
   

  1 

Web	
  Based	
  Database	
  Applications	
  
Architecture	
  

Igor Mandrichenko 
David Dykstra 

6/24/2014 

Introduction	
  
 
The fundamental idea behind this proposed architecture is to use 
Representational State Transfer (REST) [1] and specifically its HTTP 
implementation as a unified mechanism of network-based data 
management. Unification of the application-independent data transport 
mechanism allows independent implementation of the communication 
peers, which in turn simplifies and makes more efficient design and 
development of the software and operational support of software 
systems. 
 
HTTP/REST has become a de-facto standard for web-based application 
development and is very attractive to us in HEP for the following 
reasons: 
 

• The internet fuels world wide development of HTTP-based 
standards, technologies, applications and frameworks, many of 
which are suitable for data management and transfer. Internet 
tools and web application development frameworks such as 
Apache httpd, squid, Varnish, WSGI, Tomcat, etc. provide readily 
available powerful building blocks for application development; 

• HTTP is a very simple yet powerful protocol. It is flexible enough 
to be used in a wide variety of applications. As an abstract 
transaction representation layer, REST provides a perfect set of 
operations to represent the variety of data management 
operations used in data intensive applications; 

• Web development frameworks and tools such as Apache httpd 
provide necessary throttling and resource management 
functionality better than direct database or data storage 
interfaces in large part because the Internet industry faces 
scalability challenges all the time and has made great progress 
in developing scalable and manageable tools and frameworks; 

• Using HTTP as a well known base protocol standard for data 
exchange allows decoupling of the implementation details of the 



   

  2 

server and the client, which decreases overall software 
development and support cost by eliminating unnecessary 
interdependencies between system components. Also, as long all 
the components of the system communicate using a common 
protocol, it is possible to use a modular approach to the system 
design and treat many components as optional and plug them in 
when necessary. 

• Introduction of a web services layer between the client and the 
data storage often reduces the amount of client-to-storage 
communication by confining complexity of the data organization 
to the web service – storage segment. 

• The web service layer allows managing the communication as a 
resource by introducing a single point where the data requests 
come through that manages the resources in a storage 
independent way. 

 

 
Figure 1. Direct Access vs. Web Services Approach 

 
At FNAL, we have a long successful history of using web services to 
build data management applications. 
	
  



   

  3 

Web	
  Services	
  Architecture	
  
 
General architecture for a web-based data application consists of 
several components. The picture below shows the current architecture. 
Some of these components are optional, and not necessarily included 
in every application. Others are common. 
 

	
  
Figure 2. General application architecture 

	
  
Currently our architecture uses the following platforms and standards: 

• Python as the server side programming language 
• We support Python, C and C++ client side libraries 
• Apache httpd as the HTTP server 
• WSGI and mod_wsgi as the Python/Apache interface and 

abstract API 
• HTTP and HTTPS as the data transport protocol 
• CSV, JSON and XML as data representation standards 
• Squid as general purpose HTTP caching proxy 
• Jinja2 as the templates package 
• Jango as the framework for interactive applications 



   

  4 

• Google Charts as the client side plotting package 
 
We use the same architecture for interactive and data applications. 
This allows our interactive components to interact with data portions in 
the same way data clients do. 

Data	
  Storage	
  
 
Typically, the data is stored in a database, but the architecture is well 
suited to work with other types of storage, and in fact some of our 
applications store some data in memory or files on disk and make the 
data available via the architecture. 

Data	
  Server	
  
 
Data Server is an application specific component, which essentially 
translates HTTP/REST data representation into the Data Storage 
representation and back. Data Server communicates with its client in 
terms of HTTP/REST and with the underlying storage using the data 
storage API. Data Server sends data to the client encoded in one of 
several Internet standard data representation formats such as CSV, 
JSON or XML. 
 
Depending on the application, Data Server can provide not only read 
functionality (HTTP GET) but also write functionality (HTTP POST). 
 
Following the REST model, Data Server itself is a state-less 
component. Data requests do not change the context of the server. 
The only exception is the case when the Data Server has its own data 
cache. 
 
Because all the data communication in front of the Data Server is done 
in the HTTP protocol, the Data Server does not make assumptions 
about which component of the architecture its client is: web browser, 
client application or web cache, etc. 
 
For interactive applications, the corresponding component is called 
Application Server. The fundamental difference between Data Server 
and Application Server is that generally Application Server can not be 
considered stateless and usually the client and the server maintain 
some session context information. 
 
 



   

  5 

Server	
  Cache	
  
 
Depending on the application, sometimes it is possible and beneficial 
for the server to keep some sort of cache of data retrieved from the 
data storage so that subsequent requests do not always cause new 
interaction with the database. 

Request	
  Multiplexer	
  
 
Typically, we use multiple redundant Data Server instances, running 
independently on multiple computers. Running multiple servers serves 
2 purposes: 
 

• It increases service availability as failure of one or more 
individual servers does not necessarily lead to the failure of the 
whole system. 

• It provides an easy mechanism for adding (or removing) 
resources to the system to meet performance requirements. 
 

The stateless nature of the server makes it possible to use multiple 
redundant copies of it because the client does not ever need to be able 
to interact with a specific instance of the server. Request Multiplexer is 
the component that chooses an available instance by checking its 
availability and then forwards the request to the selected data server 
instance.  
 
Request Multiplexer smooths out load peaks by queuing excessive 
requests and executing them at a later time. 
 
Request Multiplexer monitors all active connections and is used as a 
resource monitoring and management tool. 
 
A single instance of Request Multiplexer works with multiple “services”. 
Typically, a service is a single application. Also a service can represent 
resources dedicated to specific activity within the same application, or 
a group of users of the same application. The Request Multiplexer 
allocates resources to multiple competing services and monitors and 
manages their utilization. The service configuration includes the limit 
on the number of simultaneously active requests, the size of the 
queue, timeouts, etc. 
 
The multiplexer also has data caching capabilities. 
 



   

  6 

For interactive applications, we do not use the Request Multiplexer. 
Instead, we use the HTTP Request Redirector. One reason for this is 
that most interactive applications maintain some session context 
information between the client and the server, which makes the server 
not stateless, and therefore the client needs to communicate with the 
same real application server through the lifetime of the session. 

URL	
  Cache	
  
 
URL Cache is a general purpose HTTP caching proxy. It can be 
deployed either on the server side (reverse proxy) or on the client 
side, or both. In cases when the client runs at a remote site, client 
side cache can significantly reduce WAN traffic. 
 
The reason why this component is called URL cache is because it uses 
the URL as the cache key to identify the object in the cache. Currently 
we use Squid [2] as the URL Cache. URL Cache sits between the client 
application and the multiplexer, essentially shielding the application 
from repeating data requests and effectively increasing the application 
performance. 
 
This component is optional. Not every application provides an 
opportunity to use URL cache, and not every application would benefit 
from it.  
 
Squid is one of several HTTP caching proxy products available. There 
are other popular products such as Nginx [3] and Varnish [4], 
although these seem to be optimized to be reverse proxies, while 
squid is the most popular forward proxy. 
 
URL cache is not used for interactive applications. 

Low	
  level	
  client	
  interface	
  library	
  
 
We provide a low level C library, called libwda, which provides the 
functionality of downloading a document by URL, decoding CSV-
represented data and presenting it as a list of tuples. This low level 
library is built on top of the popular public domain libcurl package 
which actually implements the HTTP communication. libwda has a 
controllable delayed retrial functionality. 
 



   

  7 

Data	
  Caching	
  
 
Data caching is widely used to significantly increase performance of 
web servers specifically and data applications in general. 
 
The idea of caching is based on the assumption that if the client or 
multiple clients repeatedly ask for the same piece of information, the 
information can be retrieved only once, saved somewhere and then 
returned to the client the next time it asks for it. 
 
There are several conditions that are required for any caching 
mechanism to be beneficial: 

• The client asks for the same information often enough. Often 
enough means: 

o Requested item is still in the cache and was not purged to 
make room for some other information.  

o The cached information is still valid. 
• It is significantly cheaper to save and return the data than to re-

retrieve or re-compute it. 
 
Not every data request is cacheable. For example, requests like “what 
is the current state of the detector” are not cacheable at all because 
presumably the state of the detector changes all the time, whereas 
requests like “what was the state of the detector for run N?” usually 
can be safely cached. 
 
In our architecture, there are 3 locations where caching can be 
performed: 
 

• Client side caching. The client application can 
o save data “locally” and use it later instead of issuing a new 

request for the same data 
o pre-fetch more data than it needs immediately and use the 

received extra data later 
 

Client side caching is used in several applications we developed: 
Minerva Conditions, IFBeam DB, NOvA Conditions. 
 

• URL caching. In some cases, when data deterministically 
depends on the requested URL and the time dependency is slow 
enough, application-independent, URL based cache (e.g. squid) 
can be used.  

 



   

  8 

URL caching works well for several applications we developed, 
including NOvA Conditions and certain components of IFBeam 
DB. 
 
URL caching is the most common type of caching and is the most 
attractive type because it is the easiest to implement. 
 

• Server side caching. Sometimes different client requests 
translate into requests for the same data item or dataset from 
the data storage. In these cases, while the URL caching may not 
work due to lack of request correlation at the URL level, it is 
possible for the server to save some datasets so that next time it 
needs the same dataset it can get it from its own local cache 
instead of the data storage. 
 
Minerva Conditions is the example of an application where URL 
caching is not working due to lack of correlation at the URL level, 
(~5%), but server side dataset caching works very well (typical 
cache hit ratio ~70-90%). 

 
While caching is generally considered to be a beneficial practice, the 
decision whether to use it or not needs to be based on the specifics of 
the application. If the cache hit ratio is low, using a cache just adds 
another layer to the application, consumes resources and in fact 
decreases overall reliability and performance of the system. And when 
data changes over time, caching needs to be done carefully because 
there is a chance that the client will get stale data. In those cases, 
cache coherency needs to be managed. 
 

Frontier	
  	
  
 
The idea of using the Internet document caching technology to 
optimize data communication was implemented at FNAL for CDF 
around 2004 [5]. The framework developed at that time was named 
Frontier. Its main goal was to help develop data access applications, 
which can take advantage of the fact that multiple clients issue 
repeating requests for the same information. Frontier proposed to 
convert application data requests from SQL into a URL and use the 
URL as a key for the data cache. Frontier used squid (general purpose 
HTTP caching proxy software) as the caching component. CDF still 
uses Frontier as proposed back in 2004, in a somewhat simplified 
implementation. 



   

  9 

 
Since then, Frontier development continued and it has been modified 
substantially [6]. Currently it is in active use by CMS and ATLAS [7]. 
 
Frontier remains a web application development framework, designed 
for data communication.  
 
While there are a lot of similarities with the existing architecture, 
Frontier has some fundamental differences in its approach to 
scalability and performance. The current architecture can be called 
server-based in the sense that most of the infrastructure is located at 
the server side, while the client is very light weight. In comparison, 
Frontier can be called client-based. A significant portion of its 
infrastructure and functionality is located on the client side or at the 
site where the client runs. 
 
Frontier puts a big emphasis on the URL caching as the main 
scalability mechanism. It has a sophisticated infrastructure for using 
layers of forward and reverse caching proxies. 
 
Frontier takes different approaches than the existing architecture in 
some areas, including: 
 

• Additional protocol layer - Frontier implements its own protocol 
layer on top of standard HTTP. The additional layer is used to 
implement such features as data compression and error 
communication in addition to what is included in the HTTP 
standard. 

• Client Side Multiplexing - Frontier client can be configured to 
select one of many available servers. 

 
Also, as an option, Frontier provides the ability to send SQL over HTTP, 
which essentially allows the database-aware client to access the SQL 
database over HTTP and provide schema elasticity without any 
modifications to the Frontier server. 

Frontier	
  as	
  a	
  Web	
  Applications	
  Framework	
  
 
As a web applications development framework, Frontier does not seem 
to be as unique and attractive as it was at the time of its introduction 
because the Internet industry has provided many powerful and easy to 
use frameworks and made it extremely easy to publish a piece of code 
on the web. Here is an example of what it takes to create a “hello 
world” web server in Python using standard library WSGI module: 



   

  10 

 
from wsgiref.simple_server import make_server 
 
def simple_app(environ, start_response): 
 
    status = '200 OK' 
    headers = [('Content-type', 'text/plain')] 
 
    start_response(status, headers) 
 
    ret = [“Hello world”] 
    return ret 
 
httpd = make_server('', 8000, simple_app) 
httpd.serve_forever() 

 
In this code snippet, out of 9 lines of code, 6 are application “business” 
code (the “simple_app” function) and remaining 3 lines are 
“infrastructure” code, that actually turns the business function into a 
web application. With mod_wsgi, used to plug a WSGI application into 
Apache httpd, these 3 lines would not be even needed, so there would 
be actually 0 lines of “infrastructure” code: 
 

 
def application(environ, start_response): 
 
    status = '200 OK' 
    headers = [('Content-type', 'text/plain')] 
 
    start_response(status, headers) 
 
    ret = [“Hello world”] 
    return ret 
 

 
In other words, modern technologies make it so easy to build a web 
application that it becomes irrelevant which particular framework is 
used, and the choice of the framework becomes a matter of 
preferences of the individual developer or the group of developers. 
 
Of course in reality things are a little more complicated than in the 
demo example above, and the “infrastructure” is not exactly zero, but 
still the amount of effort spent on it is negligible, because it is being 
reused from one application to the next. 
 
Here is a breakdown for 3 typical database applications showing the 
number of lines of Python code per component: 
 



   

  11 

 Minerva 
Conditions 

NOvA 
Conditions 

IFBeam DB 

Application specific 
data management 
code 

1200 1450 N/A 

Data Server 230 650 7500 
“Infrastructure” layer 400 
 
 
Our “infrastructure” web application layer is mostly a convenience 
package. It is used to map the URL to an object on the tree of Python 
objects and call one of its methods with arguments extracted from the 
URL. Also, it provides server-side sessions functionality used mostly by 
interactive applications but not data applications. It was initially 
developed in 2005-2006 as a replacement for a CGI layer, used by the 
D0 Trigger DB. It is used by all applications developed by our group 
since then with minor modifications. 
 
Frontier implements several features, which can be useful in some 
cases and worth mentioning here: 
 
SQL	
  Communication	
  
 
Frontier can be used where it is necessary to expose a relational 
database schema to the client application and it is not practical to let 
the client access the database directly. This is usually the case when 
the database schema is very simple and static and when scalability is 
needed, e.g. with grid production. 
 
Data	
  Compression	
  
 
Frontier implements data compression. Based on our experience, in 
most cases, it takes much more time and CPU resources to retrieve 
large amounts of data and to convert them into the format suitable for 
data transfer (CSV, JSON, etc.) than to actually transfer the data over 
the socket. Data compression and decompression reduces data 
transfer time at the expense of even further increasing data processing 
time. So the benefits of data compression are debatable. 
 
However, there are cases when data compression can be beneficial. In 
particular, when the data is stored in many grid site caches, data 
compression can reduce their disk and bandwidth requirements and 
may be worth the extra CPU resources.  
 



   

  12 

If necessary, data compression can be easily implemented without 
Frontier. 
 

Client	
  Side	
  Multiplexing	
  
 
Frontier implements client side multiplexing, which is the ability for the 
client to choose one of many available servers. The same functionality 
is provided by the Request Multiplexer described above, but it does it 
on the server side.  
 
Compared to the client side, server side multiplexing is more practical 
and convenient than client side. With server side multiplexing, the 
client knows of only one server address instead of a list of them. 
Server side multiplexing is much easier to manage by the service 
provider, especially in the Grid environment because the multiplexer 
configuration is located in single location controlled by the service 
provider and can be changed instantly without clients even knowing. 
Also, server side multiplexing can be combined with resource 
management and collapsed request forwarding, which is not possible 
with client side multiplexing. Frontier server itself has some resource 
management capabilities. 
 
However, there are cases where client side multiplexing could be 
useful, for example when the client can choose to talk to multiple 
sites, or to talk to multiple local caches, or to use remote backup 
cache when local site cache is unavailable. 
 
Note that client side and server side multiplexing do not contradict 
each other. 
 
Client side multiplexing could also be implemented outside of Frontier. 

Site	
  URL	
  Cache	
  Discovery	
  
 
Locating the URL Caches at many sites is not simple.  CMS and ATLAS 
each maintain their own complete list of them at all the sites they use, 
but not in a way that is easily shared with other projects.  This is being 
changed to make it easier, based on an internet standard called Web 
Proxy Auto Discovery that the Frontier client supports.  
Implementation of the WLCG proxy auto-discovery service is under 
way [8]. 
 



   

  13 

Error	
  Caching	
  
 
Generally, URL caches do not cache error responses.  Under high 
loads, it may be beneficial to prevent repeating requests which cause 
errors from all reaching the database. The Frontier server can instruct 
URL caches to cache error responses for a short period of time, thus 
reducing potentially harmful request traffic.   
 
On the other hand, it is also important to not pollute the cache when a 
response body is incomplete due to an error during transmission, but 
the response has valid HTTP headers.  The Frontier server handles this 
by signaling an error at the end of the response, after the HTTP 
headers specifying caching time have already been sent, and the 
Frontier client then retries and requests a short cache time.  
   
Error caching could be managed by the Data Server using cache 
control HTTP headers without using Frontier.   Caching of incomplete 
responses could be avoided without Frontier if the Data Server pre-
generated the whole response so it can include an HTTP content length 
header. 
 

Monitoring	
  
 
Frontier has its own proxy monitoring tools, which can be used to 
monitor request traffic, and to detect cases when the requests bypass 
local site caches and go directly to the server or central backup cache.   
The tools can automatically notify site administrators that they have a 
problem so database operations personnel don’t have to spend much 
time on it.   
 

When	
  to	
  Use	
  Frontier	
  
 
Frontier should be used when: 
 

• the existing architecture does not scale and 
• it is possible to use URL caching and 
• the caching infrastructure requires the client side multiplexing 

 
Another use case for Frontier is when it is necessary for the client 
application to access a remote relational database on SQL level. 
 



   

  14 

Adding	
  Frontier	
  to	
  the	
  Architecture	
  
 
The current Frontier system that CMS and ATLAS use to access 
conditions databases at the SQL level also has the ability to read from 
any HTTP server as a backend instead of directly to a database. For 
cases where Frontier should be used as described above, the proposal 
is to add Frontier infrastructure between the existing infrastructure 
and the client as shown in the in Figure 3. 
 

 
Figure 3. Architecture including Frontier 

 
The entire server side could be replicated at another distant site for 
more reliability and for better access near the distant site. A monitored 
backup URL cache (actually a pair of them) is introduced in order to 
allow clients to keep operating when their own site caches are failing. 
 
On the client side, libwda would be extended so that if an application 
requested a server URL beginning with “frontier://” instead of http://, 
it would invoke the Frontier client instead of directly connecting to the 



   

  15 

Data Server or multiplexer of the current architecture.  In this way the 
application would only need to change the URL string to use either 
type of server.  All the parameters can be passed to the Frontier client 
through the URL string or through environment variables [9]. 
 
The Data Server is the same as in the current architecture, so all of 
the existing benefits of its implementation would be preserved.  This 
includes enabling web browsers to continue to access the Data Server 
directly. 
 

Recommendations	
  
 

1. Use HTTP/REST as the protocol of data communication and 
common standards like CSV, JSON, XML for data representation. 

2. Build application specific data server using one of widely 
available web applications development frameworks. 

3. Whenever possible and beneficial, use data caching as 
combination of client side, URL and server side caching, in that 
order of preference, depending on the specifics of the 
application. 

4. Use redundant web services infrastructure to increase reliability 
and performance of the application. 

5. Unless required, hide data storage implementation details behind 
the Data Server. 

6. If it is necessary to expose the database schema to the client 
application, CMS style Frontier should be used. 

7. Use Frontier infrastructure on top of the current architecture 
when it is necessary to take advantage of more sophisticated 
client side cache services infrastructure. 
 

References	
  
[1] http://www.squid-cache.org/ 
[2] http://nginx.com/ 
[3] https://www.varnish-cache.org/ 
[4] http://www.pha.jhu.edu/~mmathis/seminar/  
[5] https://indico.cern.ch/event/0/session/7/material/paper/1?contribId=204 
[6] https://twiki.cern.ch/twiki/bin/view/Frontier/FrontierOverview 
[7] http://frontier.cern.ch 
[8] https://twiki.cern.ch/twiki/bin/view/LCG/HttpProxyDiscoveryTaskForce 
[9] http://frontier.cern.ch/dist/FrontierClientUsage.html 


