
A Fresh Perspective on Distributed Applications and
Infrastructure: Abstractions, Models and Implementations

Shantenu Jha
http://radical.rutgers.edu

Outline

•  Extreme-Scale Distributed Computing (XSD)

–  Status Quo: Understanding the landscape of XDC-2013

–  Beyond HPC/HTC: Requirements for “many simulations” scenarios

•  Abstractions, Models and Implementations for many-simulations

–  Five Myths associated with Pilot-Jobs

•  Address using Abstractions, Models and Implementations

•  P* Model of Pilot-Abstractions

•  Future Directions: Next Generation Middleware (NGMW)

–  Many aspects and considerations, but focus on resource
management for many simulations

Why Distributed Extreme Scale Computing?
•  Support new science at the next scale(s)

–  Flexible Coupling X-flops of distributed compute with X-bytes of data
•  Simulations integrated with distributed data analysis
•  Real-time computing coupled with distributed data from scientific

experiments (LSST, SKA)

•  New execution modes for efficient and effective utilization of collective
set of resources
–  Off-load workloads from leadership to less powerful machines
–  On-load workloads from distributed systems onto leadership

•  Strategically and synergistically, not competitively

•  Support the “long tail of science”

XDC: ATLAS
•  Observation:

–  “.. Distributed computing will persist ” for integrated HPC + HTC
 Richard Mount (SLAC), c.f. http://goo.gl/pJzIjH

•  Requirement:
–  ATLAS in >2018 needs:

•  Non-monolithic extreme-scale and integrated HPC + HTC
•  Challenges:

–  Mostly economic, but also how to manage workload decomposition
–  Development and deployment of future supercomputing applications

•  Role for flexible execution strategies
•  Question:

–  “.. Are systems of the complexity of ATLAS Distributed Computing
sustainable long-term?”

XDC in Relation to “Traditional” EC
•  Many applications as opposed to a set of kernels that need to optimized

–  Metrics of performance varied, i.e. not just peak performance

•  Capture different modes of extreme-scale computing:
•  Couple X-flops with X-byte: both simulation and analysis.
•  Integrate multiple large-scale resources as an aggregated capability.

•  Application structure simple, but infrastructural requirements difficult
–  Task-level composition and coordination is important and varied
–  External data infrastructure, repositories

•  Important role for middleware, explains why DC SW environment is complex
–  Middleware: Platform to build common and integrated services, whilst hiding

heterogeneous software & system access layers

•  Design to support extreme scale collectively for many scalable applications
–  Community (HEP) applications, essentially similar

Extreme Scale Distributed Computing in 2013

•  First generation of DC characterized by “gluing it” together
‐ Many local solutions, lack of end-to-end solutions

•  Inability to reason about spatio-temporal execution properties

–  Given a general workload there is an inability to estimate how long
a workload will take? And where (and why) it will execute?

–  Complete absence of analytical models of applications,
infrastructure

•  And we do not know how wrong our estimates would be!

•  We are still learning how to architect large-scale systems
‐  Scaling remains difficult for individual scientists

•  < 1% can do O(100) tasks of O(10GB) over O(10) nodes
‐ Macroscopic vs microscopic theory of distributed systems!
‐ Missing principles and practice of “systems in the large”

“Many Simulations” Pathway to Extreme Scale

•  Problems in computational science naturally amenable to “many
simulations” model of computing:
–  Many free energy calculations, enhanced sampling problems.
–  Many multi-physics simulations are also multi components.

•  Single “application” might be broken into many smaller simulations

•  This is not just HTC or HPC, but
complex application objectives
•  Isn’t about just peak perf,

nor maximal throughput
•  Given access to X cores/

nodes – slice/dice or
distribute as needed

From Many Simulations to Complex Applications

•  Starting from uncoupled heterogeneous simulations, varying levels
of coordination and dependency can be gradually added and “tuned”
–  Homogeneous/Heterogeneous

– Complexity of simulation-resources mapping
–  Coupling between simulations

– Different coordination mechanism
–  Dependencies

– Constraints, scheduling, data transfer

•  Depending upon the above properties, the importance and feasibility
of distribution varies

•  Need abstractions that:
A1: Decouple workload and resource utilization
A2: Dynamic Resource Utilization (Growing/shinking resource pool)

D

C

H

Abstractions, Models and Implementations

Pilot Abstractions

Working definition: A system that generalizes a placeholder job to provide
multi-level scheduling to allow application-level control over the system
scheduler via a scheduling overlay.

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

S

pa
ce

U

se
r

S
pa

ce

Resource Manager

Pilot-Job System
Policies Pilot-Job Pilot-Job

Introduction to Pilot-Abstraction (2)
•  Working definitions:

–  A system that generalizes a placeholder job to provide multi-level
scheduling to allow application-level control over the system scheduler
via a scheduling overlay

–  “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

•  Advantages of Pilot-Abstractions:
–  The Perfect Pilot: Decouples workload from resource management
–  Flexible Resource Management

•  Enables the fine-grained (ie “slicing and dicing”) of resources
•  Tighter temporal control and other advantages of application-level

Scheduling (avoid limitations of system-level only scheduling)
•  Build higher-level capabilities without explicit resource management

12

Landscape of Pilot-Job Systems

•  There are many PJS offerings, often semantically distinct

–  PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob…
•  Why do you think there has been a proliferation of PJs?

•  Conceptual & practical barriers to extensibility (& interoperability)
–  The landscape of PJS reflects, in addition to PJS specifics, the broader

eco-system of distributed middleware & infrastructure
–  Software Engineering issues, interfaces, standardization

•  Difference in the execution models of the PJ
–  We know “what” pilot-jobs do, but the “how” remains less clear

•  How to map tasks to pilot-jobs? How to choose/map optimal resource?
•  How to “slice and dice” resources?

•  Data remains a dependent variable, not a primary variable
–  Introduce the concept of Pilot-data

13

Pilot-Jobs (PJ): Five Myths

•  PJs do not need well defined architecture, model and semantics, or PJs are
such a simple concept, it doesn't need more “attention”

–  Not to confuse “simple to use” with simple to design“

•  PJ have to be tied to specific DCI; DCI are tied to specific PJ
–  Extensibility and interoperability have been difficult to establish

•  PJs are passive (system) tools, as opposed to user-space, active and
extensible components of a CI

–  PJs can be user-controlled “programmable elements

•  PJs are only about meta-scheduling/reducing Q delays/unfairly game HPC
–  There are interesting usage modes beyond “cycle stealing”

•  PJ do not help with next-generation “data-intensive” applications
–  PJ for NGS O(10-100) GB per task on existing DCI

P* Model: Elements, Characteristics and API

•  Elements:
–  Pilot-Compute (PC).
–  Pilot-Data (PD).
–  Compute Unit (CU).
–  Data Unit (DU).
–  Scheduling Unit (SU).
–  Pilot-Manager (PM).

•  Characteristics:
–  Coordination.
–  Communication.
–  Scheduling.

•  Pilot-API.

“P*: A Model of Pilot-Abstractions”, 8th IEEE International Conference on e-Science 2012, 2012

BigJob: Architecture

Supported Infrastructures

HTC (OSG/EGI) Amazon

In
fra

st
ru

ct
ur

e
Us

er
-S

pa
ce

Distributed Application

XSEDE

Node n

SSH

Node n

SSH

Node

Pilot Agent

FutureGrid

Pilot API/BigJob

SAGA

Pilot Compute Pilot Data

EC2 GCE SSH HTTP(S)

SRM
(iRODS)

Amazon
S3

Local
(SSH/GO)

Globus Online

Local
(SSH)

Blob
(Walrus)

Node n

SSH

Node n

SSH

EUCA VM

Pilot Agent

Node n

SSH

Node n

SSH

Node

Pilot Agent

Node n

SSH

Node n

SSH

EC2 VM

Pilot Agent

Local
(SSH)GFFS Local

(iRODS)

iRODS

SAGA Interoperability Layer for BigJob

BigJob: (Partial) Usage on XSEDE Machines

> 10M SUs/year (and increasing) on XSEDE machines

Scaling Along Many Dimensions

Async Replica-Exchange Library

•  Built to perform file-based asynchronous parallel replica exchange.
•  Example of a Platform independent library.

https://github.com/saga-project/asyncre-bigjob

•  Ideal performance considered to be zero coupling in this case.
•  Diminished results due to coordination overheads.
•  Scientists are free to choose the best tradeoff between simulation speed

and number of concurrent replicas.
•  BigJob-based Repex: Amongst the earliest QM/MM.

Async Replica-Exchange Library

Scalabale online Genomics

Computational Workflow

•  20ns simulation broken into chained sequence of 20 1ns
simulations

–  Output of each required as input to next

•  Hierarchical directory structure
| -> Common Config files (one for each sequence)
| -> 5 nucleosome-free regions of chromosome
| - - Common Param files for each system
| - -> 21 threading position
| - - - 20 chained sequences

•  Data flow
–  COOR, VEL, XSC  COOR’, VEL’, XSC’ + DCD, DVD, XST, OUT, ERR
 \ ___________/

•  Determining successful completion
–  “WallClock” at end of OUT, and no “FATAL”
–  Size of DCD

HT-HPC on Kraken

126 ensembles, each of 192 cores = 24192 cores

Scale-Out

X-axis: number of tasks (size)

“Coarse-Grained” BigJob Performance
•  Number of zero-payload tasks that BJ can dispatch per second:

–  Distributed: O(1)
–  Locally: > O(10)

•  Number of Pilots (Pilot-Agents) that can be marshaled
–  Locally/Distributed: O(100)

•  Typical number of tasks per Pilot-Agent:
–  Locally/distributed: O(1000)

•  Number of tasks concurrently managed = Number of Pilot-Agents x
tasks per each agent :
–  O(100) x O(1000)

•  (Obviously) The above depends upon data per task:
–  BigJob has been used over O(1)--O(109) bytes/task, for tasks

of duration O(1) second to O(105) seconds

Scalable, Extensible HT Binding Energy Calculation

In consultation with Peter Coveney and
Charlie Laughton.

•  Platform independent library.
•  Suggestions for other libraries are welcome!

Pilot-Data: Design Objectives

•  Abstraction for managing the computing requirements of
distributed dynamic data

–  Dynamic Data: spatio-temporal variations, source/destination
•  Enable reasoning about distributed and dynamic resources

compute, storage and network

•  Remove lower-level details:

–  Access to heterogeneous backend infrastructures
–  file I/O and networking
–  synchronization between compute and data

•  Enable data-aware decision making:
–  Exploit data locality whenever possibly.
–  Enable “applications” to control typical trade-offs:

•  data movement, anticipated compute-time
•  move once-compute multiple times,

What is Pilot-Data?

•  Manage (dynamic) storage resources in conjunction with
computational task placement

•  Unified access layer to different heterogeneous storage backend
and access layers: SRM, iRODS, Globus Online, S3

•  Higher-level abstraction to manage distributed and dynamic data/
compute in (geographically) distributed systems:
–  Data Unit: Grouping of files that are accessed together
–  Manage complex data flows consisting of multiple steps of compute across

(geographically) distributed resources

•  Co-location and co-scheduling of compute and data

Pilot-Data on OSG

•  OSG proposes three usage modes for data-intensive applications:
–  Condor-based file staging
–  SRM
–  iRODS

•  Complex Decision Matrix:

Condor
Filestaging

SRM iRODS

Data Volume Low High High

Complexity Low High Medium

Data Distribution Local Local Local,
Geographic

Data Replication No No Yes

Flexibility (Multi-stage
applications, data
reuse, multiple
infrastructure)

Low Low Low

Pilot-Data enables the
user/application to
tradeoff the different
characteristics of data
cyberinfrastructures

Pilot-Data

Backend-specific

Backend-specific

Local,
Geographic

PD and System-
specific replication

High

Pilot-Data: Controlled, Coordinated Replication

AGLT2
FNAL

MIT
Purdue−Steele

SPRACE
UTA

1000 2000
Transfer Time TX (in sec)

0

1000

2000

3000

512 1024 2048 4096 8192

Size (in MB)

R
ep

lic
at

io
n

Ti
m

e
T R

 (i
n

se
c)

EGI OSG/iRODS (osgGridftpGroup) OSG/iRODS (sequential)

Towards NGMW: A RADICAL Perspective

NGMW Functional Aims and Requirements
•  Functional Aims

–  “Beyond glue” to support spatio-temporal execution reasoning
•  What to distribute? Where/how to distribute? When to distribute?
•  Estimate time to completion?

–  Exposes well-defined capabilities rather than technology
•  Capability: Well-defined and aggregated functionality, without

regard to how, or the specific approach used, e.g., num. of
tasks, throughput, probabilistic bounds on time-to-completion

•  Functional Requirement
–  Support adaptive applications in conjunction with dynamic resources
–  Federate heterogeneous infrastructure to provide well-defined

capabilities

NGMW Schematic

NGMW Schematic

NGMW Schematic

Design Objective: Multi-level Integrated
Reasoning
•  Transformation of application

workload via system workload to
infrastructure capability

•  Application requests R(100, T,
10), say 100 tasks, of type T,
complete within 10 units of time

•  Federation Layer/Manager
responds with collective
capability of C(50, T, 10) or C
(100, T, 20)

•  Adaptive Application
–  Adaptivity can be either at A, W level
–  Application may self-throttle number

of tasks, or type of task generated
–  Or workload description can be

changed to meet the capability

AIMES: Demonstration of Flexible Federation
(SC’13)

•  Application say Bag-of-Tasks
–  Say BoT(100, H, 10)

•  Generate similar workload
description from different
application representations

•  Bundles currently support
federation
–  Info on resource availability
–  Eventually resource properties

•  Ultimately bundles (and I*) should
be consistent with C*

•  Formalize the advantages of
dynamic and flexible federation
–  Performance improvements

Conclusion

•  Extreme-Scale Distributed Computing (XSD)

–  Status Quo: Understanding the landscape of XDC-2013

–  Beyond HPC/HTC: Requirements for “many simulations” scenarios

•  Abstractions, Models and Implementations for many-simulations

–  Five Myths associated with Pilot-Jobs

•  Address using Abstractions, Models and Implementations

•  P* Model of Pilot-Abstractions

•  Future Directions: Next Generation Middleware (NGMW)

–  Many aspects and considerations, but focus on resource
management for many simulations

References

•  RADICAL:
–  http://radical.rutgers.edu/

•  Publications:
–  http://radical.rutgers/edu/publications
–  (i) P*, (ii) Pilot-Data, and (iii) Pilot-Jobs Review Paper

•  SAGA-Python:
–  http://saga-project.github.io/saga-python/

•  BigJob: An implementation of P*
–  http://saga-project.github.io/BigJob/

•  Tutorials:
–  https://github.com/saga-project/tutorials/wiki/XSEDE13

Acknowledgements

Graduate Students:
•  Ashley Zebrowski
•  Melissa Romanus
•  Mark Santcroos
•  Antons Trekalis
Undergraduate Students:
•  Vishal Shah
Research Scientists:
•  Andre Luckow
•  Andre Merzky
•  Matteo Turilli
•  Ole Weidner

Acknowledgements/Funding Sources

Active:
–  NSF CAREER Award 2012 (OCI-1253644)
–  CDI NSF-CDI (NSF CHE 1125332)
–  ExTENCI (NSF OCI)
–  SCIHM NSF-OCI (OCI-1235085)
–  AIMES DoE-ASCR (DE-FG02-12ER26115)
–  ExTASY CHE-1265788

Compute Time:
–  NSF TeraGrid TRAC award TG-MCB090174
–  NSF FutureGrid Award (No. 42)

Recent Past:
–  NSF/LEQSF (2007-10)-CyberRII-01
–  NSF HPCOPS NSF- OCI 0710874 award
–  UK EPSRC (GR/D0766171/1) and e-Science Institute, UK
–  NSF OCI 1059635
–  NIH Grant Number P20RR016456

