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Outline 

•  Extreme-Scale Distributed Computing (XSD) 

–  Status Quo: Understanding the landscape of XDC-2013 

–  Beyond HPC/HTC: Requirements for “many simulations” scenarios 

•  Abstractions, Models and Implementations for many-simulations 

–  Five Myths associated with Pilot-Jobs 

•  Address using Abstractions, Models and Implementations  

•  P* Model of Pilot-Abstractions 

•  Future Directions: Next Generation Middleware (NGMW) 

–  Many aspects and considerations, but focus on resource 
management for many simulations 



Why Distributed Extreme Scale Computing? 
•  Support new science at the next scale(s) 

–  Flexible Coupling X-flops of distributed compute with X-bytes of data 
•  Simulations integrated with distributed data analysis 
•  Real-time computing coupled with distributed data from  scientific 

experiments (LSST, SKA) 
 

•  New execution modes for efficient and effective utilization of  collective 
set of  resources 
–  Off-load workloads from leadership to less powerful machines 
–  On-load workloads from distributed systems onto leadership 

•  Strategically and synergistically, not competitively 

•  Support the “long tail of science” 



XDC: ATLAS 
•  Observation:  

–  “.. Distributed computing will persist ” for integrated HPC + HTC  
 Richard Mount (SLAC), c.f. http://goo.gl/pJzIjH 

•  Requirement: 
–  ATLAS in >2018 needs: 

•  Non-monolithic extreme-scale and integrated HPC + HTC 
•  Challenges: 

–  Mostly economic, but also how to manage workload decomposition 
–  Development and deployment of future supercomputing applications 

•  Role for flexible execution strategies 
•  Question: 

–  “.. Are systems of the complexity of ATLAS Distributed Computing 
sustainable long-term?” 



XDC in Relation to “Traditional” EC 
•  Many applications as opposed to a set of kernels that need to optimized  

–  Metrics of performance varied, i.e. not just peak performance 
 

•  Capture different modes of extreme-scale computing: 
•  Couple X-flops with X-byte: both simulation and analysis. 
•  Integrate multiple large-scale resources as an aggregated capability. 
 

•  Application structure simple, but infrastructural requirements difficult 
–  Task-level composition and coordination is important and varied 
–  External data infrastructure, repositories 
 

•  Important role for middleware, explains why DC SW environment is complex 
–  Middleware: Platform to build common and integrated services, whilst hiding 

heterogeneous software & system access layers 

•  Design to support extreme scale collectively for many scalable applications 
–  Community (HEP) applications, essentially similar 



Extreme Scale Distributed Computing in 2013 

•  First generation of DC characterized by “gluing it” together 
‐ Many local solutions, lack of end-to-end solutions 

 
•  Inability to reason about spatio-temporal execution properties 

–  Given a general workload there is an inability to estimate how long 
a workload will take? And where (and why) it will execute?  

–  Complete absence of analytical models of applications, 
infrastructure  

•  And we do not know how wrong our estimates would be! 
 

•  We are still learning how to architect large-scale systems 
‐  Scaling remains difficult for individual scientists  

•  < 1% can do O(100) tasks of O(10GB) over O(10) nodes 
‐ Macroscopic vs microscopic theory of distributed systems! 
‐ Missing principles and practice of “systems in the large”  

 



“Many Simulations” Pathway to Extreme Scale 

•  Problems in computational science naturally amenable to “many 
simulations” model of computing: 
–  Many free energy calculations, enhanced sampling problems. 
–  Many multi-physics simulations are also multi components. 

•  Single “application” might be  broken into many smaller simulations 

•  This is not just HTC or HPC, but 
complex application objectives 
•  Isn’t about just peak perf, 

nor maximal throughput 
•  Given access to X cores/

nodes – slice/dice or 
distribute as needed  



From Many Simulations to Complex Applications  

•  Starting from uncoupled heterogeneous simulations, varying levels 
of coordination and dependency can be gradually added and “tuned” 
–  Homogeneous/Heterogeneous 

– Complexity of simulation-resources mapping  
–  Coupling between simulations  

– Different coordination mechanism 
–  Dependencies 

– Constraints, scheduling, data transfer 

 
 

•  Depending upon the above properties, the importance and feasibility 
of distribution varies 

•  Need abstractions that: 
A1: Decouple workload and resource utilization 
A2: Dynamic Resource Utilization (Growing/shinking resource pool) 
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Abstractions, Models and Implementations 



Pilot Abstractions 

Working definition: A system that generalizes a placeholder job to provide 
multi-level scheduling to allow application-level control over the system 
scheduler via a scheduling overlay. 
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Introduction to Pilot-Abstraction (2) 
•  Working definitions:  

–  A system that generalizes a placeholder job to provide multi-level 
scheduling to allow application-level control over the system scheduler 
via a scheduling overlay 

–  “.. defined as an abstraction that generalizes the reoccurring concept of 
utilizing a placeholder job as a container for a set of compute tasks; an 
instance of that placeholder job is referred to as Pilot-Job or pilot.”  

•  Advantages of Pilot-Abstractions: 
–  The Perfect Pilot: Decouples workload from resource management 
–  Flexible Resource Management 

•  Enables the fine-grained (ie “slicing and dicing”) of resources  
•  Tighter temporal control and other advantages of application-level 

Scheduling (avoid limitations of system-level only scheduling) 
•  Build higher-level capabilities without explicit resource management  
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Landscape of Pilot-Job Systems 
 
•  There are many PJS offerings, often semantically distinct  

–  PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob… 
•  Why do you think there has been a proliferation of PJs? 

•  Conceptual & practical barriers to extensibility (& interoperability) 
–  The landscape of PJS reflects, in addition to PJS specifics, the broader 

eco-system of distributed middleware & infrastructure 
–  Software Engineering issues, interfaces, standardization 

•  Difference in the execution models of the PJ 
–  We know “what” pilot-jobs do, but the “how” remains less clear 

•  How to map tasks to pilot-jobs? How to choose/map optimal resource? 
•  How to “slice and dice” resources?  
 

•  Data remains a dependent variable, not a primary variable 
–  Introduce the concept of Pilot-data  
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Pilot-Jobs (PJ): Five  Myths 

•  PJs do not need well defined architecture, model and semantics, or PJs are 
such a simple concept, it doesn't need more “attention” 

–  Not to confuse “simple to use” with simple to design“ 

•  PJ have to be tied to specific DCI; DCI are tied to specific PJ 
–  Extensibility and interoperability have been difficult to establish 

•  PJs are passive (system) tools, as opposed to user-space, active and 
extensible components of a CI 

–  PJs can be user-controlled “programmable elements 
 

•  PJs are only about meta-scheduling/reducing Q delays/unfairly game HPC 
–  There are interesting usage modes beyond “cycle stealing” 

•  PJ do not help with next-generation “data-intensive” applications 
–  PJ for NGS O(10-100) GB per task on existing DCI 
 
 



P* Model: Elements, Characteristics and API 

•  Elements: 
–  Pilot-Compute (PC). 
–  Pilot-Data (PD). 
–  Compute Unit (CU). 
–  Data Unit (DU). 
–  Scheduling Unit (SU). 
–  Pilot-Manager (PM). 

•  Characteristics: 
–  Coordination. 
–  Communication. 
–  Scheduling. 

•  Pilot-API. 

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012 



BigJob: Architecture 



Supported Infrastructures 
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SAGA Interoperability Layer for BigJob 



BigJob: (Partial) Usage on XSEDE Machines 
  

> 10M SUs/year (and increasing) on XSEDE machines 



Scaling Along Many Dimensions 
 



Async Replica-Exchange Library 

•  Built to perform file-based asynchronous parallel replica exchange. 
•  Example of a Platform independent library. 

https://github.com/saga-project/asyncre-bigjob 



•  Ideal performance considered to be zero coupling in this case. 
•  Diminished results due to coordination overheads. 
•  Scientists are free to choose the best tradeoff between simulation speed 

and number of concurrent replicas. 
•  BigJob-based Repex: Amongst the earliest QM/MM. 

Async Replica-Exchange Library 



Scalabale online Genomics 



Computational Workflow 

•  20ns simulation broken into chained sequence of 20 1ns 
simulations 

–  Output of each required as input to next 

•  Hierarchical directory structure  
| -> Common Config files (one for each sequence) 
| -> 5 nucleosome-free regions of chromosome 
| - - Common Param files for each system 
| - -> 21 threading position 
| - - - 20 chained sequences 

•  Data flow 
–  COOR, VEL, XSC  COOR’, VEL’, XSC’ + DCD, DVD, XST, OUT, ERR 
               \ ___________/ 

•  Determining successful completion 
–  “WallClock” at end of OUT, and no “FATAL” 
–  Size of DCD 



HT-HPC on Kraken 

126 ensembles, each of 192 cores = 24192 cores  



Scale-Out 

X-axis: number of tasks (size) 



“Coarse-Grained” BigJob Performance 
•  Number of zero-payload tasks that BJ can dispatch per second: 

–  Distributed: O(1) 
–  Locally: > O(10) 

•  Number of Pilots (Pilot-Agents) that can be marshaled 
–  Locally/Distributed: O(100) 

•  Typical number of tasks per Pilot-Agent: 
–  Locally/distributed: O(1000) 

•  Number of tasks concurrently managed = Number of Pilot-Agents x 
tasks per each agent : 
–  O(100) x O(1000) 

•  (Obviously) The above depends upon data per task:  
–   BigJob has been used over O(1)--O(109) bytes/task, for tasks 

of duration O(1) second to O(105) seconds 



Scalable, Extensible HT Binding Energy Calculation 

In consultation with Peter Coveney and 
Charlie Laughton. 

•  Platform independent library. 
•  Suggestions for other libraries are welcome! 



Pilot-Data: Design Objectives 

•  Abstraction for managing the computing requirements of 
distributed dynamic data  

–  Dynamic Data: spatio-temporal variations, source/destination 
•  Enable reasoning about distributed and dynamic resources 

compute, storage and network  
 
•  Remove lower-level details: 

–  Access to heterogeneous backend infrastructures 
–  file I/O and networking  
–  synchronization between compute and data 

•  Enable data-aware decision making:  
–  Exploit data locality whenever possibly.  
–  Enable “applications” to control typical trade-offs:  

•  data movement, anticipated compute-time 
•  move once-compute multiple times,  



What is Pilot-Data? 

•  Manage (dynamic) storage resources in conjunction with 
computational task placement 

•  Unified access layer to different heterogeneous storage backend 
and access layers: SRM, iRODS, Globus Online, S3 

•  Higher-level abstraction to manage distributed and dynamic data/
compute in (geographically) distributed systems: 
–  Data Unit: Grouping of files that are accessed together 
–  Manage complex data flows consisting of multiple steps of compute across 

(geographically) distributed resources 
 

•  Co-location and co-scheduling of compute and data 



Pilot-Data on OSG 

•  OSG proposes three usage modes for data-intensive applications: 
–  Condor-based file staging 
–  SRM 
–  iRODS 

•  Complex Decision Matrix: 

Condor  
Filestaging 

SRM iRODS 

Data Volume Low High High 

Complexity Low High Medium 

Data Distribution Local Local Local, 
Geographic 

Data Replication No No Yes 

Flexibility (Multi-stage 
applications, data 
reuse, multiple 
infrastructure) 

Low Low Low 

Pilot-Data enables the 
user/application to 
tradeoff the different 
characteristics of data 
cyberinfrastructures 

Pilot-Data 

Backend-specific 

Backend-specific 

Local,    
Geographic 

PD and System-
specific replication 

High 
 
 
 



Pilot-Data: Controlled, Coordinated Replication 
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Towards NGMW: A RADICAL Perspective  



NGMW Functional Aims and Requirements 
•  Functional Aims 

–  “Beyond glue” to support spatio-temporal execution reasoning 
•  What to distribute? Where/how to distribute? When to distribute? 
•  Estimate time to completion?   

–  Exposes well-defined capabilities rather than technology 
•  Capability: Well-defined and aggregated functionality, without 

regard to how, or the specific approach used, e.g., num. of 
tasks, throughput, probabilistic bounds on time-to-completion 

•  Functional Requirement 
–  Support adaptive applications in conjunction with dynamic resources 
–  Federate heterogeneous infrastructure to provide well-defined 

capabilities 



NGMW Schematic 



NGMW Schematic 



NGMW Schematic 



Design Objective: Multi-level Integrated 
Reasoning 
•  Transformation of application 

workload via system workload to 
infrastructure capability 

•  Application requests R(100, T,
10), say 100 tasks, of type T, 
complete within 10 units of time 

•  Federation Layer/Manager 
responds with collective 
capability of C(50, T, 10) or C
(100, T, 20) 

•  Adaptive Application 
–  Adaptivity can be either at A, W level 
–  Application may self-throttle number 

of tasks, or type of task generated 
–  Or workload description can be 

changed to meet the capability 



AIMES: Demonstration of Flexible Federation 
(SC’13) 

•  Application say Bag-of-Tasks  
–  Say BoT(100, H, 10) 

•  Generate similar workload 
description from different 
application representations 

•  Bundles currently support 
federation 
–  Info on resource availability 
–  Eventually resource properties 

•  Ultimately bundles (and I*) should 
be consistent with C*  

•  Formalize the advantages of 
dynamic and flexible federation 
–  Performance improvements 



Conclusion 

•  Extreme-Scale Distributed Computing (XSD) 

–  Status Quo: Understanding the landscape of XDC-2013 

–  Beyond HPC/HTC: Requirements for “many simulations” scenarios 

•  Abstractions, Models and Implementations for many-simulations 

–  Five Myths associated with Pilot-Jobs 

•  Address using Abstractions, Models and Implementations  

•  P* Model of Pilot-Abstractions 

•  Future Directions: Next Generation Middleware (NGMW) 

–  Many aspects and considerations, but focus on resource 
management for many simulations 
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