

A Survey of
Continuous Integration Frameworks

Keith Chadwick

V1.0
[bookmark: _GoBack]13-May-2014

Abstract:

The Scientific Technology Assessment (STA) Group within the Scientific Computing Division (SCD) was asked to perform a survey of the currently available Continuous Integration Frameworks and provide a recommendation as to which framework(s) were most appropriate for adoption/support by service providers within the SCD.

Page 1

Table of Contents
Introduction	3
The Survey	3
Other Input and Comments	4
Recommendations	5
Document Revision History	6

[bookmark: _Toc258767891]Introduction

At the Scientific Technical Architecture (STA) meeting held on Wednesday 12-Mar-2014, based on the growing interest and initial deployments of “Software Build Systems” such as Jenkins and Buildbot within the Scientific Computing Division (SCD), the STA group was asked to conduct a survey of the currently available frameworks for “Software Build Systems” with the goal of recommending one or two of these frameworks for formal support within the Scientific Computing Division.
[bookmark: _Toc258767892]The Survey

A Google search using the search string “Software Build Systems”, resulted in many hits. During this period, the phrase “Continuous Integration Frameworks” was determined to be a more comprehensive search string and the results from both of these search strings provided many hours of fruitful reading and data collection.

The follow list shows the attributes that were “mined” from the various Google searches:
· Name of the Product,
· Name of the Vendor (where applicable),
· Open source vs. Commercial,
· URL to the product,
· Based on/written in (examples – Java, Python, Ruby, etc.),
· The set of version controls systems supported (examples – cvs, subversion, git, etc.),
· Execution platforms (examples – Windows, Mac OS X, Linux, Android, iOS, etc.),
· Target platforms (examples – Windows, Mac OS X, Linux, Android, iOS, etc.),
· License (examples – Apache, GPL, commercial, etc.),
· Estimated software license costs (where available & applicable),
· Documentation availability (web, print, etc.),
· Availability of Training on the product
	
The data collected from the survey is available in the STA SharePoint site excel document “software-build-systems”. The path to this document is:

SharePoint.fnal.gov
-> Computing Sector
		-> Scientific Computing Division
			-> Scientific Technical Architecture
				-> Shared Documents
					-> software-build-systems.xlsx
[bookmark: _Toc258767893]Other Input and Comments

In addition to the survey, input was solicited from SCD Senior Management, SCD Department Heads, as well as Seth Graham (SCD/SCF/FEF/SSS) and Elizabeth Sexton-Kennedy (SCD/SSA/SSI). The comments received to date are shown below:

	Comments from Glenn Cooper:

Seth has looked a little at a wider range of build automation / continuous integration tools, and didn't find anything obviously superior to Jenkins and Buildbot - those two seem to be the most widely used among open-source tools. If you have time, it would be great to get you and Seth to compare notes. I suspect you've done a more detailed comparison of J & BB, while Seth was surveying the wider field; but he may also have thoughts to add to your table of pros and cons.

	Comments from Seth Graham:

I did do a brief scan of the options available, including non-free software. Going over feature lists it’s pretty clear why Buildbot or Jenkins are the most popular choices, nothing that’s out there is clearly superior. QuickBuild and Bamboo were the only two that came close to being potentially interesting.

Since Buildbot and Jenkins are the only two pieces of software that have any momentum around Fermilab, those are the only two I’ve attempted to get demos running. The main goal was to sort out easy it is to get the software running and execute a “hello world” type job. Based on those metrics my notes are:

Buildbot :
· non-official puppet module to configure server and slaves available
· python, easier to modify, but seems to have very few contributed modules
· no rhel rpms available
· requires dependencies from epel yum repo
· following procedure to build rpms does not result in rpms that work under SLF6 (requires source modifications or tracking down specific versions of dependencies)
· install from source tgz works fine
· jobs configured via python scripts

Jenkins:
· java based but doesn’t seem to have any problems running with SLF’s default java install
· official puppet module to configure a jenkins server and slaves
· 400-ish user contributed extension modules
· provides official yum repo
· rpm distribution
· jobs configured via web gui and pasting in shell scripts
· projects without scm require access to server to upload source?

To this point, from a system administration standpoint, Jenkins is superior.

[bookmark: _Toc258767894]Recommendations

Based on the comments/evaluations above coupled with the criteria of:

· Open Source,

· Having commercially available documentation,

The recommendation of the Scientific Technical Architecture group is that the Scientific Computing Division should standardize on the Jenkins continuous integration toolkit.
[bookmark: _Toc258767895]Document Revision History
	Date
	Version
	Author
	Comments

	10-Apr-2014
	V0.1
	Keith Chadwick
	Initial Draft

	13-May-2014
	V1.0
	Keith Chadwick
	Publication to CS DocDB

	
	
	
	

	
	
	
	

	
	
	
	

