Ideas on an Interactive art
Adam Lyon
August 2013

Background

In my experience, most experiments use their Framework software for production tasks, such as reconstruction, applying corrections, streaming, skimming, and finally producing some “simplified” data format. This simplified data format is typically a Root Tree that contains all of the data variables for an event, with calibration and corrections applied.

Sometimes users of these Root Trees develop a new Root-based framework around them. In the case of D0, one such Root-based framework became an official eco-system called café. Physicists developed algorithms that only worked in café as well as modules to perform many analysis tasks. There were even users who generated further Root Trees or text files based on café for physics candidate samples and then used them for final analysis. These final sample formats also sprang up yet new frameworks and ecosystems. The consequences at D0 were many frameworks, much code duplication, and large amounts of code not subject source code control.

The framework that does reconstruction is generally complicated with formal coding and usage rules, a rigorous configuration system, provenance and metadata generation, and a strict release procedure. Such features are generally required to ensure quality of the production processes and lead to a steep learning curve for new users. Many users are unwilling to learn such a system and, if a Root format of the data is available (or if it isn’t they will learn just enough of the framework to write such a Root format) will happily write their own framework based on the Root data lacking in many of the important features mentioned above.

What makes writing these new Frameworks possible is Root. Root generally gives a user easy and fast access to desired data. Plotting, fitting, and other analysis tools are readably available. But Root lacks the features of a robust framework mentioned above. Therefore, we are left with frameworks that have no provenance or metadata generation, a loose configuration system with strange syntax introduced when deficiencies are found, loose rules for coding where features of C++ are not used to prevent mistakes, and no formal release system. Somehow, this situation is workable in a large collaboration where many physicists are happy to devote time to such infrastructure software (I think that some enjoy it more than the physics), even if it is used by a small group. Smaller experiments, however, do not have such talent to spare.

One important feature that Root provides is interactive analysis of the data. A physicist can quickly run over a small data sample and make plots, fits, and run algorithms on the fly. Such interactive features are generally missing from frameworks, but they are an important part of data analysis. The ability to “play” with the data is crucial, and the fact that most frameworks do not allow such activities within make writing new frameworks even more attractive. Not that newly written frameworks are interactive either, but if they are based on Root, then code used in Root interactively can be easily ported to such “frameworks”.

The art framework is interesting in many respects. It has a very flexible linking system, meaning that linking to Root is easy and so most Root data analysis functions and classes are available. The standard data format is a special set of Root trees, though Root is really used as a persistency mechanism and additional persistence mechanisms are envisioned for the future. Therefore, the data are not really in a Root format (a user would not do Root tree operations within art). But it does mean that art can take advantage of Root i/o features internally, especially the ability to loop over events without reading undesired data.

If art had interactive capabilities, then one could play with the data within art, develop algorithms that work with art, and keep one framework that has the important features for quality.

Different types of interactivity

I can imagine two distinct flavors of interactive behavior. One is “within an event” behavior where data within an event can be interactively retrieved and manipulated. Event displays and tracking diagnostics use this behavior.

The other interactive behavior is “aggregating over events with post processing”, such as building histograms and then performing fits or other data reduction. The interesting part is development of algorithms that process the event data yielding new data types that make for more meaningful final quantities. For example, a dimuon sample may contain the four vectors of the reconstructed muons in every event. An analysis session could involve cutting the muons for quality and energy, and then for each event forming an invariant mass. A histogram would be accumulated by looping over the invariant mass quantities and then, post-looping, a fit performed to determine if a resonance exists. Such work is possible within art now, but not interactively. The remainder of this paper will focus on this second type of interactive behavior.
Interactive features that art needs

With Root I can load a file, loop over it many times accumulating information via algorithms and histogramming, visualize that information, and repeat these steps again all within a Root session. art has no notion of an analysis session. Instead it reads in a configuration file that tells it what to do for one pass over the data and does it, producing whatever output was programmed. Once the pass is complete and the output is written, art exits. Here is what art would need to be truly interactive:

· The ability to pass over the data multiple times in a session.
· Each pass would involve running a different set of modules.
· [bookmark: _GoBack]Each pass could involve reading in different data objects (e.g. for speed don’t read in data objects not requested by modules)
· The ability to persist data products produced from one pass to the next. That is if one pass produces an invariant mass data product, the next pass could use that product in an algorithm without having to create it again. But data products could be discarded and recreated if their producers were re-run.
· The ability to run post-pass analyses (e.g. fitting) and visualization
· The ability to write and modify modules with very fast and easy compilation. art should reload such modules if necessary within the session for subsequent passes.
· The ability to drive this art system with some higher level system like Root itself, R, or Python. The post-pass analysis could be done in this higher level system and/or would visualize what was produced.

