MDTM Collaboration Meeting

Dec 9-10 2013, BNL, NY

Agenda (Monday, Dec 9, 2013)

MDTM Design (8:15 — 9:45 am)

— Overall Architecture (FNAL - 30 minutes)

— MDTM APP Design (BNL - 30 minutes)

— MDTM Middleware Design (FNAL - 30 minutes)

MDTM Development Environment (10:00-11:59 am)
— System Hardware (BNL/FNAL — 30 minutes)

— System Software (BNL/FNAL — 30 minutes)

— Development Tools (BNL/FNAL — 30 minutes)

MDTM APP Implementation (1:30 — 3:00 pm)

MDTM Middleware Implementation (3:30 — 5:00 pm)

Agenda (Tuesday, Dec 10, 2013)

* Development Roadmap (8:00 —9:30 am)
— Overall project deliverable(s)

— Prototypes along the development path, with
proposed timelines

— Performance measurement tools needed

* Project Collaboration Tools, Logistics, and
Procedures (9:30 — 10:30 am)

e Glitz Component (10:30—-11:59 am)

1. MDTM Design
(8:15 am —9: 45 am)

1.1 MDTM Architecture

MDTM Architecture

Access services

Access
services

...

Data Transfer Node (DTN)

<> S

Mem

To WAN:Networks QPI @
(Front end)

<= _NIC_[<—=>
- PCIE

To Local EStorage
(Back.end)

<= _NIC_|<—=>

IOo-—

Local Disk

System Bus/Switching Fabric

To WAI\'j Networks
(Front end)

|
0 *** To Local Storage
H (Back end)
<—> NIC
PCIE ;
-

To WAI\'j Networks
(Front end)

I
0 *** To Local Storage
H (Back end)
<—> NIC
PCIE "
-

MDTM Data Transfer Applications

* Three types of threads
— Disk/storage 1/0O threads

* Reader thread:
— A reader thread reads data from disks or storage systems

e Writer thread
— A write thread writes data to disks or storage systems

— Network I/O threads

 Sender thread
— A sender thread sends data to networks via NIC

* Receiver thread
— Areceiver thread receives data from network via NIC
— Management threads
* Pre-processing thread
* Post-processing thread

Disk/Storage 1/0 threads

* A DTN may consist of multiple disks/storages.

* For each disk/storage, one or multiple disk/storage 1/0O
threads will be launched.

 For MDTM, Disk/Storage I/O threads must be
affinitized to the Disks/Storages that they will operate

with.

NUMA Node NUMA Node
.r'"m"""""""‘. I_—“Q“““““““:
| |
i i_ J Reader i
| | |
N S B
| |

Disk/Storage Disk/Storage

Network 1/O threads

A DTN may consists of multiple NICs

e Better performance can be achieved when network

/O threads are affinitized to the NICs they will
operate with.

NUMA Node NUMA Node

Network I/O threads

Two modes of data transfer
e Striping * Pipelining

: A Large File D D 'y D Multiple Files
VY ¥

Multiple Threads Network 1/O thread A single thread

Multiple flows

Network 1/0 thread

A single Flow

Better performance can be achieved when the
network 1/O threads belonging to the same data
transfers are assigned to the same NUMA nodes

MDTM Data Transfer Mode

t 8)
S £
ANn o

S w
W Z

1 =

! <

-
()

)

'O
pZd
<

P =

HE—)

P
=
=

m e 00 e | _m
31 |_ "

o ! o

HPZ B ¢ r_“

! |1 O “..

'<C | T |

I © c
= 0 o !
S, Buffers o

12 I

e

i H E B m

| .

' = e e e e, ., . ., e, e, —,m—E———————— “ o

Lo ! i 2

I
18 |_] 2

{Z 15 —> g Z

1 d —

.8 g 3
e 9 Buffers é (72

.U“ _m

EHF S g

12

Three key issues: Maximizing Parallelism, NUMA-awareness and 1/O locality.

Various Modes of Data Transfer
Applications

* Depending on how the storage access and
network access are designed and
implemented, there are four possible modes:

Traditional approach of storage/network access

Mode 1 + Direct 1/O
Mode 1 + Direct I/O + RDMA (iWARP)

Mode 1 + User-space bypass (sendfile/splice)

s

Mode 1:
Traditional Approach

Data buffers, locks
Reader threads (in application) Sender threads

User space

14

Mode 2:
Disk 1/0O Kernel Bypass

Data buffers, locks
Reader threads (in application) Sender threads

Disk reader User space

15

Mode 3:
Disk and Network 1/0 Kernel Bypass

Data buffers, locks
Reader threads (in application) Sender threads

Disk reader RDMA User space

16

Mode 4:
User-Space Bypass

Reader/sender
threads

sendfﬂe/;pﬁceiniﬁate
ipe opelations

User space

17

1.2 MDTM Application Design

Multicore-Aware Data Transfer over MDT

- -~
o -~
- -~

Data Transfer Applications/Servers
Control channel
Data Transfer Service interface ~
7'y [3
Storage I/0 interface: R Request/data preprocessing
a) Local disks, b) SAN, ," 1
c) parallel FS(Lustre) ," i
Y~ Thread/flow management R i
3 T 1
: Lo Destination
1 1 1 1
Data access and transmission b Host
o MDTM interface Mm
-
. Network Stack
\‘ LALLM Data Channel
E ¢

Block
Storage
Devices

19

Modules in Data Transfer Applications

Source Host

Data Transfer Service interface (step 1)

*

\

Request/data preprocessing (steps 2, 3)

A\

Thread/flow management (steps 4-6)
v

Data access and transmission (step 7)

Abstract 1/0 interface to
heterogeneous FS

a)Local disks, b) SAN, and c)
parallel file system (Lustre).
Access to metadata.

1)

2)

3)

4)

5)

6)

7)

Receive data transfer request from user
interface for processing

Examine file systems and metadata,
including file size and location info

Generate sub-requests (for chunks of large
files or groups of small files) accordingly

Allocate one or multiple data transfer
threads, and buffers (local to data transfer
threads)

Allocate one or multiple reader or writer
threads for each disk/storage ID

Pass the thread information (including
associated NIC/storage information) to
MDTM, for binding and scheduling

Execute the parallel data transmission and
access

Request/data Preprocessing

Two types of applications: Large file transfer, and small file transfer

Preprocessing module examines the file size and location, disk layout,
and then decides how to partition the request into multiple parallel
data streams and threads

Large files: use striping model

— Allocate multiple readers/senders

— Local binding for readers/senders

— Buffer sharing between a pair of local reader/sender

A large number of small files: use pipelining model, and grouping

— Allocate multiple readers/senders for multiple groups; for each group,
there is a pair of reader/sender

— Local binding for readers/senders
— Buffer sharing between a pair of local reader/sender in the same group

Preprocessing with Different Storage
Systems

Preprocessing of data and requests can be an intriguing
and challenging problem, since there are various
types of storage systems, and they require different
preprocessing strategies. It is well beyond a simple
research/development problem, and in our context
we should at least consider the following cases:

* Conventional local disk/file systems
e Storage area networks
* Parallel file systems with metadata available

Preprocessing Routine

Data transfer applications must group files based on their
storage locations in order to maximize the aggregated storage I/
O throughputs

* Input: A list of files (or directory/subdirectory)

e Qutput: Groups of files (with locality) with allocated threads for the
groups

* General procedure

1) For each file fin the list, findLocation(f) returns its associated
interface, aka location (note: findLocation() depends on the
underlying storage systems, see the following slides)

2) For each group, create one or multiple readers, and at one or
multiple senders (thus flows), with associated interface

3) Forlarge groups, create multiple readers and flows, and the number
is proportional to group size

4) Output the (thread#, interface, ...) to the lower layer (Thread/flow
management) for scheduling and binding

1.3 MDTM Middleware Design

Middleware

MDTM Middleware Modules

; N MDTM Daemon

App. MDTM — Acquiring and publishing system information
Console — Communicating with MDTM consoles and
App.
— Scheduling and binding application threads
MDTM API
— Interfacing the MDTM consoles and Apps.

<Shared MemOI’L> — Communicating with MDTM Daemon
= ¥ — Requesting and reading system information

MDTM Console

\d

information and status

— Facilitating customers to access system
OS (Linux) 1

— Monitoring and development utility

MDMT IPC: Publish-Read

_ _ The data can be static like System
App. App. Layout, which is published once

and the APIs can retrieve it by
calling the synchronous read
function.

 The data can be dynamic like Core
Workload, which is published
periodically. Our implementation
provide two ways to handling this
case: polling and async reading:

— Polling: use synchronous read
function many times in case of data
changes.

— Asynchronous Reading: register the
Publish once Publish dynamically event of data change; upon event

occur, calling callback function to
invoke a read.

26

MDTM IPC: Message Queuing

Example Scenario:
@App. #0 put Query to the

common queue

@Daemon read Query message

from the common queue
@Daemon process Query
message

@Daemon put Response

message to Queue for App. #0

@App. #0 reads Response

O)
App. #0 App. #1
u u

Common queue

Each MDTM API instance
share the common queue
to send messages to MDTM
Daemon; it own individual
gueue to receive messages
from MDTM Daemon

Lock-free algorithm to be
implemented for the
shared queue

“MDTM Messaging
Protocol (MMP)” defines
internal messages used
between APIs and Daemon

27

Scheduling Alg. #1:
Shortest Distance First

Keys Hash Sorted List Core
Function of Cores Descriptors
2 4 > core status
1 (cpu,...)

o | Core status
¥y~ | (cpu.)

3
o | Core status

(cpu....)

Search for core list
Find the core with shortest distance
Check the workload of core is under watermark, if

yes, pick the current core
@ If no, move to the next and repeat previous step

Use hash table to save a list of
reachable cores for each 10

The core list is sorted by the physical
distance between the 10 and Cores

The element of the core list refers to
core descriptor which contain the
current working load information

The scheduler pick the first core in
the list; if its working load is under
the watermark, job is done;
otherwise move to the next core; if
every core is busy, choose either the
first core or least busy core

Pros and Cons

— Pros: Simple data structure, fast

— Cons: Distance and workload only; not
considering intermediate devices.

Scheduling Alg. #2:

Lowest Cost First

Q CPUs/
Cores
\ PCI Hubs/
Bridges...
NICs, Disks

Devices
Connection between devices

Lowest cost path for the pair
(CPU, NIC/Disk)

Each connection associated with a
cost value which reflects
scheduling factors like distance,
traffic throughput and etc.

Each node contains a cost table to
its neighbors

All CPU cores are considered to be
one single node but the
connections from it represent
different cores

Applying Dijkstra’s Algorithm to
find the lowest cost path from
CPU node to the NIC/Disk node in
guestion

pick up the core associated to the
lowest cost path

Pros and Cons
more extensive system picture;

scalable; dynamic; more
complicated data structure

2. MDTM Development Environment
(10:00 am — 12:00 am)

2.1 Development System

System Hardware

e NUMA Architecture
— NUMA nodes
— PCl-bus topology

* File/Storage subsystem
— Storage controller
— Raid Level

* Networking subsystem
— NIC vendor
— NIC Feature (tcp offloading?)

Hardware

X9QR7-TF/-TF-JBOD Block Diagram

3
o
i

PCIE3

3
2
S8
=

PCIE2 PCET
B x16 x16 x16 X8 x18 x16
g From CPU1 .g From CPU1 g From CPU4 From CPU3 ?’ From CPU3 g From CPU2 fl§) From CPU2 g
= o = ° © e e
% % H sl 1g |3 3 5 :
4 g & 5 u E
g 2 g S I g 2 ?
£ £
e e
% =
| [P P pez Py [V
[P4-DIMMN' [P4-DIMMR1| [P3-DIMMJY CPU REAR (=4 [P3-DIMMLT
|
z Iz 0 z
z H H E5-4600 Series z
2 L 2 &2 P1__PO 2
8 8 8 1 8
QPI 5
1
£ 3Mp: PO PT FiBiel [PZBIATS PO P B
SRR : CPU FRONT : B [FRBINE: CPU FRONT]
s cput z z cpu2 =
3 [E5-4600 Series 3 a8 E5-4600 Series =1
: m
g [g - A larger NUMA syste
X8 to INTEL X
%540 106 x8 to LS12308-2
controller x16 to PCIET
G X610 FCIET)
X8 to LSI2308-1 16 to PCIES o Cou2PGE 8 =
ggecces e e 4 NUMA Nodes
From CPUT PCE x8 | X540 106 IE ‘% ‘&..
From CPU1 PCE x6, H 45 67] 9
)
- Bl
[oorz] PCI
[DDR2 |
Windbond

[PS2KBIMS || WPCMéSO

I 1

System Block Diagram

Mother Board: Supermicro X9QR7-TF/-TF-JBOD

Raid Card: 4 x LSI 9261-8i RAID Card
33

System Software

* OS
— Linux distribution version
— Kernel (e.g., 2.6.33 or newer)

* File System
— Ext4, XFS

— File system parameters
e Physical block size
* Logical block size

— /0O scheduler

2.2 Development Tools

Project Directory Structure

Developers at FNAL and BNL should follow the same source code
tree.

The main repo has been created @ FNAL using this directory
structure below. Local repos should clone this structure.

mdtm
—— config --> configuration files
—— doc --> documentaion
—— src --> main source
| F——app --> MDTM application module
| F——console -->MDTM console
| L—— libmdtm --> MDTM middleware module

| —— daemon

| L include
tests --> system test test code

Build System

There are a million ways the software can not run on a non-developer’s
platform: CPU arch, byte order, flag...

Key role of build system is to make source code packages portable to different
platforms

Our major goal is to run C/C++ code on Unix-like system like Linux.
Candidates: GNU make/autotools and Cmake.
Our choice is GNU make because | know it better. Cmake is worth trying if |

@\\ ACMake

\

37

GNU Autotools

[developer]

Programm.c 4
I
autoscan
acinclude.ma & configure.ac 4 Makefile.am £ 3
I
aclocal |
L 4
aclocal.m4a |
autoconf autoheader automake
v ¥ ¥
configure config.h.in Makefile.in

GNU C/C++ compiler

e GCCA4.8isthe latest
Make utility
GNU Libtool

T~

4

config.h.in Makefile.in

conflgure

v v

config.h Makefile

Larqgz]
= ’ user |

38

Package Distribution

The complete source code including documentation will be available as a
tarball.

We can also distributes binaries or RPMis.

The distribution packages can be accessed via the project website in
shared point.

M D TM About Download Docs Developer Blog Search

39

Debugging

GDB

Standard debugger in Linux society.

Valgrind

A Great tool to find problems in your programs. Must have it to deliver
reliable program.

http://valgrind.org

40

Integrated Development Environment
(IDE)

It is a matter of personal favorite. Some candidates for C/C++
developement includes Eclipse, Kdevelope, Visual Studio,
Netbean....

Eclipse is recommended because,

— Redhat chooses it as main IDE

— IBM backs it

— It runs on Windows and OSX as well

— Many useful plugins like Git, UML...
Wait a second, do | have to use IDE? Use“vi + gdb” if you like.

SCM: GIT

GIT is distributed version control
system

GIT Advantages
— Distributed development
— Efficient handling of large projects
— Speedy

We have already created the main
repo @Fermilab.
cdcvs.fnal.gov/cvs/projects/mdtm

42

Workflow Between FNAL and BNL

Commits between
Team Repos

Each team works
on its own copy
of the repository
Team One

* FNAL maintains the main GIT repository

e Team One (FNAL) and Team Two (BNL) can create their local GIT
repositories.

e Code will be fetched from the main repository, built on the target
system and tested on the nightly basis.

* Policy: testing your code before pushing to the main repository!

43

Redmine @ fnal

* Redmine is a web-based project management and bug-tracking tool.

* Itis used for internal project management: including source code control, bug
tracking, document sharing and etc.

* Fermilab maintains Redmine server and we have created an account for the
MDTM.

MDTM

Overview Activity 1Issues Newissue Gantt Calendar News Documents Wiki Files QUTLLEILYN Code reviews Settings

root @ master ills Statistics | Branch: [master 2 | | Revision:

Name Size
a _Jdoc
a _Jsrc
Makefile.am 69 Bytes
README 0 Bytes
config.h.in 557 Bytes
configure.ac 535 Bytes

Latest revisions

Date Author Comment Code reviews
0570f6f7 @ 12/09/2013 09:14 am Liang Zhang Adding files and dirctory. No reviews:Assign
7ade0119 O @® 12/09/2013 08:11 am Liang Zhang First version. No reviews:Assign
4bc3986f () () 12/09/2013 07:43 am Liang Zhang delete README No reviews:Assign
b27118d0 () 11/26/2013 05:02 pm zlion First version. No reviews:Assign

| View differences |
View all revisions | View revisions

Also available in: B} Atom

44

The shared point site has
been setup at Fermilab @
https://web.fnal.sov/project/

mdtm/

It is used to release the
project information to the

public.

It also contains shared
documents and project

progress status.

Sharepoint @fnal

Multicore-Aware Data Transfer Middleware » Home

M D TM About Download Docs Developer Blog Search

Announcements
U Title Modified
FNAL and 12/11/2013 4:43 PM

MDTM: A Multicore-Aware Data The Fise

On-site
Meeting at

Transfer Middleware Project New vore

HEW

The MDTM project is dedicated to developing the next generation of

high-performance data movement tool.

The MDTM project aims to

Add new announcement

accelerate data movement at multiore |
systems. It addresses inefficiencies ‘

MDTM Data Transfer Applications/Tools ,

in existing data movement

tools when running on multicore Access
. . services

systems by harnessing multicore

parallelism to scale data

@ Access services

i MDTM Middleware Services

U Access services

movement on end
systems. Essentially, MDTM consists

0OS Services

of two components: data transfer

Hardware

applications/tools and middleware.

The MDTM project will be carried
out at Fermi National Acceleration
Laboratory (Fermilab) and
Brookhaven National Laboratory
(BNL). It is sponsored and funded
by DOE Advaned Scientific
Computing Research (ASCR)
Program.

>> see more

MDTM Highlight

Dec. 11, 2014

The researchers from FNAL and BNL hold a two-day-long joint working meeting
during Dec. 9 to 10 at Brookhaven National Lab at New York.

They discussed designs and issues on the undergoing project, coordinated the
development procedures and tools in two labs and setup the development
milestones for the year of 2014.

Fermilab Copyright 2013 45

3. MDTM Application Implementation
(1:30 PM — 3:00 PM)

Preprocessing Module

Data Transfer Applications/Servers

Raw requests
(input from interface)

Storage I/0 interface: 7

Request/data preprocessing

a) Local disks, b) SAN, /
c) parallel FS(Lustre) 7

OO

Locality-aware groups
1

(output to task management)
1

e e

¥

MDTM interface

ibre Channeg/
SAN

Storage
Devices

Key techniques:

Metedata access

— various type of storages (magnetic
disk, SSD, tape, direct attached or
distributed)

— Knowledge on storage system
performance via test

Obtain knowledge on system
layout (cores, disks, NICs, etc)

Call MDTM_Retrieve_SysInfo

File grouping, sorting, load
balancing

Interface: file systems, storage,
MDTM for layout

Data structures: lists, sets, system
layout table, various statistics

Communication: none

47

Issues in Preprocessing Module
Implementation

Preprocessing: Two threads:
— Thread one: Queue all on-line requests into waiting queue
— Thread two: Periodically move requests into the preprocessing queue and perform batch processing.

What kind of layout info we can get from the MDTM?
— Call MDTD_Retrieve_Systeminfo

Metadata access for different file/storage systems. Example: local disks, how to
get the location info?
— Read /proc/sys/dev and /etc/fstab

Should we consider load balancing with large groups? How?
— Advanced features: large groups can fully utilize system resource, but not small ones.
— Groupl : 100 files, Group 2: 1000 files, Group n.
— Consider processing multiple groups simultaneously or break big group into smaller ones

How to represent the groups with data structure, and the result of preprocessing?

— Struct Define: groupinfo{
Reader/Writer-Thread-List
Sender/Receiver-Thread-List
File Lists

Thread/Flow Management Module

Data Transfer Applications

Locality-aware groups
(input from preprocessing)

Thread/flow management

Thread binding/task assignment
(output to data access/transmission)

MDTM interface

| Key techniques:

Group sorting, load balancing
(e.g., bin packing into CPU node)
MDTM call for binding

Cross-node load balancing files
among threads, plan for queuing
(sending order) and buffering

Leverage knowledge on system
layout (e.g., storage/NIC
bandwidth)

Interface: MDTM interface for
binding

Data structures: lists, sets, layout
table, sorting methods

Communications: 1) via MDTM
API, 2) Internally set up
communication methods
between storage/network
threads, via Buffer, Locks, task
Queues

Issues in Thread/flow Management
Implementation

How many threads for each group?
— Reader -> sender,
— Receiver -> writer
— Each group will start with one pair, increase # of threads until performance is saturated

Load balancing consideration here: large groups might be divided into small groups, and may
utilize remote resources

The information passed to MDTM for binding/scheduling

What is the results of return from the calls to MDTM, and what is the general steps for our
application program?

— Call mdtm_schedule_threads (thread descriptors of groups, # of threads for groups.

— Local bindinging will be performed by MDTD.

— Return 0, success. Move forward

— Return 1, system busy, retry

— Return -1, binding failure, no optimization can be done. Continue transfer data with existing threads

Data Access/Transmission Module

Data Transfer Applications

Storage I/0 interface:
a) Local disks, b) SAN,
c) parallel FS(Lustre)

Thread binding/task assignment
(input from task management)

OllD O]

o

ata access and transmission

o

Direct
T: NUMA-awaré ro-copy kerne
’_]__“ | Sendfile/splice

P
ibre Channeg/J l E
SAN
Yy

Block
Storage
Devices

Key techniques:

Synchronization among all threads
sharing common resources, IPC

Synchronization between storage/
network threads

Buffer and cache management,
including sharing, hashing,
invalidation, replacement policies
Storage 1/0O modes: direct 1/0,
asynchronous |I/O

Zero-copy in kernel: sendfile/splice
Interface: file systems, storage,
drivers, network drivers

Data structures: buffers, hash
tables, shared cache (replacing OS
page cache), credits

Communication: IPC, socket, OFED

51

Issues in Data Access/Transmission
Implementation

Synchronization among all threads for accessing common resources/data

Implementation of communication between storage/network threads
— IPC, locks, buffer size (and number)

Direct I/O support in various Linux (and other systems)
NUMA aware cache, and bypass page cache, any technical difficulties?

Cache management organization, algorithm and policy issues,
performance from previous tests

Sendfile/splice support in Linux
— buffer to network, any synchronization issues too?

4. MDTM Middleware Implementation
(3:30 pm — 5:00 pm)

MDTM Middleware API

There are 3 categories of middleware APIs: scheduler, query and helper
Published in the Share Point websites.

Details see attached “mdtm-api.pdf”.

Scheduler mdtm_retrieve_sysinfo() uer

mdtm_retrieve_sysinfo_async()
mdtm_retrieve coreinfo()
mdtm_retrieve_coreinfo_asynch()

mdtm_schedule_threads()

mdtm_init() Helper
mdtm_deinit()
mdtm_thread_desc_create ()
mdtm_thread_desc_add _io()
mdtm_thread_desc_remove_io()
mdtm_thread desc_destroy()

5. Development Roadmap
(8:00 —9:30 am)

Integration Rel. 0.1 Rel. 0.2 Rel. 1.0
L | | | | | | | >
Now Jan Feb Mar Apr May Jun Jul Aug Sep
A A A A A
FNAL InterfaceAPls | System Profilet
Dfev system arrival Scheduling

BNL Thread/Flow Data Access &
Management Transmission
Preprocessing Application Interface

55

6. Project Collaboration Tools, Logistics,

and Procedures
(9:30 —10:30 am)

7. Glitz Component
(10:30 - 11:59 am)

