally/Distributed: O(100)
« Typical number of tasks per Pilot-Agent:
— Locally/distributed: O(1000)

« Number of tasks concurrently managed = Number of Pilot-Agents x
tasks per each agent :

— 0O(100) x O(1000)
« (Obviously) The above depends upon data per task:

— BigJob has been used over O(1)--O(10°) bytes/task, for tasks
of duration O(1) second to O(10°) seconds

Scalable, Extensible HT Binding Energy Calculation

GUI Client + Platform independent library.
CLI » Suggestions for other libraries are welcome!

Web Interface |

Standalone Pipeline of Uncoupled Loosely Dynamic
Single Tool Multiple Tools P Coupled Pipeline/WF
Type | Type |l Type Il
SAGA-based Pilot Layer
Files Jobs Replicas SAGAAPI Advert

SAGA Runtime

‘ ' Replica ‘ Advert
File Adaptors u Job Adaptors u Adaptors e Adaptors

Compute and Data Infrastructure
e.g. UK-NGS/Hector, Campus
resources, US-XSEDE, Clouds

In consultation with Peter Coveney and
Charlie Laughton.

Pilot-Data: Design Objectives

« Abstraction for managing the computing requirements of
distributed dynamic data
— Dynamic Data: spatio-temporal variations, source/destination

« Enable reasoning about distributed and dynamic resources
compute, storage and network

 Remove lower-level details:
— Access to heterogeneous backend infrastructures
— file 1/0 and networking
— synchronization between compute and data
 Enable data-aware decision making:
— Exploit data locality whenever possibly.
— Enable “applications” to control typical trade-offs:
« data movement, anticipated compute-time

What is Pilot-Data?

« Manage (dynamic) storage resources in conjunction with
computational task placement

« Unified access layer to different heterogeneous storage backend
and access layers: SRM, iRODS, Globus Online, S3

« Higher-level abstraction to manage distributed and dynamic data/
compute in (geographically) distributed systems:
— Data Unit: Grouping of files that are accessed together

— Manage complex data flows consisting of multiple steps of compute across
(geographically) distributed resources

Co-location and co-scheduling of compute and data

Pilot-Data on OSG

« OSG proposes three usage modes for data-intensive applications:
— Condor-based file staging
— SRM
— iRODS

« Complex Decision Matrix:

Condor SRM iRODS Pilot-Data

Filestaging
Data Volume Low High High Backend-specific
Complexity Low High Medium Backend-specific
Data Distribution Local Local Local, Local,

Geographic Geographic)
Data Replication No No Yes PD and System- PIIOt-Data_ en.ables the
specific replication user/appllcatlon to

Flexibility (Multi-stage Low Low Low High tradeoff the different
dppiications; cdta characteristics of data

reuse, multiple
infrastructure)

cyberinfrastructures

Pilot-Data: Controlled, Coordinated Replication

)
D UTA- === ————
» 3000- SPRACE - [l
c Purdue-Steele - -
~ MIT -
I_fI FNAL- FE=—
5000- AGLT2- |
(o))
c 1000 2000
= Transfer Time Ty (in sec)
-
__|C=> 1000 -
©
O
g J
g o
1024 2048 4096 8192
Size (in MB)

B EGI BOSG/iRODS (osgGridftpGroup) BMIOSG/iRODS (sequential)

RUTGERS

Towards NGMW: A RADICAL Perspective

NGMW Functional Aims and Requirements

* Functional Aims
— “Beyond glue” to support spatio-temporal execution reasoning
 What to distribute? Where/how to distribute? When to distribute?
« Estimate time to completion?
- Exposes well-defined capabilities rather than technology

Capability: Well-defined and aggregated functionality, without
regard to how, or the specific approach used, e.g., num. of
tasks, throughput, probabilistic bounds on time-to-completion

* Functional Requirement
— Support adaptive applications in conjunction with dynamic resources

— Federate heterogeneous infrastructure to provide well-defined
capabilities

NGMW Schematic

NGMW Schematic

NGMW Schematic

Design Objective: Multi-level Integrated

Reasoning

« Transformation of application
workload via system workload to

infrastructure capability T A
* Application requests R(100, T, !
10), say 100 tasks, of type T, | w-

complete within 10 units of time

« Federation Layer/Manager ¢
responds with collective '
capability of C(50, T, 10) or C
(100, T, 20) ,

« Adaptive Application i

— Adaptivity can be either at A, W level

— Application may self-throttle number
of tasks, or type of task generated Ri | Re | Rs | Ra [«

— Or workload description can be
changed to meet the capability

AIMES: Demonstration of Flexible Federation
(SC’13)

Application say Bag-of-Tasks
— Say BoT(100, H, 10)

« Generate similar workload
description from different
application representations

« Bundles currently support
federation

— Info on resource availability
— Eventually resource properties

« Ultimately bundles (and I*) should
be consistent with C*

« Formalize the advantages of
dynamic and flexible federation

— Performance improvements

Skeleton/A*

Static Workload

Overlay Manager |—

A

Pilot Compute

Bundles

R Rz | Rs | Ra

Conclusion

« Extreme-Scale Distributed Computing (XSD)
— Status Quo: Understanding the landscape of XDC-2013
— Beyond HPC/HTC: Requirements for “many simulations” scenarios
« Abstractions, Models and Implementations for many-simulations
— Five Myths associated with Pilot-Jobs
« Address using Abstractions, Models and Implementations
* P* Model of Pilot-Abstractions
« Future Directions: Next Generation Middleware (NGMW)

— Many aspects and considerations, but focus on resource
management for many simulations

References

RADICAL.:
— http://radical.rutgers.edu/

e Publications:

— http://radical.rutgers/edu/publications

— (i) P7, (ii) Pilot-Data, and (iii) Pilot-Jobs Review Paper
 SAGA-Python:

— http://saga-project.github.io/saga-python/

« BigJob: An implementation of P*
— http://saga-project.github.io/BigJob/

« Tutorials:
— https://github.com/saga-project/tutorials/wiki/ XSEDE13

Acknowledgements

Graduate Students:
* Ashley Zebrowski
 Melissa Romanus
 Mark Santcroos

* Antons Trekalis
Undergraduate Students:
* Vishal Shah
Research Scientists:
 Andre Luckow

* Andre Merzky
 Matteo Turilli

* Ole Weidner

Acknowledgements/Funding Sources

Active:
— NSF CAREER Award 2012 (OCI-1253644)
— CDI NSF-CDI (NSF CHE 1125332)
— EXTENCI (NSF OCI)
— SCIHM NSF-OCI (OCI-1235085)
— AIMES DoE-ASCR (DE-FG02-12ER26115)
— ExTASY CHE-1265788

Compute Time:
— NSF TeraGrid TRAC award TG-MCB090174
— NSF FutureGrid Award (No. 42)

Recent Past:
— NSF/LEQSF (2007-10)-CyberRII-01
— NSF HPCOPS NSF- OCI 0710874 award
— UK EPSRC (GR/D0766171/1) and e-Science Institute, UK
— NSF OCI 1059635
— NIH Grant Number P20RR016456

