[bookmark: _GoBack][image:]

Multicore Aware Data Transmission Middleware (MDTM)
Interim Progress Report
09/01/2013 --- 03/31/2014

Fermi National Accelerator Laboratory
Batavia, Illinois, USA

Brookhaven National Laboratory
2 Center St, Upton, NY 11973

Table of Contents
1.	Summary	3
2.	Project Overview	4
2.1.	The problem	4
2.2.	Our solution: a Multicore-Aware Data Transfer Middleware (MDTM)	4
2.3.	Major Milestones	5
3.	Accomplishments	6
3.1.	Application	6
3.1.1.	Major Activity and Progress	6
3.1.2.	Significant Results	6
3.2.	Middleware	7
3.2.1.	Major Activities and Progress	7
3.2.2.	Significant Results	8
3.3.	Integration	11
3.4.	Collaborating Environment	13
3.4.1.	Major Activities and Progress	13
3.4.2.	Significant Results	14
4.	Next Steps	14
Appendix A: MDTM Application Example Configuration File	15
Appendix B: MDTM Middleware Example Outputs	16
Appendix C: MDTM Collaborating Environment	18
Appendix D: MDTM Library API Functions	19

1. [bookmark: _Toc257543861][bookmark: _Toc257982900]Summary

To date the project has achieved all of its targets for this reporting period. These include,
· Completion of thread/flow management module
· Completion of phase-I preprocessing module
· Completion of MDTM middleware APIs
· Completion of multicore system profiling module
· Completion of topology-based resource scheduler
· Completion of interrupt affinity for network IO
· Integration of MDTM middleware library and data transfer application
· Establishment of collaborating environment including Redmine, GIT, Share point and pubic website

 The weekly work meeting was well attended by members from across the DOE national laboratories, including the BNL and FNAL. The project is currently moving toward delivering the first release in late July 2014.

2. [bookmark: _Toc257982901]Project Overview
2.1. [bookmark: _Toc257898404][bookmark: _Toc257982902]The problem
Multicore and manycore have become the norm for high-performance computing. These new architectures provide advanced features that can be exploited to design and implement a new generation of high-performance data movement tools. To date, numerous efforts have been made to exploit multicore parallelism to speed up data transfer performance. However, existing data movement tools are still bound by major inefficiencies when running on multicore systems for the following reasons:
· Existing data transfer tools are unable to fully and efficiently exploit multicore hardware under the default OS support, especially on NUMA systems.
· The disconnection between software and multicore hardware renders network I/O processing on multicore systems inefficient.
· On NUMA systems, the performance gap between disk and networking devices cannot be effectively narrowed or hidden under the default OS support.
· Data transfer tools receive only best-effort handling for their process threads. There is no differentiation in service based on transfer characteristics, thread locality needs, or prioritization requirements.

These inefficiencies are fundamental and common problems that data movement tools will inevitably encounter when running on multicore systems. These inefficiencies will ultimately result in performance bottlenecks on the end systems. Such end system performance bottlenecks also impede the effective use of advanced networks. The DOE ANI (advanced network initiative) deployed 100-gigabit WAN testbed in support of the next-generation distributed extreme-scale data movement. Resolving performance issues within computer hosts is becoming the critical element within the end-to-end paradigm of the distributed extreme-scale data movement.
2.2. [bookmark: _Toc257898405][bookmark: _Toc257982903]Our solution: a Multicore-Aware Data Transfer Middleware (MDTM)
MDTM aims to accelerate data movement toolkits at multicore systems. Essentially, MDTM consists of two research components (Figure 1):
· MDTM data transfer applications/tools research and development
· MDTM middleware research and development

For the MDTM project, we plan to achieve the following research goals:
· To develop and optimize ultra high-speed data transfer applications/tools on modern multi-core systems.
· To investigate, design, and implement generic middleware mechanisms to enable extreme-scale data movement tools to exploit the multicore hardware fully and efficiently, especially on NUMA system.
· To deploy, test, and comprehensively evaluate the developed middleware/applications, on advanced multicore hosts, and over 100Gbps+ testbed networks.
 [image: MDTM simplified model.jpg]
Figure 1. MDTM Software Architecture

MDTM will be deployed in DOE data transfer nodes (http://fasterdata.es.net/science-dmz/DTN/).

2.3. [bookmark: _Toc257898406][bookmark: _Toc257982904]Major Milestones
The major milestones of the MDTM project are set as follows.
[image:]

3. [bookmark: _Toc257543864][bookmark: _Toc257982905]Accomplishments
3.1. [bookmark: _Toc257982906][bookmark: _Toc257543866]Application
3.1.1. [bookmark: _Toc257982907]Major Activity and Progress

Thread/flow management module (completed). Parallel threads can be created and executed for both storage and network devices. Among these threads, communication and synchronization are implemented to ensure the orderly execution. Buffer memory can be created to ensure the data exchanged between threads (e.g., storage reader and network sender, using a producer-consumer model). In addition, we can automatically creating multiple threads based on capacity of NICs and storage devices, e.g., for more processing threads needed for high-capacity devices.

Preprocessing module (phase I completed). In our design, we group the requested files by devices (HDDs, SDDs, hardware/software RAID, SAN, etc), so that the data transfer application can maximize the locality of access. Currently, the basic function of grouping is implemented. After that, we can now dynamically creating threads for groups (one or multiple threads for each group, also based on the type and capacity of devices).

An additional work we have done is to create a system configuration step (and configuration file). The configuration file lists information on the device type, mappings (logical to physical devices), and capacity. Our application can read, parse, and analyze the devices, and then using this information to dynamically create threads.

3.1.2. [bookmark: _Toc257982908]Significant Results

Parallel storage threads. In the BBCP software framework, multiple storage threads are created to execute parallel I/O on different storage devices.

Parallel network threads. In the BBCP software framework, multiple network threads are created to execute parallel transmission.

Grouping of files: The application can create multiple groups of requests, and schedule different threads for them.

MDTM Application protocols for client/server: We specify and verify the protocols between the MDTM application client and server. The protocols determine the behavior of the participants in various stages, including the initialization, preprocessing, and thread/flow management. The interaction in the preprocessing stage is shown below.

System Configurations: The application can obtain device mapping information from system configuration file provided by user. An example configuration file is in Appendix A.
[image:]
Figure 2. MTDM application protocol in the preprocessing stage

3.2. [bookmark: _Toc257982909]Middleware
3.2.1. [bookmark: _Toc257982910]Major Activities and Progress

MDTM middleware APIs: This part was successfully completed and has already been validated by the MDTM application during the integration phase. Those APIs was carefully designed to provide easy to use interfaces for any applications that need to leverage the multicore and NUMA architectures to achieve high performance in terms of throughput and latency. They contain rich functions, which fall into four categories: system information, thread management, IO interrupt management and utilities. Those APIs hide all multicore system caveats from applications, which can focus on their own business logic.

System profiling module: This part was successfully completed and already used by the MDTM application to create system table. The profiling module intensively interacts with the Linux kernel services like procfs, sysfs, device drivers, virtual file system and etc. With that profound Linux kernel knowledge, the profiling module retrieves valuable system information including components in place (CPUs, NUMA nodes, memories, PCI devices, NIC, disk), system topology (affinity and distances between components), working status (component identity and activity), metrics (IO bandwidth and disk capacity) and etc. Another key implementation in the profiling module is the so-called “MDTM tree” which is used to store and organize pieces of scattered system information. With the well-structured “MDTM tree”, any request for system information from application can be served in a very efficient and complete way. In addition, the profiling module is also scalable by nature since the tree can be easily extended to cover more information interested in the future.

Topology based resource scheduler: This part was successfully completed and deployed in the MDTM application. The research work carried here shows the locality in terms of CPUs, IOs and threads obviously improves applications’ performance over multicore system since it bridges the gap between conventional Linux scheduler and modern multicore architectures. Upon receiving service requests from MDTM application threads like the Readers, Writers, Receivers and Senders, the MDTM scheduler should looks for and deploys those threads to CPUs that are close in distance to storage disks and network interfaces in order to maximize the data throughput. In addition, working loads and traffic conditions between system components especially the NUMA nodes also affect the overall performance. The MDTM scheduler takes initiatives to abstract the complicated system interconnection as a graph and associates each connection with a cost value that reflects scheduling factors like distance, traffic condition and etc. By applying searching algorithms like Dijkstra’s algorithm, the lowest cost path from specific CPUs to the targeted NIC/Disks is found and therefore be used as the candidates to run Reader/Writer/Sender/Receiver threads.

Interrupt affinity: This part was successfully completed for network adapters. Multiple queue (MQ) and RSS are widely used in today’s high-speed network adapters. The MDTM middleware leverages the RSS and flow director by setting the affinity of specific data flow to its associated application thread. Therefore it improves the throughput and maximizes the parallel processing of the network traffic.
3.2.2. [bookmark: _Toc257543868][bookmark: _Toc257982911]Significant Results
Some major results are reported here. More results can be found in the Appendix.

System Topology Tree: MDTM profiling module creates an internal MDTM tree that contains the topology and detailed information of the multicore system. Using MDTM API function generates Figure 3, which shows the topology tree of our testing system with eight cores, two NUMA nodes, two network adapters and two disks.

CPU and Device Affinity: Figure 4 shows the affinity of the testing system generated and output by the MDTM profiling module.

 MDTM Scheduling: Figure 5 presents the output of MDTM scheduler from traversing the testing system. The cost values to specific IO devices are calculated and potential CPUs are found to running the thread dealing with data transferring between those devices.

Interrupt Affinity: Figure 6 shows the result of interrupt affinity assignment by the MDTM middleware for the network interface adaptor on the testing system. The MDTM middle optimizes the traffic throughput by leveraging the RSS and associate receiving queues to CPUs generating the traffic flows.
[image: Screen Shot 2014-01-16 at 4.56.22 PM.png]
Figure 3. System Topology Tree

	[image: Screen Shot 2014-01-16 at 5.06.21 PM.png]
	[image: Screen Shot 2014-01-17 at 3.43.15 PM.png]

Figure 4. CPU and Device Affinity

[image: Screen Shot 2014-02-07 at 3.21.12 PM.png]
Figure 5. Scheduling Result

[image:]
Figure 6. Interrupt Affinity
3.3. [bookmark: _Toc257982912]Integration

We have implemented the MDTM application modules in the BBCP software framework. The adoption of this framework is due to several reasons. First, BBCP have a clean multi-threaded design, and it allows us to dynamically add network and storage threads. Second, BBCP takes an object-oriented C++ implementation, and it has good software modularity. We can then conveniently add our function modules into the framework. Third, we hope to evaluate our MDTM application using standard software tools such as BBCP and GridFTP. Thus it is a good idea to start our implementation with it. In the future, we also plan to integrate the MDTM application with our previous RFTP software toolkit.

After our implementation, we can then have a sample test run of it. Below we show the steps of an example test scenario, just to demonstrate the basic functions of the current software version.

1) Control agent get configuration information from command line parameters.
2) Control agent forks a source node and a sink node, and these two processes log onto the source and sink sides using ssh respectively.
3) Both source and sink nodes call mdtmApp_Init() interface to get system topology and save it into a tree structure. This step will call the MDTM middleware interface mdtm_init(), which will initialize the mdtm middleware, and mdtm_create_sys_info(mdtm_node_t* tree) to get system topology tree.

[image:]

4) The source node generates file groups according to the physical storage device they reside on, and then, allocate reader/sender threads according to storage/network device type and the current capacity. At last, the source node will send the file grouping and thread allocation result to the sink node with “flist” command in mdtmApp protocol.

[image:]
[image:]

5) The sink node agrees on the grouping and allocation result, and fork one process to handle each individual task group, this also happens on the source node. The task group process then creates multiple storage I/O and network I/O threads accordingly, and all the I/O threads will be bind to a specific CPU core using the mdtm middleware interface mdtm_schedule_threads(mdtm_thread_desc_t *desc, int thread_num).

[image:]

6) Multiple task groups will be transferred simultaneously. Each task group process with “getg” command in mdtmApp protocol to request files in specific task group, and “get” command to request a particular file.

[image:]

3.4. [bookmark: _Toc257982913] Collaborating Environment
3.4.1. [bookmark: _Toc257982914]Major Activities and Progress
To coordinate the development work from across the two remote labs, BNL and FNAL, we established a set of tools and environment to share information and synchronize our progress.

Autotools: This part was successfully completed. The GNU Autotools are standard software development tool set. They have been established before the coding work started.

RedMine/GIT: This part was successfully completed. The MDTM project used RedMind and GIT as the software version control tools.

Sharepoint and Public website: This part was successfully completed. The MDTM project took use of the Sharepoint and public website to share documents and release project information.
3.4.2. [bookmark: _Toc257982915]Significant Results
See Appendix C to see the snapshot of the collaborating Environment.
4. [bookmark: _Toc257982916]Next Steps

The application development team continues their software implementation currently, and has identified several tasks to be completed in the near future. The following ones are the most important tasks to be completed in two months (by the end of May, 2014).

· Multi-rail parallel data transfer (Part of transmission/access module)
· Mapping multiple groups of files to parallel network interfaces
· Locality and NUMA affinity are considered
· Load-balancing between groups and multiple interfaces

· Optimization of file transfer (Part of preprocessing module)
· Finding the location of files in storage systems
· Sorting/reordering the files for better storage access performance
· LVM (logical volume management) of Linux: considering how to handle files spanning across multiple physical disks

· Design of test scenarios, including different storage devices, multiple NICs, different types of workloads (Also part of interface module)

In the next step, MDTM middleware is planned to,

· Integrate the real-time status of the system devices into the scheduling algorithm. The current cost function mainly counts on the topology like distance information. We are working on adding the real-time status like CPU loading, memory usage, IO traffic conditions and etc. to make the scheduling decision more complete and accurate.
· Implement the monitor features that enable the end users to have a clear vision of the underlying activity and manage the middleware and applications in an easy way.

[bookmark: _Toc257982917][bookmark: _Toc257543871]Appendix A: MDTM Application Example Configuration File

The example file below shows the syntax of the configuration file, as well as the device mapping information on one of our testbed NUMA host.
[image:]

[bookmark: _Toc257982918]Appendix B: MDTM Middleware Example Outputs

Devices Status: MDTM system profiling module outputs the devices status.
[image:]
NUMA Node Distances: MDTM profiling module outputs the NUMA node distances.
[image: Screen Shot 2014-01-17 at 1.18.01 AM.png]Scheduling and Binding CPU: MDTM scheduler finds the CPU with lowest cost and binds the target thread to that CPU.

[image:]
Path Finding between Any Devices: MDTM scheduler has the intelligence to find the internal path from any device to another device in the target system.
[image: Screen Shot 2014-02-07 at 3.38.18 PM.png]

[bookmark: _Toc257982919]Appendix C: MDTM Collaborating Environment

SharePoint: Sharing documents and releasing updates of the MDTM project.

[image:]

Redmine/GIT: The version control and bug tracking of MDTM source code.
[image: Screen Shot 2013-12-12 at 2.33.46 PM.png]
[bookmark: _Toc257982920]Appendix D: MDTM Library API Functions

[image: Screen Shot 2014-02-07 at 3.03.24 PM.png]

[image:]
10
image2.jpeg

image3.emf

Now Jan Feb Mar Apr May Jun Jul Aug Sep

Integration Rel. 1.0Rel. 0.1 Rel. 0.2

FNAL
Dev system arrival

System Profiler

Scheduling

Interface APIs

BNL Thread/Flow
Management

Preprocessing

Data Access &
Transmission

Application Interface

image4.jpeg

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.emf

12/12/13 2:17 PMMulticore-Aware Data Transfer Middleware - Welcome

Page 1 of 1https://web.fnal.gov/project/mdtm/SitePages/Welcome.aspx

Multicore-Aware Data Transfer Middleware

MDTM About Download Docs Developer Blog Search

MDTM: A Multicore-Aware Data

Transfer Middleware Project
The MDTM project is dedicated to developing the next generation of

high-performance data movement tool.
The MDTM project aims to
accelerate data movement at multiore
systems. It addresses inefficiencies
in existing data movement
tools when running on multicore
systems by harnessing multicore
parallelism to scale data
movement on end
systems. Essentially, MDTM consists
of two components: data transfer
applications/tools and middleware.

The MDTM project will be carried
out at Fermi National Acceleration
Laboratory (Fermilab) and
Brookhaven National Laboratory
(BNL). It is sponsored and funded
by DOE Advaned Scientific
Computing Research (ASCR)
Program.

>> see more

MDTM Highlight
The researchers from FNAL and BNL hold a two-day-long joint working meeting
during Dec. 9 to 10 at Brookhaven National Lab at New York.

They discussed designs and issues on the undergoing project, coordinated the
development procedures and tools in two labs and setup the development
milestones for the year of 2014.

Dec. 11, 2014

Fermilab Copyright 2013

 Announcements

Title Modified

FNAL and
BNL Hold
The First
On-site
Meeting at
New York

12/11/2013 4:43 PM

 Add new announcement

Multicore-Aware Data Transfer Middleware Home

http://www.fnal.gov/

https://web.fnal.gov/project/mdtm/

https://web.fnal.gov/project/mdtm/SitePages/MDTM%20Project%20Description.aspx

https://web.fnal.gov/project/mdtm/Shared%20Documents/Forms/AllItems.aspx

https://cdcvs.fnal.gov/redmine/projects/mdtm?jump=welcome

https://web.fnal.gov/project/mdtm/SitePages/MDTM%20Project%20Description.aspx

https://web.fnal.gov/project/mdtm/Lists/Announcements

https://web.fnal.gov/project/mdtm/SitePages/Welcome.aspx#

javascript:

javascript:

javascript:

https://web.fnal.gov/project/mdtm/_layouts/listform.aspx?PageType=4&ListId=%7BA06D1520-AB12-49E1-8BB6-FEDA3DB3BC47%7D&ID=2&ContentTypeID=0x010400AB72DCF9A8C26E46BAA9C16DB0C5E68F

https://web.fnal.gov/project/mdtm/_layouts/listform.aspx?PageType=8&ListId=%7BA06D1520-AB12-49E1-8BB6-FEDA3DB3BC47%7D&RootFolder=

https://web.fnal.gov/project/mdtm/

12/12/13 2:17 PMMulticore-Aware Data Transfer Middleware - Welcome Page 1 of 1https://web.fnal.gov/project/mdtm/SitePages/Welcome.aspx

Multicore-Aware Data Transfer Middleware MDTM

 About Download Docs Developer Blog Search

MDTM: A Multicore-Aware Data

Transfer Middleware Project

The MDTM project is dedicated to developing the next generation of

high-performance data movement tool.

 The MDTM project aims to

accelerate data movement at multiore

systems. It addresses inefficiencies

in existing data movement

tools when running on multicore

systems by harnessing multicore

parallelism to scale data

movement on end

systems. Essentially, MDTM consists

of two components: data transfer

applications/tools and middleware.

The MDTM project will be carried

out at Fermi National Acceleration

Laboratory (Fermilab) and

Brookhaven National Laboratory

(BNL). It is sponsored and funded

by DOE Advaned Scientific

Computing Research (ASCR)

Program.

 >> see more

MDTM Highlight

 The researchers from FNAL and BNL hold a two-day-long joint working meeting

during Dec. 9 to 10 at Brookhaven National Lab at New York.

They discussed designs and issues on the undergoing project, coordinated the

development procedures and tools in two labs and setup the development

milestones for the year of 2014.

Dec. 11, 2014

Fermilab Copyright 2013

 Announcements

TitleModified

FNAL and

BNL Hold

The First

On-site

Meeting at

New York

12/11/2013 4:43 PM

 Add new announcement

Multicore-Aware Data Transfer Middleware

Home

image21.png

image22.png

image23.png

image1.jpeg

