
1

X.509 Authentication/Authorization in FermiCloud

Hyunwoo Kim, Steven C. Timm
Scientific Computing Division

Fermi National Accelerator Laboratory
Batavia, U.S.A

hyunwoo@fnal.gov, timm@fnal.go

Abstract—We present a summary of how X.509
authentication and authorization are used with
OpenNebula in FermiCloud. We also describe a history of
why the X.509 authentication was needed in FermiCloud,
and review X.509 authorization options, both internal and
external to OpenNebula. We show how these options can
be and have been used to successfully run scientific
workflows on federated clouds, which include OpenNebula
on FermiCloud and Amazon Web Services as well as other
community clouds. We also outline federation options
being used by other commercial and open-source clouds
and cloud research projects.

Keywords-Cloud; X.509; Authentication; Authorization;
FermiCloud

I. INTRODUCTION

A. X.509 Certificates For Identity Authentication
FermiCloud relies on X.509 certificates [1] to achieve

identity authentication. X.509 provides us with a way to verify
the user’s identity is in fact who he or she claims to be. The
identity of a user can be verified by a chain of signing
authorities.

Three basic concepts, identification, authentication and
authorization, must be considered with equal importance in
order to make sure the right users are doing the right things in
our system. Identification is how users assert who they are to
our system. It can be your user name if the system is relying
on username and password authentication. Authentication is
how users prove their identity assertion. In other words, it is a
presentation of secret that only the owner must know and the
system can then verify the identity with. If it is password, the
server should keep the secret and use it to verify the user when
the user types in the password when the user wants to sign in.
Furthermore all communications can be encrypted by using
SSL. Since it can be presumed that only a user knows his or
her secret, the user’s claim can be validated by authentication.

Identification and authentication in X.509 scheme are
closely related. Identity in X.509 scheme can be the subject
name on a X.509 digital certificate. In analogy with username
and password scheme, the secret could be the private key
associated with a digital certificate. The difference between
username and password scheme and X.509 scheme is how

users present the secret. With the simple username and
password scheme, as described above, the server must keep
the secret and the user has to type in the password in a
browser. In the X.509 scheme, users present their
Distinguished Name when their account is created. Each time
they authenticate, they present the full certificate and private
key credential, using the passphrase to decrypt the private key.
The login process will sign a simple text (username in case of
OpenNebula) with the private key and transmit this private-
key-signed text to the server. The server verifies this text
using X.509 certificate that came along with the document and
then extract the DN from the X.509 certificate. Then the
server compares this DN against the list of DNs stored in the
server database. The process described above is one of basic
cryptographic assurance that is provided by public key
cryptography. In principle, with RSA[2], we can use private
key to encrypt the entire plaintext. This provides both identity
authentication and message authentication because only the
person that holds the private key can encrypt a document and
because that person alone could guarantee the authenticity of a
document by encrypting the entire document. What are
transmitted are the plaintext and the encryption result. While
PKC uses public and private keys to achieve cryptographic
assurances, we still need to prove the ownership of the public
key, which should be distributed in a manageable way. In
other words, public key must be distributed as digital
certificates. Public key infrastructure (PKI) is one way to
achieve this and X.509 is an ITU-T standard for PKI [16].

B. Authorization with X.509 Certificates
Authentication on its own is not sufficient to allow users to

use resources. We also need to know what actions, if any, a
user is authorized to undertake. The existing OpenNebula[13]
authorization scheme is based on Access Control Lists for
resources. All resources in OpenNebula, including virtual
networks, machine images, and templates, have user, group,
and world permissions similar to Unix permissions. There are
also per-user and per-group quotas of how many machines can
be launched.

FermiCloud is developing a new X.509 based authorization
module for OpenNebula that also can determine the correct
user and group given a grid identity. It uses information from
Virtual Organization Membership Service (VOMS) [3] and
Grid User Management System (GUMS) [4]. With a user’s
subject line in X.509 certificate, we first contact a local

2

VOMS in FermiCloud to acquire a list of Fully Qualified
Attributes Name (FQAN) assigned to that user. We present
this list to the user prompting for the user’s selection. Then we
construct an XACML (eXtensible Access Control Markup
Language) [5] request using an XACML Java client library
called privilege package, developed at Fermilab, and send this
request to a local GUMS server. We expect two answers from
GUMS: a pair of FermiCloud-specific user ID and group ID
mapped by GUMS and secondly whether the user is
authorized to undertake the Role and Capability in the FQAN.
We use this information to finally authorize the user and also
record which VO a virtual machine is running under the name
of. Technical details are found in a later section.

C. History of why X.509 Authentication was needed
X.509 based authentication and authorization became

widespread in the scientific community with the widespread
adoption of grid computing. The Grid Security Infrastructure
(GSI) [6] includes a set of certificate authorities that are
recognized by the International Grid Trust Federation and
accepted worldwide by grid computing sites. All Fermilab-
hosted experiments participate in grid computing via the
FermiGrid [7] campus grid and the Open Science Grid [8] of
which FermiGrid is a major part. When the FermiCloud [17]
project was initiated in 2009 we identified a requirement to
have stronger security than the default username/password or
access key / secret key mechanism could provide. We had
several years of successful operation of X.509 authentication
and authorization on the grid and an interoperability protocol
for authorization based on XACML authorization[18] which
we hoped to reuse. By using X.509 authentication and
authorization we could know exactly who is running virtual
machines on our cloud. An X.509 authorization scheme also
allows us to transparently let a user with a single X.509
Distinguished Name be part of more than one group or
organization, and transparently change between them.
Because Fermilab operates its own Short Lived Credential
Service (SLCS) certificate authority we can further auto-
generate short-lived certificates on behalf of our own users
and revoke them at any point. In practice much of the X.509
certificate manipulation is transparent to the user and invoked
in the login script as they log into the interface node.

II. OPENNEBULA IMPLEMENTATION OF X.509

A. Token-based Authentication in OpenNebula before using
X.509

 Besides X.509 authentication, OpenNebula also
provides another token-based authentication method that uses
ssh keys. When a new user is signed up, the new user has to
use ssh-keygen command to generate a pair of ssh keys and
register the public ssh key in OpenNebula system. For sign-in,
the regular login command with the option of using ssh keys
will create a Single Sign On (SSO) token and this token will
be used for subsequent uses of user commands.

B. X.509 Authentication in Command Line Interface
FermiCloud developed X.509 module for OpenNebula. The

basic idea is token-based SSO authentication using user’s
X.509 certificate and associated private key. A user initially
executes a login command with X.509 certificate and private
key. Internally this command uses the user’s private key to
sign a text document, base64-encodes it and produce
eventually a token as a secure file in the user’s private area.
Subsequent commands issued by the user will present this
token to the OpenNebula server. The server first retrieves the
user’s X.509 certificate and uses it to verify (authenticate) the
identity of the user. This implementation was incorporated
into the main OpenNebula 3.0 code base in 2012 and has
continued to be available since that time in all subsequent
versions.

FermiCloud implementation of X.509 authentication
follows a common approach to achieve X.509-based
authentication. We note that this is also the case for
OpenStack PKI-signed token-based authentication that we will
review in a later section.

1. An X.509 authentication scheme must provide a tool
a user can use to sign in. This command will require
both X.509 certificate and associated private key
from a user. The command then will generate a token
and sign it with the private key.

2. The server side, first of all, should be able to acquire
the user’s X.509 certificate. In the above description,
the client tool requires the user’s X.509 certificate
too besides the private key. In case of OpenNebula,
the client tool appends the X.509 certificate to the
signed token. In case of OpenStack, each service
endpoint (such as Nova) downloads a X.509
certificate from a pre-defined location.

3. The next question is, how to transmit this signed
token to the server side. OpenNebula CLI generates a
token in a form of a file. The user must set an
environment variable to the location of this file so
that the OpenNebula command line tools can
transmit the appropriate authorization data to the
“oned” daemon. As OpenStack only supports
RESTful services (via direct use of URL in a tool
such as cURL, OpenStack SDK or OpenStack CLI),
OpenStack adopts a different method for a
transmission of the signed token and use X-Auth-
Token HTTP header for this purpose.

4. The server side can conduct a simple verify operation
against a private-key-signed token with a X.509
certificate of OpenNebula user or the Keystone
signing certificate in the case of OpenStack.

After verification, OpenNebula extracts the DN of the user

from X.509 certificate and uses it to identify the user against
the list of Distinguished Names stored in the user pool table of
the database. OpenStack simply uses the username for
identification. As mentioned above, this scheme is used by
X.509 authentication of OpenNebula CLI and OpenStack

3

Keystone PKI-based token authentication. Note that the
scheme described above cannot be done with the normal use
of web browser because the browser doesn’t allow the same
flexibility as CLI utilities of using user certificate and private
key for cryptographical purposes.

C. X.509 Authentication in Sunstone OpenNebula Web
Interface

OpenNebula Sunstone is basically a Sinatra-based web
application with Thin [9] in front of it as a Ruby web browser.
Sunstone is usually placed behind Apache HTTPD with SSL
module. There are two types of clients that will access
Sunstone. Users can upload their certificate and private key
pair to web browsers to access REST services provided by
Sunstone. Web browsers allow only PKCS12 [10] format and
require the encryption password when the certificate and key
are imported into the browser. The certificate is then
protected by the password of the certificate store of the
browser, which must be given when the certificate is used at a
given site for the first time. The Sunstone service and other
such services can also be accessed with CLI tools such as the
cURL command. The cURL command for example also
requires the users to provide both private key and certificate at
the same time and prompts for the password (if any)
associated with the private key. The cURL command also
goes through SSL handshake with the SSL module attached to
Apache server that is in front of Sunstone. In both cases, the
SSL module for Apache on the server side is configured to use
the option to verify client for a client-authentication. After the
SSL handshake finishes successfully, the SSL module sets an
environment variable called HTTP_SSL_CLIENT_CERT
equal to the base-64 encoded PEM string of the full client
certificate that was transmitted from the browser or the CLI
tool. Sunstone code uses the X.509 Certificate utility in Ruby
OpenSSL library in order to extract the user’s Distinguished
Name from the PEM string and uses the extracted DN to
compare against a list of DN’s in the user pool in order to
acquire the username that matches the DN. This look-up
process is common to both username-password and X.509
certificate schemes, but using X.509 certificate, we can
identify a user who is verified by Certificate Authority (CA).
We note that this authentication scheme in OpenNebula
Sunstone is functionally similar to the external authentication
option that OpenStack supports besides the regular methods
using username-password or token.

D. X.509 authentication in EC2 emulation
OpenNebula EC2 emulation is also a Sinatra application

with Thin web server behind Apache HTTPD with SSL
module. Current implementation of OpenNebula EC2
emulation client code is using AWS Ruby SDK to generate
REST/Query requests to OpenNebula EC2 emulation server
using AWS signature algorithm to sign the request with
Access Key ID and Secret Access Key. FermiCloud modifies
OpenNebula EC2 emulation codes in order to enable the use
of X.509 certificates. We replace AWS EC2 library with Ruby
cURL library to generate REST requests. This way we can

exploit the options for X.509 certificate and private key
available in the Ruby cURL library and achieve the same
client authentication as what happens between the cURL
command and the OpenNebula Sunstone. In current
implementation of OpenNebula, the EC2 emulation server
shares the same X.509 authentication code with the Sunstone.
Apache with SSL module processes and forwards secure
information to EC2 emulation Sinatra server. EC2 emulation
server uses this information to reconstruct the user’s X.509
certificate with X.509 Certificate utility in Ruby OpenSSL
library and extracts the user’s DN to compare against the list
of DN’s in user pool. It was necessary to modify the code
slightly to allow the server to accept X.509 proxy certificates
as well as full certificates.

E. X.509 Authorization developed by FermiCloud
The existing OpenNebula authorization is based on Access

Control List. After a user is authenticated, relevant access
control information or permissions related to the user are
examined to determine the authorization results. We started by
modifying CLI to use Local Credential Mapping Service
(LCMAPS) [11] developed by NIKHEF. When a user signs in
with OpenNebula CLI, both proxy certificate PEM string and
personal certificate PEM string are available in OpenNebula
server side where we call LCMAPS C function via Ruby C
binding in order contact FermiCloud GUMS server. Then, we
extended this solution to Sunstone. The fact that we need both
proxy and personal certificates to call LCMAPS function
means that we need to plant both proxy certificate and
personal certificate into the browser, which is technically
possible. The problem was with the transmission of
certificates from web browsers to the server. The proxy
certificate is available in the server side as a PEM string, but
the personal certificate that was used to generate the proxy
certificate is not transmitted. Technically this is believed to
originate from the fact that web browsers do not recognize the
personal certificate as a proper CA that signed the proxy
certificate. Using the cURL command, the server sets these
variables properly. For this reason, we do not consider using
LCMAPS to contact GUMS because it does not work with the
web browsers. We decided to use an XACML client library to
build an XACML request. This client library is called
privilege package and was developed in Java programming
language by Fermilab. In order to invoke this Java privilege
package from a Ruby code, we use Ruby Java Bridge (RJB).
A request to GUMS requires user's DN, VO and FQAN. Our
solution to acquire user’s VO and FQAN is contacting
VOMS-Admin server in FermiCloud. We then present this list
to the user asking for the user’s selection. Then with the
selected VO and FQAN, Sunstone constructs a request to
GUMS using privilege package. The query to VOMS-Admin
for all the possible groups and roles has the benefit that we can
use a grid proxy or certificate rather than one with extended
VOMS attributes and these are easier to manage in the
browser. This successful implementation in Sunstone could
also be applied to command line and EC2 emulation interfaces
of OpenNebula.

4

We also tried to use GridSite package as a module for
Apache HTTPD. GridSite can be used to retrieve the VO and
FQAN from a VOMS-signed certificate that is transmitted
from a web browser. In our testing, GridSite package worked
properly only when cURL command was used and it failed
when web browser was used.

Figure 1. FermiCloud new Authorization Scheme

F. Scientific Workflows on Federated Clouds
Fermilab uses the GlideinWMS [19] workflow management

system and the Jobsub client/server submission system to
federate heterogeneous resources including grids and clouds.
Users use their automatically generated SLCS-based X.509
certificates to authenticate to the server and submit jobs. The
GlideinWMS system uses its own certificates and AWS access
keys to obtain grid job slots and virtual machines on behalf of
the federation of users, and then these resources are matched
to user jobs based on the requirements of these jobs. We use
this infrastructure to support Fermilab physics experiments.
We have successfully run the Cosmic Ray simulation of the
NOvA neutrino detectors on Amazon AWS services,
FermiCloud, and a collection of sites on the Open Science
Grid. We continue to increase the amount of virtual machines
we can run simultaneously.

III. X.509 IN AMAZON WEB SERVICES EC2
AWS basically supports two APIs: REST and SOAP. If we

want to use SOAP API, there are two possible ways. We can
use AWS EC2 SDK to generate SOAP requests or we can use
AWS EC2 CLI to generate SOAP requests. In both cases, we
can use X.509 certificate and private key for authentication.
AWS will discontinue the support of SOAP APIs at the end of
2014. If we want to use REST API, there are three ways. We
can access REST API directly by constructing a query with a
command line tool. Or we can use AWS EC2 SDK or CLI to
generate Query requests. The Amazon EC2 REST API
provides HTTP or HTTPS requests that use HTTP GET or
POST methods and a Query parameter named Action. These
AWS REST requests are signed using Access Keys that

consist of Access Key ID and Secret Access Key. Note that
the AWS Command Line Interface or the AWS SDKs
automatically sign requests for us. But if we construct a Query
request directly, we must sign the requests manually, using the
procedure described in AWS signing algorithm.

Also we note that there are several AWS credentials types
for different purposes.

1. Email address and password: when we sign up for
AWS, we provide an email address and password that
is associated with our AWS account. We use these
credentials to sign in to secure AWS web pages.

2. Access Keys: we use access keys to sign requests to
AWS whether we're accessing the REST API via the
AWS SDK, CLI or direct access.

3. X.509 Certificates: we are recommended to use X.509
certificates only to sign SOAP-based requests. In all
other cases, we are recommended to use access keys.

4. Key Pairs: for Amazon EC2, we use key pairs to
access Amazon EC2 instances, such as when we use
SSH to log in to a Linux instance.

IV. EGI FEDERATED CLOUD
European Grid Infrastructure (EGI) [12] recently launched

a project called Federated Cloud (FC). General structure of
EGI FC is rOCCI server in front of cloud resources using
OpenNebula or OpenStack. The rOCCI server consists of a
Rails web application and Apache HTTPD with SSL module
and Passenger [12] module. We can issue an occi client
command with options for X.509 authentication and the use of
VOMS. We are interested in how the rOCCI OpenNebula
backend conducts X.509 authentication. The backend invokes
OpenNebula UserPool method that is available in a local
OpenNebula distribution that resides in rOCCI server
deployment. This UserPool contacts the main OpenNebula
instance via the regular xml-rpc channel to receive a list of
users that are registered. Then local methods in the rOCCI
OpenNebula backend such as do_auth will see if a valid
username is returned from a query using the regular X.509 DN
when auth x509 option is used with occi command or using
the extended DN with FQAN when auth x509 and VOMS
options are used together in occi command. When the
OpenNebula instance that is running behind rOCCI server is
needed to support rOCCI’s VOMS authentication type, each
user should be created with a DN extended with FQAN. This
can be done manually or by using Perun script. In details, the
X.509 based authentication that is conducted by rOCCI
OpenNebula backend relies on the list of users returned from
the actual OpenNebula instance running behind rOCCI server
and is equivalent to what the ordinary OpenNebula does for
X.509 authentication. We are also interested in understanding
how Perun is used in association with rOCCI’s VOMS
authentication. As mentioned in the previous paragraph, a user
can be created with a DN extended with FQAN by using
Perun script. This script first contacts a Perun server to
retrieve an up-to-date list of users and associated virtual

5

organizations and accordingly update OpenNebula’s user pool
with the list and this update process will create a user, if
necessary, with an extended DN with FQAN.

We note that the authentication and authorization model in
EGI Federated Cloud is using information from VOMS only
for authentication purpose and we will still need our new
development for X.509 authorization even if FermiCloud
OpenNebula is placed behind rOCCI server.

V. OPENSTACK AND FEDERATION
First of all, we note that both AWS and OpenStack support

only RESTful Web Services. There are two ways to access
RESTful Web Services. In a direct way we can use cURL or
other external RESTful clients. Here, we need to construct the
request for ourselves and interpret the raw response of XML
or JSON. In an indirect way we can use SDK or CLI. They
both need endpoint URL. They will both access the URL just
like the direct way, but the difference is that the indirect way
via SDK or CLI will process the raw response of XML or
JSON and returned a formatted response. Any statements
with regard to OpenStack refer to OpenStack version
Icehouse, the current version at the writing of this paper.

A. Regular Authentication in Keystone
OpenStack consists of several Services. Keystone is the one

that handles the Identity Service. Another example is Nova
that handles the Compute Service. Keystone supports four
authentication plugins, which are specified in the [auth]
section of the configuration file: password, token, external and
federation. Suppose a user has obtained a credential, i.e.
username and password. This user might use username and
password to issue a Identity API request of a token to the
Keystone. Or if this user already has a token that is still valid,
the user could use the token to issue a new Identity API
request to Keystone. In either case, after a token is acquired,
the user can use this token to issue subsequent API requests
such as Compute API requests to the NOVA service. This is
Single Sign On. The user can also still use username and
password, to issue subsequent API requests.. This use of
username and password as authentication method in Identity
service and other service such as Compute is similar to the use
of Access Keys in Amazon Web Services. When a token is
used, Keystone uses PKI to sign and verify the tokens.
Further, Keystone uses SSL to encrypt the communications.
Use of token is similar to X.509 authentication in
OpenNebula.

B. External Authentication
Web servers like Apache HTTPD support many methods of

authentication. When Keystone is executed in a web server
like Apache HTTPD, Keystone can profit from this feature
and let the authentication be done in the web server. When a
web server is in charge of authentication, it is normally
possible to set the REMOTE_USER environment variable so
that it can be used in the underlying application (Keystone).
Keystone can be configured to use that environment variable

if set. This user must exist in advance in the identity backend
to get a token from the controller. This way, we can use X.509
authentication or Kerberos, for example, instead of using the
username and password combination. To use this method,
Keystone should be running on HTTPD and Apache should be
configured to enable SSL. Note that while it is possible to use
an external authentication method besides password and
tokens, it is also possible to use an external method for
identity provider besides the SQL database backend. Popular
choice is LDAP directory service.

C. OpenStack and Federation
Keystone can be placed behind Apache HTTPD for two

reasons: to use external authentication method, besides the
ordinary two methods, which are password and token. Second
reason is to use federation. New feature in the latest version of
OpenStack is Identity Federation using SAML [14]. External
users authenticate with Identity Provider (IdP). The IdP
communicates the authentication result to Keystone using
SAML assertions. Keystone maps the SAML assertions to
Keystone user groups and assignments created in Keystone. In
order to make this possible, Keystone should be configured
accordingly. First, Keystone should be driven by Apache httpd
and Shibboleth should be installed. Secondly, Shibboleth itself
should be configured. Third, there is an extension called OS-
FEDERATION. This should be enabled. Lastly OS-
FEDERATION extension should be configured.

D. Authorization in OpenStack Keystone
Role is a personality that a user assumes when performing a

specific set of operations. A role includes a set of rights and
privileges. A user assuming that role inherits those rights and
privileges. In OpenStack Identity, a token that is issued to a
user includes the list of roles that user can assume. Services
that are being called by that user determine how they interpret
the set of roles a user has and to which operations or resources
each role grants access. It is up to individual services such as
the Compute service and Image service to assign meaning to
these roles. As far as the Identity service is concerned, a role is
an arbitrary name assigned by the user.

VI. NIMBUS AUTHENTICATION

The Nimbus project [15] implemented X.509 authentication
and authorization using a full Grid Security Infrastructure
system. This included a WSRF (Web Services Resource
Framework) application container based on the Globus toolkit,
which was capable of authentication and authorizations using
certificate/key pairs or proxies. There was also a gridftp-
based image transfer service used by the cloud client. The
project also later added emulations of the SOAP and REST
API's of Amazon EC2 as well as the Cumulus storage
element, which emulates the Amazon S3 API.

6

VII. SUMMARY
We learned from this study that X.509 authentication in

SOAP based API is decreasing in popularity and RESTful API
is the current trend. We reviewed how FermiCloud developed
X.509 authentication for OpenNebula command line interface.
The idea is similar to how OpenStack is using PKI-based
token for single-sign-on type authentication in REST requests.
This approach is one way to support X.509 based
authentication in RESTful services whereas using username
and password in RESTful services is dominantly popular as in
AWS. We have also shown a proof of principle of a unified
procedure based on callouts to VOMS-Admin and GUMS for
X.509-based authorization in OpenNebula. We also reviewed
how OpenNebula Sunstone is using X.509 authentication via
Apache HTTPD with SSL module. This is also similar to how
OpenStack is using Apache HTTPD with SSL module as an
option for external authentication. We also reviewed how EGI
Federated Cloud is using rOCCI to federate cloud facilities
using OpenNebula and OpenStack and how OpenStack is
using SAML based external identity provider to federate users
with external identities. Our plan is to keep looking for the
best way to achieve authentication and authorization on top of
restful cloud services as many new concepts and technologies
are being developed and made available publicly.

ACKNOWLEDGMENT
We thank the developers of OpenNebula for their continued

cooperation in adding authentication and authorization features
that we have requested. We also acknowledge the significant
contribution of former Fermilab employee Ted Hesselroth who
was a member of the project through the fall of 2011 and was
largely responsible for the X.509 authentication code that was
contributed to OpenNebula. This work is supported by the US
Department of Energy under contract number DE-AC02-
07CH11359 and by KISTI under a joint Cooperative Research
and Development Agreement. CRADA-FRA 2014-0002/
KISTI-C14014.

REFERENCES
[1] R.Hously et al, “Internet X.509 Public Key Infrastruture

Certificate and CRL Profile”
https://www.ietf.org/rfc/rfc2459

[2] R. Rivest, A. Shamir, L. Adleman, “A Method for
Obtaining Digital Signature and Public-key
Cryptosystems”, Communications of the ACM 21 120-
126 1978.

[3] R. Alfieri et al. 2004. VOMS, an authorization system
for virtual organizations Proceedings of European across
Grids conference No1, Santiago De Compostela, Spain
2970 33-40

[4] M. Lorch, D. Kafura, I. Fisk, K. Keahey, G. Carcassi, T.
Freeman, T. Peremutov , A. S. Rana. 2005. Authorization
and account management in the Open Science Grid The
6th IEEE/ACM International Workshop on Grid
Computing, 2005

[5] http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-cos01-en.html

[6] http://toolkit.globus.org/toolkit/security/
[7] http://fermigrid.fnal.gov
[8] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny,

A. Roy, P. Avery, K. Blackburn, T. Wenaus, F.
Wurthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky,
J. McGee, and R. Quick 2007. The Open Science Grid
Journal of Physics: Conference Series, 78 15

[9] http://code.macournoyer.com/thin/
[10] https://tools.ietf.org/html/rfc7292
[11] https://wiki.nikhef.nl/grid/LCMAPS
[12] http://www.egi.eu
[13] R. Moreno-Vozmediano, R. S. Monero, I. M. Llorente,

IaaS Cloud Architecture: From Virtualized Datacenters
to Federated Cloud Infrastructures, IEEE Computer, vol.
45, pp. 65-72, Dec. 2012

[14] https://www.oasis-
open.org/committees/download.php/13525/sstc-saml-
exec-overview-2.0-cd-01-2col.pdf

[15] K. Keahey, I. Foster, T. Freeman, X. Zhang, D. Galron,
Virtual Workspaces In The Grid, Europar 2005, Lisbon,
Portugal, Sep. 2005.

[16] http://www.itu.int/ITU-
T/recommendations/rec.aspx?rec=X.509

[17] S. Timm, K. Chadwick, G. Garzoglio, S. Y. Noh, Grids,
virtualization, and Clouds at Fermilab, in Proceedings of
the 20th International Conference on Computing in High
Energy and Nuclear Physics (CHEP 2013), Journal of
Physics: Conference Series 513 (2014). D. L. Groep and
D. Bonacorsi, eds. IOP Publishing.

[18] G. Garzoglio, J. Bester, K. Chadwick, D. Dykstra, D.
Groep, J. Gu, T. Hesselroth et al. "Adoption of a SAML-
XACML Profile for Authorization Interoperability across
Grid Middleware in OSG and EGEE." In Journal of
Physics: Conference Series, vol. 331, no. 6, p. 062011.
IOP Publishing, 2011.

[19] P. Mhashilkar, A. Tiaradani, B. Holzman, K. Larson, I.
Sfiligoi, and M. Rynge, Cloud Bursting With
GlideinWMS: Means to satisfy ever increasing needs for
Scientific Workflows. In Journal of Physics: Conference
Series 513 (2014). D. L. Groep and D. Bonacorsi, eds.,
IOP Publishing.

