
Build Service
Requirements Document

Author: Steve Jones
Date: 4/18/2014

Table of Contents
I.	Executive Summary	3
II.	Requirements Summary	3
III.	Assumptions, Risks, Dependencies	7
IV.	Out of Scope	7
V.	Performance and Key Success Metrics	7
VI.	Use Cases	8
VII.	Architecture	9
VIII.	Detailed Functional and System Requirements	9
IX.	Detailed Business Process Flow Diagrams	10
X.	Reports	11
XI.	Stakeholders	11
XII.	Project Team	12
XIII.	Revision History	12

	

	Build Service

	Updated:
	CS Requirements Document
	Page 11 of 12

Friday, April 18, 2014
I. [bookmark: _Toc383420873]Executive Summary
The purpose of this project is to design and implement a system for regular (nightly or other experiment-level) software builds by Frontier experiments and related software providers at Fermilab.
Presently, many software packages are built (on a nightly basis) on interactive nodes. While this is easy to set up, the builds take a long time—up to many hours. Limitations include I/O bandwidth, e.g., from use of network-attached storage, such as NFS or AFS; and a limited number of processors/cores, which limits parallelism in the build process.
Individual users building code for their own analyses face similar problems, long compile and link times, probably for the same reasons.
A related problem is that the build process is not well integrated with code distribution, including CVMFS.
The build system architecture from this project should enable greatly reduced build times: tens of minutes or less, rather than hours. The system should be reasonably easy for experiment developers and software librarians to use; affordable within expected budget constraints; and maintainable without undue expense or administration effort. Support for remote build machines is considered in scope for this project.
II. [bookmark: _Toc383420874]Requirements Summary
Provide a high level list of the requirements for this project.
	No.
	Requirement
	Category
	Source
	Priority

	1.
	Hardware:
	Hardware
	Glenn Cooper
	High

	1.a
	Memory requirements are modest, 2 GB/core are sufficient
	Hardware
	Glenn Cooper
	High

	1.b
	Begin with a few 16-core systems
	Hardware
	Glenn Cooper
	High

	1.c
	Need at least one running SLF5 and one running SLF6
	Hardware
	Glenn Cooper
	High

	1.d
	Can add other platforms (Mac; Ubuntu, SUSE; ARM; …) later
	Hardware
	Glenn Cooper
	High

	1.e
	Few TB local disk
	Hardware
	Glenn Cooper
	High

	2.
	A survey of existing solutions must be performed and a report that presents the arguments for a choice must be drafted. Free Software or Open Source solutions must be considered first and proprietary systems only considered if no FOSS solutions are suitable. The Framework should support:
	Operational
	Glenn Cooper/Brett Viren LBNE/LArSoft
	High

	2.a
	Continuous integration is desired.
	Operational
	Glenn Cooper
	High

	2.b
	The system must retain an association between a job run and a particular state (commit) of the repository holding the main software being tested.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.c
	Incremental and green-field building of the entire experiment software stack from source
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.d
	Analysis that compare current output to prior output including log files with transient changes filtered and histograms.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.e
	
	
	
	

	2.f
	
	
	
	

	2.g
	 Build Service must accept remote and/or manual trigger.
	Operational
	 3/28/14 meeting
	High

	2.h
	A job that is run must be recorded based on unique metadata including: target host, associated version (git commit hash, svn revision number), job domain (eg, package or test name).
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.i
	Success and failure reports should trigger email notifications to an opt-in list.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.j
	Jobs must be able to run on all supported platforms.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.j.1
	 Service must not constrain platforms; platforms must be able to run the job and contribute results but possibly with additional effort provided.
	Operational
	Brett Viren from LBNE/LArSoft; 3/28/14 meeting
	High

	2.j.2
	Job processes must be able to run on hosts on non-Fermilab networks which may be behind firewalls with default-deny for incoming connections.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.j.3
	It must be possible to invalidate any given job result in order to trigger it to rerun.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	2.j.4
	System should allow user to view errors in jobs run and provide links to access the file system of jobs
	Operational
	3/21/Meeting
	Low

	3.
	Reporting:
	Operational
	Glenn Cooper
	High

	3.a
	Provide current status of each job
	Operational
	Glenn Cooper
	High

	3.b
	Show the success/failure of completed jobs
	Operational
	Glenn Cooper
	High

	3.c
	Show resources used
	Operational
	Glenn Cooper
	High

	3.d
	Report on job results be they success and failure must be stored and made available for browsing via the web.
	Operational
	Brett Viren from LBNE/LArSoft
	High

	3.e
	Provide report that should indicate what triggered the job. (possibly interfacing with Redmine)
	Operational
	Brett Viren from LBNE/LArSoft
	High

	3.f
	Historical success/failure rates of builds
	Operational
	3/21/Meeting
	High

	3.g
	Days since last successful/unsuccessful build for each slave
	Operational
	3/21/Meeting
	High

	4.
	Be robust enough to be able to support the number of potential participants (experiments, projects)
	Operational
	Glenn Cooper
	High

	4.a
	IF experiments: 10 (g-2, LBNE, MicroBooNE, MINERvA, MINOS, Mu2E, NOvA, SciBooNE, SeaQuest)

	Operational
	Glenn Cooper
	High

	4.b
	CF experiments: 3 (DarkSide, DES, LSST)

	Operational
	Glenn Cooper
	High

	4.c
	Software projects: 2 (LArSoft, art)

	Operational
	Glenn Cooper
	High

	4.d
	Expandable for growth for 10 additional future participants
	Operational
	Steve Jones
	Medium

	5.
	Builds must support working with offsite hardware (eg BNL).
	Operational
	Brett Viren from LBNE/LArSoft
	High

	6.
	Terminology:
1. Build Platform(s): includes OS version; compiler version; optionally other details
2. Build Service: monitor, coordinate; support build for remote sites; works with meta data for each slave; basically integration service
3. Build Framework is the continuous integration or build automation software
4. Build Master = Service Machine
5. Build Slave = Platform Machine
	Operational
	3/14 and 3/21 Meeting
	High

	7.
	Security and Access Requirements
	Operational
	3/14 Meeting
	High

	7.a
	System must provide user levels to create new jobs, to run jobs and to access reports on jobs
	Operational
	3/21/Meeting
	High

	8.
	Documentation Requirements
	Operational
	3/14 Meeting
	High

	8.1
	Prior to initial deployment, documentation for expert users in the experiments must be provided (eg. Wiki Users Guide)
	Operational
	3/21/Meeting
	High

	9.
	Redmine Integration
	Operational
	3/14 Meeting
	Low

	9.1
	Build failures trigger bug report
	Operational
	3/21/Meeting
	Low

	9.2
	Build reports stored on both Master server and Redmine
	Operational
	3/21/Meeting
	Low

	9.3
	Redmine provides status of Master
	Operational
	3/21/Meeting
	Low

	9.4
	Build project history stored on Redmine
	Operational
	3/21/Meeting
	Low

	10.
	Build process needs to be integrated with Service Strategy/Service Design
	Operational
	Steve Jones/ Mike Kaiser
	High

III. [bookmark: _Toc383420875]Assumptions, Risks, Dependencies
1. There are several options for frameworks that need to be evaluated. Options include, in very rough order of interest expressed:
· BuildBot (Python based; used by MINERvA)
· Jenkins (Java based; used by CMS, LHCb)
· Trac/Bitten/Nose (Python based; used by Daya Bay)
· NICOS (shell scripts, Python; used by ATLAS, developed in house)
· Condor or other batch system
· Cron entries
· Many others—this is by no means a comprehensive list.
2. Resources to conduct the project are available within currently assigned staff.
3. Project cost is level of effort only except for Project Management costs.
4. Hardware can be reallocated from existing sources or will be identified and procured within existing budgets.
IV. [bookmark: _Toc383420876]Out of Scope
1. The initial scope does not include a facility for individual experiment members to build/test their own analysis code. That could be considered in a later project or a new phase of this project.
2. The system does not perform software delivery functions; that will be done by other web services or applications like CVMFS
V. [bookmark: _Toc383420877]Performance and Key Success Metrics
· Function
· Build service architecture defined
· Overall design of the build service completed:
· Hardware elements identified
· Mechanisms to schedule builds: software package, batch system, etc. defined
· Hardware procurement and installation (if new hardware is required) complete
· Build system configuration and testing completed
· Framework for supervision and administration of the build service deployed
· Transaction Throughput sufficient for users
· Batch Throughput sufficient for users
· Users
· IF experiments: 10 (, g-2, LBNE, MicroBooNE, MINERvA, MINOS, Mu2E, NOvA, SciBooNE, SeaQuest), CF experiments: 3 (DarkSide, DES, LSST) and Software projects: 2 (LArSoft, art) and potential future users are able to simultaneous bluild each night
VI. [bookmark: _Toc256968310][bookmark: _Toc383420878][bookmark: _Toc256968308]Use Cases
1. Nightly (or other periodic) code build
a. Actors: an experiment, a project, or a major component of one
b. Schedule is set on master
c. May also include unit tests, validation modules; or these can be separate
d. Collects changes made over specified period
2. Continuous integration
a. Jobs launched by [particular classes of] code check-ins; time intervals; or other triggers
b. Typically runs unit tests along with each build
3. Build for additional platforms
a. “Platform” may include OS version; compiler version; hardware type; etc.
b. Master can send jobs to any platform; build requires only a slave with the desired characteristics
4. Manual (aperiodic) code build
a. Actors: an experiment, a project, or a major component of one
b. Input manually on master
c. May also include unit tests, validation modules; or these can be separate

VII. [bookmark: _Toc383420879]Architecture
The figure below shows a high-level view of the build system to be implemented:
Products
Slave

Master
Slave
Slave
Reports/status:
GUI, email, …

Repository

Products

……

……
Slave

Build automation software running on the master schedules build, test, and validation jobs. To start a scheduled job, the master selects a slave and sends scripts or other information to the slave. On the slave, the job pulls source code and other data, if any, from one or more repositories; for an incremental build or validation, the slave may also pull from the output “products” area to get the previous result. The master keeps track of the status of each job on each slave, visible typically via a web interface, email notifications, and other mechanisms. When a job completes, it sends status and other metadata to the master, and copies its products—built binaries, test results, or other information—to specified destinations.
VIII. [bookmark: _Toc383420880]Detailed Technical and System Requirements
1. Build automation software (or continuous integration software)
a. Runs on master
b. Must be maintainable and supportable with minimum level of effort
c. Process for users to schedule/submit jobs must be simple
d. Client software must be supported on all required platforms (see user requirements)
e. Needs a way to trigger a rebuild, i.e., repeat a build
f. Must track and make viewable:
i. Job status
ii. Success/failure of each job
iii. Resources used by each job
iv. Historical records of ii and iii
g. Must support submissions by multiple users
h. Must be scalable to allow for growth in number of experiments/projects and in number of builds by each
i. Must be able to send jobs to slaves both at Fermilab and at other locations
j. Open source preferred
2. Hardware
a. Master
i. Needs modest CPU, RAM, local storage
ii. Suitable for a VM
iii. Will run Scientific Linux
b. Slaves
i. For frequent builds, need multiple cores, at least modest local storage
ii. At least one slave of each required hardware type; but some can be remote
iii. For infrequent builds, could use smaller (physical or virtual) systems
c. Additional platforms for logins and interactive builds?
IX. [bookmark: _Toc383420881]Detailed Business Process Flow Diagrams

· Most common current method: Log in, build/test/validate on same node. Source code read from network-attached storage; results written to network-attached storage.
Interactive node
BlueArc
(NAS)

· Central build system design: Jobs sent from master to slaves with local storage; see Architecture section above.
[bookmark: _GoBack]Master
Slave
Slave
Slave
Products
Reports

Repos
……
Products
Slave
……

X. [bookmark: _Toc383420882]Reports
· Current status of each job
· Success/failure of completed jobs
· Historical success/failure of jobs
· Resources used
· Days since last successful/unsuccessful build
· What triggered job
XI. [bookmark: _Toc383420883]Stakeholders
	Group
	Name
	Role

	SCD
	Ruth Pordes, Stu Feuss
	Sponsors

	FEF
	Stu Feuss
	Implementation Owner

	NOvA
	Andrew John Norman
	Users

	Minerva
	Erica Snider
	Users

	LBNE
	Eileen F. Berman, Qizhong Li, Brett Viren
	Users

	Microboone
	Stephen A. Wolbers
	Users

	Muon g-2
	Adam L. Lyon
	Users

	Darkside 50
	Kenneth Richard Herner
	Users

	Minos
	Arthur E. Kreymer
	Users

	SciBoone
	
	Users

	SeaQuest
	
	Users

	DES
	
	Users

	LSST
	
	Users

	LARsoft
	Ruth Pordes, Erica Snider
	Users

	art
	Jim Kowalkowski, Chris Green
	Users

	Mu2e
	Rob Kutschke
	Users

XII. [bookmark: _Toc383420884]Project Team
	Name
	Role

	Steve Jones
	Project Manager

	Glenn Cooper
	Architect/ Project Technical Lead

	Ed Simmonds
	Assistant Technical Lead

	Liz Sexton-Kennedy
	Assistant Technical Lead

	Marc Mengel
	Developer

	Patrick Gartung
	Developer

	Seth Graham
	Developer

XIII. [bookmark: _Toc383420885]Revision History
	Version
	Date
	Author
	Notes

	0.1
	3/12/14
	Steve Jones
	Initial draft

	0.2
	3/12/14
	Steve Jones
	Revision based on inputs from LBNE

	0.3
	3/17/14
	Steve Jones
	Revision after meeting with SCD managers

	0.4
	3/19/14
	Steve Jones
	Revision based on Ruth and Glenn notes

	0.5
	3/21/14
	Steve Jones
	Revision based on today’s meeting and Glenn’s technical requirements

	0.6
	3/28/14
	Steve Jones
	Revision based on today’s meeting

	0.7
	4/11/14
	Steve Jones
	Accepted changes and revision based on today’s meeting

	0.8
	4/17/14
	Glenn Cooper
	Added diagrams and other material

	0.9
	4/18/14
	Steve Jones
	Finalize per today’s meeting and send to Liaisons for approval

