

REPORT ON THE COLLABORATIVE RESEARCH:
ENABLING ON-DEMAND SCIENTIFIC WORKFLOWS ON A

FEDERATED CLOUD

CRADA FRA 2014-0002 / KISTI-C14014

STEVEN TIMM, GABRIELE GARZOGLIO,
FERMI NATIONAL ACCELERATOR LABORATORY

SEO-YOUNG NOH, HAENG-JIN JANG,

KISTI

Table of Contents

1. Executive Summary .. 2
2. Introduction ... 2
3. Technical deliverables ... 2
3.1. Virtual Infrastructure Automation and Provisioning ..4
3.2. Interoperability and Federation of Cloud Resources ..5
3.3. On-demand Services for Scientific Workflows ..6

4. Qualitative and quantitative output ... 7
5. Budget Allocation ... 8
6. References ... 8

 !

Report: CRADA FRA 2014-0002 / KISTI-C14014

2 October 23, 2014

1. EXECUTIVE SUMMARY

The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub
Center are working on a multi-year Collaborative Research And Development Agreement. With the knowledge
developed in the first year on how to provision and manage a federation of virtual machines through Cloud
management systems, in this second year, they have enabled scientific workflows of stakeholders to run on multiple
cloud resources at the scale of 1,000 concurrent machines. The demonstrations have been in the areas of (a) Virtual
Infrastructure Automation and Provisioning, (b) Interoperability and Federation of Cloud Resources, and (c) On-
demand Services for Scientific Workflows. This is a matching fund project in which Fermilab and KISTI will
contribute equal resources.

2. INTRODUCTION

The Cloud computing paradigm has revolutionized the approach to Information Technology in many sectors of
society, from telecommunication to the military to science. In particular for science, national laboratories,
computing centers and universities in many countries are adapting their current paradigm on distributed computing,
complementing the Grid model of federated resources [1,2] with the Cloud model of on-lease dynamically
instantiated resources from private and commercial entities.

For institutions such as KISTI and Fermilab, the focus on Cloud computing is dictated by the need to support ever
more effectively individual large communities (e.g. the LHC experiments) together with many medium size ones
(e.g. the Intensity Frontier experiments and the STAR experiment). With each community requiring slightly
different configurations for their computational environment, the use of dynamically instantiated virtual machines
managed through a Cloud layer becomes an attractive solution to enable such diversity. In addition, in a time where
computing budgets are unable to follow the growth of demand from the stakeholders, research institutions are
compelled to improve their flexibility in the allocation of resources. To address the need for flexibility, the
characteristic of the Cloud paradigm to instantiate computing services on-demand on a common pool of computing
hosts provides a valuable solution.

KISTI and Fermilab have been collaborating on Cloud computing since 2011. In 2013, this collaboration resulted
in a formal Collaborative Research And Development Agreement (CRADA) for a multi-year program of work to
offer production-quality on-demand computing services to their scientific stakeholders. The vision is to provide
layered services on a federation of Clouds, provisioning execution environment on a high-throughput fabric of
resources, with the scientists interacting with the Software as a Service layer.

In the first year of collaboration, we focused on proof-of-principle demonstration of basic capabilities: resource
provisioning through a few selected Cloud interfaces (Infrastructure as a Service), techniques for virtual machine
federation and compatibility, and high-throughput virtualization to build the “fabric” of the computational
infrastructure. In this second year, we expanded the work on provisioning and federation, increasing both scale and
diversity of solutions, and we started to build on-demand services on the established fabric, introducing the
paradigm of Platform as a Service to assist with the execution of scientific workflows. In the years to come we
envision to increase both the diversity of Cloud providers and the scale of utilization, improving our ability to
federate resources and deploy ensembles of complex services in support scientific computation.

This report focuses on the deliverables for the second year of the program.

3. TECHNICAL DELIVERABLES

The program of work for the second year of the agreement consisted in demonstrations and studies to run
scientific workflows on dynamically provisioned resources at the scale of 1,000 concurrent virtual machines. The
work was organized in three major areas: (1) Provisioning; (2) Federation and Compatibility; (3) On-Demand
Services.

1. Virtual Infrastructure Automation and Provisioning focuses on finding fast and reliable mechanisms to

access a large amount of resources on private, community, and commercial cloud providers. The area was
organized in 5 major activities:

a. Infrastructural scalability to 1,000 VM: demonstrate a mechanism which can transparently extend
grid jobs into FermiCloud and other clouds at scale of 1000 or more simultaneous virtual machines

b. Scientific workflows scalability to 1,000 VM: run production scientific workflow of at least 1000
simultaneous virtual machines on federated cloud resources via GlideinWMS [4,8] and cloud web

Report: CRADA FRA 2014-0002 / KISTI-C14014

3 October 23, 2014

services API’s. This activity demonstrates that workflows for the NOvA experiment can take
advantage of Cloud resources for their computational peaks at the scale of 1,000 VM.

c. Cost-sensitive provisioning: Continue development of provisioning algorithms that calculate relative
cost of commercial cloud and private cloud provisioning, including the potential for spot pricing.
Hao Wu, a PhD student from the Illinois Institute of Technology is focusing his research on this
topic. The results of his research this year have been accepted at the MTAGS workshop as a paper
jointly authored with KISTI [9].

d. Provisioning of a platform of services: Investigate deploying complicated ensembles of virtual
machines in support of scientific workflows. This year, the work focused on the dynamic
deployment of an ensemble of Squid services on Amazon Web Services. Relying on a cache
discovery system (Shoal), the ensemble acts as a discoverable platform for web-based data caching.
This infrastructure is used in conjunction with the CERN VM File System (CVMFS) to provide
scalable access to software applications on Grid and Cloud platforms.

e. Idle VM detection improvements: we investigated whether it was necessary to add additional
functionality to the idle VM detection software developed in the 1st year of the CRADA program,
making it publically available to the OpenNebula ecosystem, in case. We are finalizing the
investigation on whether the idle VM detection system is sufficient for the current level of utilization
of the Cloud resources or further improvements are necessary for next year. Our aim is to generalize
the system to work on other Cloud management systems, in addition to OpenNebula, and for
commercial clouds.

2. Interoperability and Federation of Cloud Resources consists in finding a set of virtual image formats and
application programming interfaces that can be used by all members of a virtual organization across a
heterogeneous infrastructure. The area was organized in 4 major activities:

a. Authentication / Authorization: perform comparative investigation of X.509 authentication and
authorization used by other cloud software providers and federated cloud taskforces. The
investigation was accepted as a paper to the IEEE First International Workshop on Cloud Federation
Management [10].

b. VM image portability: develop automatic virtual machine image format conversion service. This
activity resulted in the development of an open source tool and related documentation for porting
VM images from an Open Nebula system, such as FermiCloud, to Amazon Web Services. The tool
removes configurations specific to the hosting environment, such as disk mount point, converts the
resulting image in a format compatible with AWS, and automatically transfers the image in the AWS
repository for immediate use.

c. VM distribution: investigate virtual machine distribution methods and distributed object-based
storage. This investigation evaluates scalable global storage technologies shared among hosts in a
private Cloud (FermiCloud). Within our scope, a global storage is necessary to speed up the
deployment of virtual machines to the hosts and to enable virtual machine live-migration. The
current technologies (Red Hat clustering) do not scale well. The investigation focused on the CEPH
storage system and gave encouraging results, although deployment and operations are expected to be
more stable on the upcoming generation of operating systems (Scientific Linux 7)

d. Cloud interoperability: expand interoperability studies to cover more commercial and community
clouds. This study focused on the documentation and proof-of-principle integration of the Google
Compute Engine and Microsoft Azure Cloud with the Fermilab computational environment. The
goal of this activity was to expand the range of commercial Cloud providers available to our
scientific stakeholders, to avoid vendor lock in and optimize workflow execution.

3. On-demand Services for Scientific Workflows aims at finding the most efficient methods for scientific grid
and cloud computing middleware to distribute data and execution across the WAN to meet the demand. This
area was organized in 4 activities:

a. Data movement on-demand: evaluate strategies for data storage and movement in support of
scientific workflows. For virtual machines running at AWS, we evaluated the cost effectiveness of
storing data on local storage (S3): taking advantage of the S3 scalability, jobs could store data
immediately at the end of the jobs. We compared this with keeping virtual machines waiting on a
data transfer queue to move data back to Fermilab storage. In our model, the latter approach was
most cost effective. In addition, this activity supported the provisioning a platform of services,
discussed in (1), focusing on the deployment of an ensemble web caching servers (Squid),
discoverable through a common name server (Shoal).

Report: CRADA FRA 2014-0002 / KISTI-C14014

4 October 23, 2014

b. MPI on Virtual Clusters: continue virtualized MPI computational chemistry workflows with KAIST
stakeholders and other interested parties. In the first year of the CRADA we enabled the use of
InfiniBand from virtualized nodes, this year we collaborated with Prof. Yousung Jung to try the
system for quantum chemistry and quantum mechanical periodic solid computations. The
demonstration exposed the need for further optimization of the infrastructure, in order to achieve the
expected scalability.

c. User-oriented best practices: develop best practices for running workflows on public clouds with
limited Internet accessibility and significant data bandwidth charges. As the number of communities
using Cloud resources for production activities is still relatively small, direct interaction with the
users has been the preferred way to discuss best practices on the Cloud. We envision writing
documentation on this topic in the next year of our collaboration.

d. Fabric improvements: do high-bandwidth storage and network fabric research as necessary to
support the above workflows. At the scale of 1,000 virtual machines, we did not uncover the need
for further tuning of the fabric to support the computational activities.

The following sections describe in more detail these demonstrations and studies.

3.1. Virtual Infrastructure Automation and Provisioning

Infrastructural and scientific workflows scalability to 1,000 VM
We have previously identified the cosmic-ray Monte Carlo simulation of the NOvA experimental detector as a

workflow that is ideally suited for commercial cloud computing due to almost no input files, a modest 1GB output
file, and being predominantly CPU bound. We have previously run up to 100 simultaneous virtual machines on
AWS and up to 150 jobs on FermiCloud (50 VM’s at 3 jobs per VM). On Amazon Web Services the limiting factor
had been bandwidth to an auxiliary Squid caching server on the site of Fermilab. It was also cumbersome to create a
new working image on AWS due to our requirements for use of special kernel modules. The “provisioning of a
platform of services” activity, described below, successfully addressed the caching issue. The virtual machine
image format conversion tool, described below in the “virtual machine image portability” section, simplified the
process of creating or changing the stock virtual machine. On AWS we typically run machine type m3.large, which
has the capacity to run two NOvA jobs in parallel and features a 32GB SSD-based Instance store.

To expand FermiCloud to the capacity of running 1000 Virtual Machines the following steps were necessary: 140
Dell PowerEdge 1950 worker nodes (8 CPU cores each, 16GB of RAM) were made available for the purpose of
running batch jobs on the cloud. We used a locally routable private network for the virtual machines to access the
Fermilab site networks. Those few files that we needed from off-site were accessed via a Squid proxy server. We
also deployed OpenNebula 4.8 with X.509 authentication. This implements a much more reliable and fully-featured
emulation of Amazon EC2. We used our Bluearc NFS server as the image repository, copying the image from the
NFS server to the disk and starting it there.

Our worker node images on FermiCloud start with the “Golden Image”, which is a minimal Linux installation,
and add the extra software packages needed to run a job at boot time of the image. This is done via a series of
contextualization scripts that use a one-time application of the Puppet configuration system. On the public network
this takes less than a minute to complete. On the routable private network, where we are using a web proxy to access
off-site files via http, it can up to 10 minutes for a single VM and significantly longer if many are initializing in
parallel on the same node. For the second phase of this test, we used a virtual machine with these configurations pre-
applied, which significantly helped the launch and fill times.

The native command line utilities of OpenNebula 4.8 can fill the 1000-VM cluster in approximately 30 minutes.
In production we use GlideinWMS and HTCondor for VM provisioning and management. HTCondor creates a new
ssh key-pair for each virtual machine submitted so that it can uniquely identify them. OpenNebula 4.8 has a hard
limit of 300 key-pairs that can be stored per user. An error occurs on each VM submission after that, but it is
possible to have HTCondor continue after the error and thus fill the cluster to the full capacity of 1000 virtual
machines. It is also necessary to aggressively prune the MySQL database otherwise some queries
(DescribeInstances) will time out.

After filling the clouds with 1,000 test jobs, we engaged the NOvA users to submit a real workflow that in total
consists of 20000 files to process. We processed these files on AWS and FermiCloud simultaneously, reaching the
limit of 1000 simultaneously running VMS (1 job/VM) on FermiCloud and 1000 simultaneously running jobs (2
jobs/VM) on AWS.

Report: CRADA FRA 2014-0002 / KISTI-C14014

5 October 23, 2014

The Amazon AWS and FermiCloud private network virtual machines have been added to our production job
submission servers as part of this work and we will keep them available for further user access in a service that will
be known as the “On-Demand Batch Slot Instantiation Service”

Cost-sensitive provisioning
The design goal of a cost-sensitive algorithm is to enable automatic provision of resources for different scientific

applications so that the QoS of the scientific application is met and the operational cost is minimized. The main
challenge of designing such an algorithm consists in deciding when and where to allocate resources so that the goals
are met. In this study [9], we developed a mechanism to automatically train the VM launching overhead reference
model [11]. Based on the virtual machine launching overhead reference model, we have developed an overhead-
aware-best-fit (OABF) resource allocation algorithm to help the cloud infrastructure reduce the average VM
launching time. This OABF algorithm has been implemented for FermiCloud as a plug in of the vcluster system [5]
developed by KISTI. The experimental results indicate that the OABF can significantly reduce the VM launching
time (reduced VM launch time by 4 minutes on average) when many VMs are launched simultaneously.

Provisioning of a platform of services
In year 1 we launched individual instances of virtual machines. In this year 2, we started to deploy them as an

ensemble with the services that they rely on for scalability. This year we focused on web caching [24], which is our
most pressing need in running remotely. We used the Shoal system, developed at the University of Victoria, for
discovering Squid servers. It consists of three major components:

1. Shoal Agent: it is on each remotely-deployed Squid server and advertises its location to the central server via
the RabbitMQ messaging protocol;

2. Shoal Server: it collects the information on the availability and location of the squids ;
3. Shoal Client: it runs on each worker node virtual machine to query the Shoal Server and then modifies the

configuration of the virtual machine appropriately with the current list of squid servers
All components of squid, the shoal agent and client are automatically deployed via puppet apply scripts at boot

time, using the cloud-init service of AWS.
As part of this investigation we learned about auto-scaling groups, which are available both in AWS and in

Google Cloud, and are currently testing a load balancing system that brings multiple squid servers up or down on
demand. For the workflows that we currently run on AWS, a single remote squid is sufficient to handle the load. In
year 3 we envision deploying submission nodes on demand and storage transfer servers.

3.2. Interoperability and Federation of Cloud Resources

Virtual machine image portability
The current Cloud Management and Virtualization technologies support a number of diverse Virtual Machine

formats, not all compatible. VM image conversion is necessary in many cases to instantiate a VM from a Cloud
system to another. For our use cases, this happens commonly when transferring a “golden” image (i.e. a VM with
stable configuration) from FermiCloud to AWS, for example to run scientific workflows locally and on the
commercial platform using the exact same computational environment.

To address this problem, in year 1 we developed step-by-step documentation to manually convert between
commonly-used desktop virtualization formats and server-based virtualization and cloud solution, such as
OpenNebula, OpenStack, and Amazon EC2 [3]. This year, we developed a tool to automate the process [25].

The tool takes as input a golden image from the FermiCloud image storage; the image does not need to be
instantiated for the conversion process to work. It first resizes the image to optimize the space utilization and cost
when the VM is uploaded to the AWS image storage, then it removes certain Fermilab-specific configurations, such
as disk mount points and network configurations. At this point, the image is imported to the AWS storage.

Amazon Machine Images (AMI) support two types of virtualization: paravirtual (PV) and hardware virtual
machine (HVM). In general, paravirtual VMs can run on host hardware that does not have support for hardware-
assisted virtualization, and can be fitted with special network and storage drivers to better take advantage of the
underlying hardware. Historically, PV VMs had better performance than HVM VMs in many cases, but because of
enhancements in HVM virtualization and the availability of Solid State Device (SSD) disk drives, this tends not to
be the case any longer. PV formats also tend to be smaller in size than their HVM counterparts. Irrespectively, after
the import both VM formats can be directly instantiated at AWS.

The tool takes about an hour for the conversion process to complete, resulting typically in VM sizes around 3 GB
for PV images and 12 GB for HVM. Early operational experience has identified ways to cut this time significantly.

Report: CRADA FRA 2014-0002 / KISTI-C14014

6 October 23, 2014

In the next year of the program, we aim at extending the automation of this process to additional commercial
cloud providers, such as Google Computational Engine and Microsoft Azure.

Virtual machine distribution
We initially planned to evaluate OpenStack’s Swift object store, the GlusterFS system, and the Ceph system. All

of these are distributed object storage systems. Given CERN’s recent success in deploying Ceph as the back-end
image storage for their large OpenStack system [22], we decided to focus on evaluating this system. We found it to
be a very stable system and easy to operate and maintain. We successfully used Ceph to run virtual machines on
network-attached remote block devices and also to import and export full images to and from local VM host disks
[23]. We found the Ceph system to be very stable in operation and fault-tolerant against single machine failures. As
Red Hat Enterprise Linux 7/Scientific Linux 7 becomes more widespread we expect that it will become much more
straightforward to deploy and maintain in production and we intend to continue planning towards that deployment.

Cloud interoperability

In order to increase the diversity of resources in our Federation, we have continued our investigation of Application
Program Interfaces from major Commercial Cloud providers. Our goal is to enable the use of different providers to
run our scientific workflows. Different providers might be more effective in terms of performance or cost to address
the specific needs of our scientific workflows. This strategy also mitigates the risk of vendor lock-in. In year 1 we
successfully tested Amazon EC2 [3]. This summer we tested the Google Compute Engine and the Microsoft Azure
Cloud. We produced a manual [26] for beginning users to start new virtual machines on the Google Compute
Engine using the web GUI or by using a Python script with the associated Python bindings. We also collected
information on how to start virtual machines on the Microsoft Azure Cloud. For bulk usage of either of these clouds,
support will have to be added to HTCondor and GlideinWMS. HTCondor at one point supported the Google
Compute Engine but within the past year the API has changed sufficiently that the interface will have to be totally
redone and we have supplied the info to the developers on how to do it. We have also identified the work that will
have to be done with the Microsoft Azure cloud to get HTCondor to support that. In the next year of the program,
we plan to evaluate the integration of HTCondor with the OpenStack Native Cloud Interface, which is being
integrated this year.

3.3. On-demand Services for Scientific Workflows

Data movement on-demand
We have evaluated the cost of two different strategies to transfer the output of 1,000 jobs running on AWS to a

remote archive (e.g. the Fermilab Archival facility). The two strategies incur in different costs depending on
parameters such as the effective bandwidth of the transfer, the total size of the output, and the hourly cost of virtual
machines. The two strategies are described below:

1. When a job finishes its processing phase and is ready to transfer its output, the job initiates a direct transfer
to the external archival facility. We assume that multiple jobs finish approximately at the same time and the
archival service allows only a limited number of transfers to avoid overload; the archival service queues up
the requests that cannot be immediately served. Jobs that are waiting still incur the regular cost of running a
VM at AWS. Eventually, all jobs transfer data back to archive.

2. Finished jobs transfer output to S3, the scalable storage service at AWS. Because of its scalability, all
transfers can happen approximately at the same time and all VM can terminate afterwards: there is no cost
due to idle jobs waiting to transfer data. Storing data in S3, however, has a cost depending on data size and
storage usage time. All data is transferred asynchronously to the archive, then the data can be erased.

In our model, depending on the specific values of the parameters, sometimes the cost of strategy (1) is smaller
than (2), sometimes vice versa. For example, with 1,000 VM each transferring a 2 GB output, considering a
bandwidth to storage of 10 Gbps, strategy (1) costs $302 and strategy (2) $275. With the same conditions but with
an output size of 1 GB per VM, the costs reverse, with strategy (1) costing $155 and strategy (2) $151.

This investigation, did not consider costs reductions on outbound data transfer from AWS through ESNet (the
DOE research network provider), which was established at a later time. This study can be further refined and the
strategy reevaluated as the costs of AWS change. It seems clear, however, that using S3 can be cost effective,
depending on the circumstances and may be worth implementing for year-3 of our collaboration. Making use of S3
caching, in fact, will require changes to our data handling software.

Report: CRADA FRA 2014-0002 / KISTI-C14014

7 October 23, 2014

MPI on Virtual Clusters
In year 1, we enabled the use of InfiniBand interconnectivity from Virtual Machines for node-to-node inter-

process communication [13,19]. This year we worked with Prof. Yousung Jung from KAIST to evaluate the
deployment with out-of-the-box network settings. The evaluation uncovered that further tuning of the
communication layer is necessary to use the infrastructure for heavily parallel jobs. As a benchmark, Prof. Jung used
two scientific applications based on quantum chemistry and quantum mechanical periodic solid models, using the
Message Passing Interface (MPI) for inter-process communication. When run on a local reference cluster, tuned for
efficient use of the InfiniBand interface, the running time of the overall computation was reduced almost linearly by
growing the number of allocated processors (e.g. for quantum chemistry calculations, 11,693 seconds for 8 cores in
1 node vs. 5,354 seconds for 16 cores from 2 nodes). On FermiCloud, the same result could not be reproduced as the
computational time increased by adding cores from different nodes, exposing that the inter-process communication
dominated the computational time. Although standard benchmarks (HPL Linpack) on FermiCloud showed that
virtualized InfiniBand through SR-IOV drivers had performance equivalent to bare metal especially for large
messages, the experience running scientific code demonstrated that further tuning of the communication layer is
necessary to efficiently support generic scientific applications. We note that Infiniband work that was done by our
student Tiago Pais and reported in the first year of the CRADA has now been included as part of a larger journal
article by I. Sadooghi et al [13], which is a comparative study of launch times and HPC performance between AWS
and FermiCloud; this has been submitted to the IEEE Transactions on Cloud Computing.

4. QUALITATIVE AND QUANTITATIVE OUTPUT

The collaboration between Fermilab and KISTI achieved the goals in the statement of work for the second year of
the CRADA. Broadly, we have achieved two main results:

1. We have developed techniques and methods to increase the scale of resource provisioning to 1,000 VM and
the complexity of on-demand services dynamically deployed in support of scientific computation;

2. We have automated and simplified the formatting and distribution of virtual machines across an
increasingly broad federation of diverse Cloud providers.

Quantitative considerations:
This year, the collaboration has worked on 5 papers. It has published a paper at the Workshop on Many-Task

Computing on Clouds, Grids, and Supercomputers (MTAGS) [9]; one at the 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014) [11]; another at the Cloud Federation
Management workshop [10], which is part of the Utility and Cloud Computing 2014 conference in London in Dec
2014. It has also submitted another two to the journal “IEEE transactions on Cloud computing” [12,13], receiving
positive feedback at this stage of the process. In summary, the two-years program has produced eight papers to date,
adding these five to the three published in the first year [6, 7, 19].

The work from year 2 was presented at four talks [11,14,15,16] and is scheduled at three more after Oct 2014
[10,17,18]. Some of these talks will result in additional papers in the proceedings. In summary by early 2015, the
overall 2 years program will have been presented at eleven talks, adding these seven to the three from year 1
[19,20,21].

We also made publicly available all documentation produced [23,24,25,26], including this report. In addition, all
the code is available from the code repository of the FermiCloud project or github.com. The code consists of the
automated virtual machine image format conversion tool [27] and the infrastructure to provision a platform of web
caching services based on Squid and Shoal [29]. This code consists of interpreted scripts and puppet manifests that
can be used directly without a binary distribution. A third development [28] consists of a plug-in and modified code
for the vcluster system [5], developed at KISTI. This code instruments the process of virtual machine provisioning
and implements the cost-sensitive provisioning algorithm described above [9, 11].

Qualitative considerations:
Build relationships with cloud facilities in US and Pacific Rim: we have acquired allocations on Amazon Web

Service, Google Computational Engine, and Microsoft Azure and we have started exploring potential fare reductions
applicable to research institutions. In particular, AWS has recently agreed to discount the cost for outgoing network
traffic through ESNet (our main research network provider) and we are in the process of enabling this feature for our
traffic. We are also discussing potential grant funding from AWS and Microsoft to bootstrap the use of Cloud
computing for scientific computation at the next scalability level (beyond 1,000 concurrent VM). At the same time,
we continued our collaboration with Rackspace, University of Texas at San Antonio, and University of Wisconsin at

Report: CRADA FRA 2014-0002 / KISTI-C14014

8 October 23, 2014

Madison, acting as stakeholders in the joint work to integrate the native OpenStack “NOVA” interface with
HTCondor. This work will enable the native integration of OpenStack deployment, including University of Notre
Dame, in the Federation.

Identify and begin to fix potential interoperability problems in cloud Application Programming Interfaces: We
have identified defects in the use of the Google Computational Engine API from HTCondor and reported the
problems to the HTCondor and Google teams. In addition, we’ve uncovered defects in the OpenNebula V4
implementation for which we’ve implemented a work around and reported the problem the development teams.

Create a virtual infrastructure able to interoperate with leading commercial and scientific cloud facilities: through
the demonstration of running scientific workflows for the NOvA experiment on 1,000 virtual machines deployed on
FermiCloud and AWS, we have effectively created a federated virtual facility for our scientific stakeholders.
During the course of the past year, three other Fermilab experiments, the Dark Energy Survey, the MicroBooNe
experiment, and the mu2e experiment, have also made use of on-site FermiCloud batch resources, easily leveraging
the work that was done to enable NOvA.

5. BUDGET ALLOCATION

A. Fermilab-funded effort: TOTAL INDIRECT COSTS Fermi Research Alliance, LLC (FRA) / Fermilab
FY2014 provisional indirect cost rate is currently 70.00% (Salaries – SWF), 15.50% (Travel), and 21.28%
(Other Material & Services – M&S) of Modified Total Direct Cost, in accordance with Fermilab's contract
with the Fermi Research Alliance, LLC (FRA) and the Department of Energy.
The budgeted amount to contribute $100,000 of direct costs (equivalent to $170,000 with indirect cost) was
estimated at 7.5 FTE-months. The table below shows effort until the end of September. We estimate for
October an effort of at least ¼ FTE-month, thus the budget estimates were met.

PERSON ADJUSTED EFFORT, FTE-Months (to SEP 30, 2014)
Bernabeu Altayo, Gerard 0.76
Garzoglio, Gabriele 0.45
Kim, Hyun Woo 3.41
Peregonow, Nicholas 0.22
Timm, Steven 2.42
TOTAL 7.26

B. Obligated funds provided by KISTI as of Oct 2014 - Indicative report!

3 IIT students for the summer (Xu Yang, Sandeep Palur, Hao Wu) $33540
1 INFN student for the summer (Alessio Balsini) (labor, housing, transportation) * $6,000
1 consultant for the summer (Kirk Shallcross) $32,800
Computing cycles at Amazon Web Services * $1,579
Travel * $5,233
Miscellaneous (temp. housing, etc) $1,088
TOTAL DIRECT COST $80,230
INDIRECT COST (15.50% on Travel; 21.28% on other M&S; 70.00% on SWF) $16,770
DOE ADMINISTRATIVE FEE (3%) $3,000
INDICATIVE TOTAL $100,000
!

* Not all obligated money has yet been invoiced by the vendors or paid out. Some expenses (such as travel to
KISTI) will be reconciled in November. The complete financial report will be available on December.

6. REFERENCES

[1] Pordes, R. et al. (2007). The Open Science Grid, J. Phys. Conf. Ser. 78, 012057.doi:10.1088/1742-
6596/78/1/012057.

[2] Kranzlmüller, D., J. Marco de Lucas, and P. Öster. "The European Grid Initiative (EGI)." In Remote
Instrumentation and Virtual Laboratories, pp. 61-66. Springer US, 2010.

[3] Virtual machine interoperability documentation: http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5208

Report: CRADA FRA 2014-0002 / KISTI-C14014

9 October 23, 2014

[4] Sfiligoi, I., Bradley, D. C., Holzman, B., Mhashilkar, P., Padhi, S. and Wurthwein, F. (2009). The Pilot Way to
Grid Resources Using glideinWMS, 2009 WRI World Congress on Computer Science and Information
Engineering, Vol. 2, pp. 428–432. doi:10.1109/CSIE.2009.950.

[5] Seo-Young Noh, Steven C. Timm, Haeng-jin Jang: vcluster: A Framework for Auto Scalable Virtual Cluster
System in Heterogeneous Clouds, in Cluster Computing (2013).

[6] Hao Wu, Shangping Ren, Gabriele Garzoglio, Steven Timm, Gerard Bernabeu, Hyun Woo Kim, Keith
Chadwick, Seo-Young Noh, Haeng-Jin Jang, Automatic Cloud Bursting Under FermiCloud, ICPADS CSS
workshop, Seoul, 2013, published in IEEE Xplore Digital Library, DOI: 10.1109/ICPADS.2013.121

[7] S. Timm, K. Chadwick, G. Garzoglio, Grids, Clouds and Virtualization at Fermilab, accepted in the Proceedings
of the Journal of Physics: Conference Series by IOP Publishing, 2013.

[8] P. Mhashilkar, A. Tiradani, B. Holzman, K. Larson, I. Sfiligoi, M. Rynge, Cloud Bursting with Glideinwms:
Means to satisfy ever increasing computing needs for Scientific Workflows, accepted in the Proceedings of the
Journal of Physics: Conference Series by IOP Publishing, 2013

[9] Hao Wu, Shangping Ren, Steven Timm, Gabriele Garzoglio, Seo-Young Noh, Overhead-Aware-Best-Fit
(OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead, 7th Workshop on Many-Task
Computing on Clouds, Grids, and Supercomputers (MTAGS) 2014, Nov 2014, New Orleans, Louisiana, USA

[10] Hyunwoo Kim, Steve Timm, X.509 Authentication/Authorization in FermiCloud, IEEE 1st International
Workshop on Cloud Federation Management, Dec 2014, London, UK

[11] Hao Wu, Shangping Ren, Gabriele Garzoglio, Steve Timm, Gerard Bernabeu, Seo-Young Noh, Modeling the
Virtual Machine Launching Overhead under Fermicloud, 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2014), May, 2014, Chicago, IL, USA

[12] Hao Wu, Shangping Ren, Gabriele Garzoglio, Steve Timm, Gerard Bernabeu, Keith Chadwick, Seo-Young
Noh, A Reference Model for Virtual Machine Launching Overhead, submitted in 2014 to the IEEE Transactions
on Cloud Computing.

[13] Sadooghi, Iman; Hernandez Martin, Jesus; Li, Tonglin; Brandstatter, Kevin; Zhao, Yong; Maheshwari, Ketan;
Raicu, Ioan; Pais Pitta de Lacerda Ruivo, Tiago; Garzoglio, Gabriele; Timm, Steven, Understanding the
Performance and Potential of Cloud Computing for Scientific Applications, submitted in 2014 to IEEE
Transactions on Cloud Computing TCC-2013-11-0278.R1

[14] G. Garzoglio, On-demand Services for the Scientific Program at Fermilab, International Symposium on Grids
and Clouds 2014 (ISGC 2014), March 2014, Taipei, Taiwan

[15] S. Timm, G. Garzoglio, FermiCloud On-demand Services: Data-Intensive Computing on Public and Private
Clouds, HEPiX Spring 2014 Workshop, May 2014, Annecy-le-Vieux, France

[16] S. Timm, G. Garzoglio, FermiCloud On-demand Services: Data-Intensive Computing on Public and Private
Clouds, Computing Technique Seminar at CERN, May 2014, Geneva, Switzerland

[17] S. Timm, Authentication, Authorization, and Federation in OpenNebula with FermiCloud, OpenNebula Conf
2014, Dec 2014, Berlin, Germany

[18] S. Timm, et al, Cloud services for the Fermilab scientific stakeholders, submitted to Computing in High-Energy
Physics 2015 (CHEP15), Apr 2015, Okinawa, Japan

[19] Tiago Pais Pitta de Lacerda Ruivo, Gerard Bernabeu, Gabriele Garzoglio, Steve Timm, Hyunwoo Kim, Seo-
Young Noh, Ioan Raicu, Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-
Performance Computing, 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2014), May, 2014, Chicago, IL, USA

[20] Timm, S. (2013, Sep 23) High Throughput and Resilient Fabric Deployments on FermiCloud, invited talk at
ISC Cloud 2013 symposium, Heidelberg, Germany.
https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5202

[21] Timm, S. (2013, Sep. 24) Enabling Scientific Workflows on FermiCloud using OpenNebula, keynote talk at
OpenNebulaConf 2013, Berlin, Germany. https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5203

[22] Daniel van der Ster, Arne Wiebalck, Building an organic block storage service at CERN with Ceph, presented
at the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013), pub.
Journal of Physics: Conference Series 513 (2014) 042047, doi:10.1088/1742-6596/513/4/042047

[23] Fermilab DocDB: Xu Yang - Ceph Documentation – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5428

[24] Fermilab DocDB: Sandeep Palur - Squid and Shoal Server Documentation – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5428

[25] Fermilab DocDB: Automated Image Format Conversion from FermiCloud to AWS - Documentation –
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5428

Report: CRADA FRA 2014-0002 / KISTI-C14014

10 October 23, 2014

[26] Fermilab DocDB: Alessio Balsini work on Google and Microsoft Cloud – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5428

[27] Fermilab DocDB: Automated Image Format Conversion from FermiCloud to AWS - Code – http://cd-
docdb.fnal.gov/cgi-bin/ShowDocument?docid=5428

[28] Code repository at https://github.com/philip-wu5/project/tree/fermi ; Printout at the Fermilab DocDB: Hao Wu
- Cost-sensitive Provisioning Algorithm - Code – http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5428

[29] Fermilab DocDB: Sandeep Palur - Coordinated Workflows with Squid - Code – http://cd-docdb.fnal.gov/cgi-
bin/ShowDocument?docid=5428

Modeling the Virtual Machine Launching Overhead
under Fermicloud

Hao Wu∗§, Shangping Ren∗, Gabriele Garzoglio†, Steven Timm†, Gerard Bernabeu†,Seo-Young Noh‡

Abstract—FermiCloud is a private cloud developed by the
Fermi National Accelerator Laboratory for scientific workflows.
The Cloud Bursting module of the FermiCloud enables the
FermiCloud, when more computational resources are needed, to
automatically launch virtual machines to available resources such
as public clouds. One of the main challenges in developing the
cloud bursting module is to decide when and where to launch
a VM so that all resources are most effectively and efficiently
utilized and the system performance is optimized.

However, based on FermiCloud’s system operational data, the
VM launching overhead is not a constant. It varies with physical
resource (CPU, memory, I/O device) utilization at the time when
a VM is launched. Hence, to make judicious decisions as to when
and where a VM should be launched, a VM launch overhead
reference model is needed. The paper is to develop a VM launch
overhead reference model based on operational data we have
obtained on FermiCloud and uses the reference model to guide
the cloud bursting process.

I. INTRODUCTION

Cloud technology has been benefiting general purpose
computing for quite some years. The pay-on-demand model
brought by cloud computing allows companies to avoid over
provision at its early project development stage. As the cloud
technology develops, many scientific research institutions have
migrated their research from traditional grid and distributed
computing platform to the cloud computing environment.
These research areas include life science [13], astronomy [15]
and earthquake research [10], to name a few.

One successful example of using cloud computing tech-
nology is the STAR project on Relativistic Heavy-Ion Collider
at the Brookhaven National Laboratory [1], [2]. The STAR
project studies the fundamental properties of nuclear matter
which only exist in a high-density state called a Quark Gluon
Plasma [1]. Because of resource shortage from the local grid
service, the STAR team started to collaborate with the Nimbus
team at Argonne National Laboratory to migrate its experiment
to a computer cloud. The Nimbus tools enable virtual machines
in private cloud to be deployed on Amazon EC2.

One of the advantages a computer cloud has over traditional
grid computing is that the resource utilization of the underlying

∗Illinois Institute of Technology,10 W 31st street, 013, Chicago, IL, USA,
{hwu28, ren}@iit.edu. The research is supported in part by NSF under grant
number CAREER 0746643 and CNS 1018731.

†Fermi National Accelerator Laboratory, Batavia, IL, USA,
{garzogli,timm,gerard1}@fnal.gov

‡National Institute of Supercomputing and Networking, Korea Institute of
Science and Technology Information, Daejeon, Korea, rsyoung@kisti.re.kr

§Hao Wu works as an intern in Fermi National Accelerator Laboratory,
Batavia, IL, USA

infrastructure can be significantly improved by deploying dif-
ferent tasks on the same physical computer node. In addition,
computation power can also be dynamically allocated to tasks
when more resources are needed by the tasks. The other
benefit of using a computer cloud over a grid is that a cloud
has “unlimited“ resources – when the private cloud is fully
occupied, cloud bursting techniques can temporarily acquire
external resources from, for instance, public clouds to fulfill
the need.

Fermi National Accelerator Laboratory (Fermilab), as a
leading research institution in the high energy physics (HEP)
field, started to build a private computer cloud, the FermiCloud,
in 2010. The FermiCloud has successfully served the HEP
experiments since its establishment. The cloud bursting tool
vCluster [8] is developed to automatically allocate resources
for scientific workflows from both FermiCloud and public
clouds such as Amazon EC2. However, how to dynamically
allocate resources for the scientific workflows that reduces the
average response time of scientific workflows as well as entire
system’s operational cost is a research and also an engineering
challenge yet to be overcomed.

The resource allocation problem in cloud computing started
to draw more attention in the research community in recent
years [11], [6]. However, most of the research in the resource
allocation area assumes that the virtual machine launching
overhead is negligible. As a result of this assumption, nei-
ther the launching overhead nor the dependency between the
overhead and resource utilization are taken into consideration
in designing their resource allocation algorithms. However,
our production line operation data indicates that the virtual
machine launching overhead can have significant variations.

The VM launching overhead has two aspects, i.e. (1) it
consumes system resources while it is launched and (2) it
takes time to complete the process of the launch. Both of these
types of overhead can impact the system’s performance. More
specifically, VM launching consumes a significant amount of
CPU and disk IO resources, leading to a high system CPU
and disk IO utilizations at the time of launching. If each host
computer in the private cloud happens to launch a new virtual
machine at the same time, due to high system utilization caused
by VM creations, the computer cloud may consider all the
hosts fully occupied and decides to perform cloud bursting
and create the virtual machine on an external public cloud.
Such additional cost is unnecessarily rendered and could be
prevented if we have a VM launch overhead reference model.

Furthermore, if a task requires an additional virtual ma-
chine in order to complete its work, but the virtual machine
takes a much longer time to complete its launching than
expected, it is possible that the task has already finished its

2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-2784-5/14 $31.00 © 2014 IEEE
DOI 10.1109/CCGrid.2014.87

374

work before the virtual machine is ready for executing the
task. This again leads to resource waste and an added cost
due to without a VM launching overhead reference model.

In this paper, we are to (1) study the VM launching
overhead behavior based on real operational data obtained
from FermiCloud; (2) develop a reference model for virtual
machine launching overhead from both timing and utilization
perspectives; and (3) evaluate the accuracy of the developed
reference model.

The rest of the paper is organized as follows: Section II
discusses related work. Section III analyzes the virtual machine
launching overhead through a large amount of experiments on
FermiCloud. Section IV presents a reference model for virtual
machine launching overhead. Section V evaluates the accuracy
of the proposed model. We conclude the work in section VI.

II. RELATED WORK

Lots of researches have been done on evaluating the cloud
performance and modeling cloud. One of the most influencing
cloud modeling tool is CloudSim [6] developed by CLOUDS
lab from the University of Melbourne. The CloudSim is a
java based cloud simulation tool that supports modeling and
simulation of large scale cloud computing environments. It
provides a cloud modeling that models cloud infrastructure
physical machines’, and virtual machines’ characteristics and
behaviors, a cloud market modeling that models the cost
of resources, a network modeling that models the network
behavior of inter-networking of clouds, a cloud federation
modeling that models the communication between clouds, a
power consumption modeling that models the power consump-
tions in the datacenter, and a resource allocation modeling
that models virtual machine allocation policies. The CloudSIm
provides a relative comprehensive modeling tool that covers
almost all the basic elements under a cloud environment.

Recently, Huber et al.’s work evaluated the virtualization
performance and proposed a virtualization overhead model [9].
In their work, they mainly focus on two virtualization plat-
forms, XenServer and VMware ESX. They test the perfor-
mance downgrades that is brought by the virtualization. They
test the CPU, memory, disk IO, and network performance
degradations on both XenServer and VMware ESX platforms.
Based on the experiments, they categorized the virtualization
performance influencing factors into four major categories:
virtualization type, hypervisor’s architecture, resource manage-
ment configuration and workload profile. However, Huber’s
model does not consider virtual machine launching overhead,
it only provides the computation overhead that is brought by
the virtualization.

Researchers adapted the above cloud models and cloud
simulations tools and proposed significant contributions to
resource allocation on clouds, such as resources provisioning
algorithms from QoS perspective [7], from service providers’
profit perspective [14] and from energy consumption per-
spective [5]. Recently, Mengxia Zhu et al. proposed a cost
effective scheduling for scientific workflow under cloud envi-
ronments [11]. Their scheduling algorithm aims to shorten the
application’s response time and reduce the energy consumption
simultaneously by considering the virtual machine launching
overhead.

Fig. 1: System Architecture

However, they did not consider the variation of the virtual
machine launching overhead. Not only Zhu’s work, including
CloudSim, few other researchers have taken virtual machine
launching overhead variation as an key variable for designing
resource allocation algorithms. However, the virtual launching
overhead may have a large variation that may cause significant
impact on the resource allocation process. In the FermiCloud
bursting project, the design of the resource allocation algorithm
aims to automatically allocate resources for the scientific work-
flows that need extra computational resources. If the virtual
machine launching overhead variation is not well modeled
and calculated, the system utilization and efficiency may be
pulled down dramatically. Furthermore, it may cause resource
and energy waste. Hence, we need an accurate mathematical
model for the virtual machine launching overhead. The refer-
ence model we propose in the paper is drawn from a large
amount of experimental observations. The formal analysis of
the experiments is discussed in the next section.

III. ACTUAL VM LAUNCHING OVERHEAD ON
FERMICLOUD

In this section, we study the patterns of the virtual machine
launching overhead based on the virtual machine operations in
the FermiCloud production cloud environment.

A. FermiCloud System Configuration

The FermiCloud uses OpenNebula [3], [12] as its cloud
platform. As illustrated in Fig. 1, the system has an OpenNeb-
ula front-end server that manages the entire cloud infrastruc-
ture, an image repository that stores all VM images, and a set
of host machines on which VMs are deployed.

The OpenNebula front end server has 16-core Intel(R)
Xeon(R) CPU E5640 @ 2.67GHz, 48GB memory. Fifteen
homogeneous hosts are used for the experiments. All the
fifteen hosts are configured with 8-core Intel(R) Xeon(R) CPU
X5355 @ 2.66GHz and 16GB memory. All these machines are
connected through high speed Ethernet.

Under OpenNebula [4], the VM launching process consists
of four major states. Fig. 2 illustrates the state change during a
VM launching process in OpenNebula [4]. In particular, when
a user creates a new VM, the VM enters the pending state. In
the pending state, the cloud scheduler decides where to deploy
the VM. Once the VM has been deployed on a specific host,
it enters into the prolog state in which all VM related files
(images in our case) are transferred from the image repository
to the host machine. After all the files are copied to the host,
the VM enters the boot state, during which it is booted from
the host. Finally, after the VM is successfully booted, it enters

375

into the running state. Once a VM is in its running state, it is
ready to execute tasks.

Fig. 2: VM Launching State Diagram[4]

B. Base VM Launching Overhead

We first obtain the baseline utilization overhead of launch-
ing a new VM. In order to get the baseline utilization overhead
of launching a new VM, we let all the host machines in the
private cloud be empty, i.e. have no application being deployed,
before launching a VM. Each time, a single VM is launched.
All the launched VMs are configured with one virtual core and
2 GB memory. We retrieve the exact virtual machine launch
time from each virtual machine’s system log. The experiment
is repeated ten times.

Fig. 3: VM Launching CPU Utilization Overhead

Fig. 3 shows the average system CPU utilization variation
in the process of launching a VM. The x-axis represents the
time instance of sampling points. The sampling interval is ev-
ery 10 seconds and it is used for all the other experiments. The
y-axis indicates the host machine’s CPU utilization consumed
by the process of a single virtual machine. For convenience,
throughout the paper, we refer the CPU utilization consumed
by a VM on a host machine as the VM’s CPU utilization.

Since the host machine consists of multiple CPU cores,
the VM’s CPU utilization represents a single CPU utilization
consumption by the VM’s process. If the VM’s CPU utilization
exceeds 100%, it means the VM occupies more than one CPU
cores.

As shown in Fig. 3, there are two different CPU utilization
variation trends. The first part, from time 0 to time 14, is due
to the prolog procedure, which fully consume a CPU until
the image is copied to the host. The second part, from time
15 to time 120, is due to the booting procedure. Once the
booting procedure starts, it immediately reaches a high CPU
utilization and the CPU utilization slowly decreases after the
services are started. When VM’s CPU utilization remains close
to constant, the VM is considered to be in running state. We
denote the VM’s CPU utilization variation trends in Fig. 3 as
the baseline VM launching CPU overhead and use it as the
base for comparisons in following experiments.

C. CPU Utilization Impact

The above experimental data indicates that VM launching
overhead causes system CPU utilization to change on an empty
machine. In reality, most of the VMs are not launched on
empty hosts. Thus, it is interesting to see how the system
utilization influences the VM launching process. The following
sets of data are obtained to investigate the influence of system
utilization on the VM launch overhead.

1) Different system utilization: In this experiment, VMs
are launched under different system utilizations. Fig. 4 depicts
the system CPU utilization change when VMs are launched
under different system CPU utilizations. It indicates that every
time a new VM is launched, the system utilization is suddenly
increased to a high level and remains at the level for a while
before it goes down.

Fig. 4: VM Launching Overhead under Different System
Utilization

Fig. 5 shows the booting utilization variations for different
VMs. As indicated in the figure, the variations converges to
the same value. In fact, the variation of the booting process is
at most 10% while the peak utilization of booting a VM has
a variation of 40%.

Fig. 5: VM Booting Overhead
To clearly distinguish the VM launching overhead change

from the system utilization change, we extract individual VM
launching overheads from Fig. 4 and depict the results in
Fig. 6. Fig. 6 clearly demonstrates that the time of the VM
prolog process changes quite significantly when launching
VMs under different system utilizations.

Table I summarizes the variations. “Util” column indicates
the system’s CPU utilization when a new virtual machine is
created; the column of “Prolog” represents the time increases
for the prolog process when it is compared with the baseline
virtual machine prolog time; the column of “Boot” represents

376

Fig. 6: VM Launching Overhead Comparison
Util
(CPU)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prolog 0 0 0.38 0.61 0.69 0.84 1.23 1.23 1.46 1.46
Boot 0 0 0 0.03 0.05 0 0.12 0.03 0.01 0.03
Peak
Util.

0 0.10 0.02 -0.05 -0.38 -0.19 0.07 0.07 -0.35 -0.34

TABLE I: VM Launching Overhead Comparison

the time increases for the booting process compared with the
baseline virtual machine booting time; and the “Peak Util.”
column represents the VM’s peak CPU utilization increases
for the booting process compared with the baseline virtual
machine’s booting CPU peak utilization.

As table I indicates, when the system’s CPU utilization
reaches 100%, launching a new VM takes 1.5 times compared
with launching a VM on an empty host. However, if the VM
booting process is isolated out, surprisingly, all the booting
processes take similar amount of time no matter how high the
system utilization is as shown in Fig. 5.

2) Different VM configuration: For previous experiments,
all VMs have the same configuration. To know how the
configurations of the VMs may impact the VM launching
overhead, we repeat the above experiments but with different
VM configurations (2 virtual cores and 4 GB memory). Table II
lists the results of the experiments. The incremental times are
compared with the baseline VMs from table I.

Intuitively, the VM prolog time will not change much as the
same VM image is used for the VMs and the only changes
are the number of CPU cores and the size of memory. The
results confirm that the prolog times remain the same trends
as the baseline VMs. Furthermore, without a surprise, the
VM booting processes also take the same amount of time
as the single core VMs do. Hence, we can conclude that the
VM configurations do not have significant impact on the VM
launching overheads.

D. Disk IO Utilization Impact

The baseline experiments show that the VM launching
overhead consists of two parts, one is the image transferring
and copying process and the other is the VM booting process.
From the above CPU utilization experiments, we have learned

Util
(CPU)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prolog 0 0 0.15 0.23 0.30 0.38 0.84 1.69 1.69 1.76
Boot -0.03 -0.01 0 0 0.05 0 0.07 0.05 0.07 0.05
Peak
Util.

0.24 0.26 0.02 0.06 -0.04 0.07 -0.04 -0.14 -0.31 -0.31

TABLE II: VM Launching Overhead Comparison under
Different VM Configurations

that the VM booting overhead does not change much when the
system utilization changes. However, it is possible that during
the image copying process, the overhead may be influenced
by the disk IO operations and network traffic. We discuss each
below.

1) Launching overhead under different IO utilization:
Since disk IO operations also consume CPU resources. In order
to focus on the impact of disk IO utilization variations, we keep
the system’s CPU utilization as low as possible. As illustrated
in Fig. 7, even when the IO utilization reaches 100%, the CPU
utilization still remains at a relatively lower level (less than
20%). Similar to the VM’s CPU utilization, we refer VM’s IO
utilization as the host machine’s disk IO utilization consumed
by the single VM and system’s IO utilization as the host
machine’s total utilization.

Fig. 7: IO Utilization v.s. CPU Utilization
We use the same VM configuration as used for the baseline

experiments. VMs are launched under different system disk
IO utilization and the results are shown in Fig. 8. As Fig. 8
indicates the VM launching overhead has large variations
when VM starts under different disk IO utilizations. If we
isolate the VM booting overhead, as shown in Fig. 9, we can
clearly notice that the VM booting overhead under different IO
utilizations has significant changes when the disk IO utilization
changes. The VM’s booting time is almost doubled when
launched under fully IO utilized situation when it is compared
to the one launched under an idle host.

Fig. 8: VM Launch Overhead Comparison Under Different
IO Utilization

Table III gives the detailed VM launching overhead incre-
ments under different disk IO utilizations in comparison with
the baseline overhead. In particular, when compared with the
baseline launching overhead, the prolog process takes a much
longer time to copy images to the host machine when the host
machine’s disk IO utilization is high. When the host machine’s

377

Fig. 9: VM Booting Overhead Comparison Under Different
IO Utilization

Util(io) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Prolog 0.61 1.07 1.31 1.61 1.69 2.07 2.54 3.23 3.53 4.69
Boot 0.03 0.06 0.12 0.20 0.32 0.40 0.41 0.41 0.78 1.09
Peak
Util.

-0.10 -0.57 -0.56 -0.48 -0.40 -0.13 -0.34 0.03 -0.31 -0.38

TABLE III: VM Launching Overhead Comparison under
Different IO Utilization

disk IO utilization reaches 100%, it take almost 5 times to
copy an image compared with copying an image to idle host
machines. Notice that the VM booting processes also take a
longer time (almost twice as much) when the host machine has
frequent disk IO operations. An interesting finding is that the
peak utilization caused by the booting process is much lower
when it is compared with the baseline overhead when the host
disk IO utilization is high.

2) Simultaneous Launching Overhead: Above experiments
give the insight of how host machine’s disk IO operations can
impact the VM launching overhead. This set of experiments
is to investigate if there are mutual influences on launching
overhead among the different VMs when multiple VMs are
simultaneously launched to the same host machine. Under
the same system disk IO utilization, we launch two and later
multiple VMs simultaneously and deploy them on the same
host machine under different IO utilization. Fig. 10 depicts
the results. The data clearly indicates that the prolog time for
the VM is prolonged significantly (700%) when more than one
VMs are launched at the same time.

Fig. 10: System Utilization Variation On Simultaneous
Launching

Figure 11 illustrates the individual VM launching overhead
when multiple VMs are started simultaneously. It is interesting
to see that when multiple VMs are launched, the system
evenly distributes CPU resources to each VM for the prolog
processes. The peak utilization of the VM booting process

No. VMs 2VMs(U=0) 3VMs(U=0) 2VMs(U=1) 3VMs(U=1)
Prolog 2.15 6.92 3.07 7.84
Boot 0.21 0.80 0.70 0.88
Peak Util. -0.20 -0.36 -0.40 0.08

TABLE IV: Simultaneous VM Launching Overhead
Comparison under Different IO Utilization

also decreases proportionally to the reduction of the number
of simultaneously launched VMs.

Fig. 11: Simultaneous VM Launching Overhead Comparison
As depicted in Fig. 11, the VM prolog process time

increases as the system disk IO utilization increases. It is
because the prolog process not only competes with the other
newly launched VMs, it also competes with other VMs that
are running. Table IV shows the statistic comparisons of
simultaneous VM launching overheads under different system
IO utilizations. The first row of the table indicates the number
of VMs created simultaneously and the system IO utilization
on which these VMs are deployed. As shown in the table,
when the system disk IO is idle, simultaneously launching
two VMs takes twice the time to copy the images to the
host compared with the baseline copying process; and seven
times the time to transfer an image to the host when three
VMs are launched in the meantime. When the disk IO is
fully utilized, the time of copying an image is three times as
much for two simultaneous launches and eight times as much
for three simultaneous launches compared with the baseline
image transferring process. While the booting time for each
VM is also increased when the disk IO is fully utilized, the
booting time increase is rather much slower compared with
the prolog process — it is only 1.9 times as much compared
to the baseline booting time.

E. Network Traffic Impact

As discussed above, the image copying process may also
be influenced by the network traffic. In this section, we discuss
the impact of network traffic on the VM launching overhead.
We consider two scenarios for the experiments, the impact of
downstream and upstream bandwidth utilization on the VM
launching overhead, respectively.

1) Network downstream bandwidth Impact: We first test
the influences when the downstream bandwidth is utilized for
other running VMs on the hosts. Intuitively, the downstream
bandwidth will affect the image transferring time. If the
available spare bandwidth for the newly launched VM is
relatively small, the bandwidth then will become the bottleneck
for launching VMs. However, after VM images are copied to
the host, the booting process will not be affected.

378

Fig. 12: VM Launching Overhead Comparison Under
Different Network Downstream Bandwidth

Bandwidth (down) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prolog 2.16 1.08 0.66 0.83 0.66 0.50 0.16 0.16 0
Boot 0 0.10 0.04 0.05 -0.02 0.02 -0.08 0 0.02
Peak Util. 0.07 0.075 -0.20 -0.05 -0.15 -0.05 0.21 -0.05 0.01

TABLE V: VM Launching Overhead Comparison under
Downstream Bandwidth

The overall VM launching overhead comparison is dis-
patched in Fig. 12. It is not difficult to see that when the
downstream bandwidth is highly utilized, the prolog process
of launching a VM is increased. However, without a surprise,
all the VM booting processes take almost the same amount of
time as indicated in Fig. 13.

Fig. 13: VM Booting Overhead Comparison Under Different
Network Downstream Bandwidth

Furthermore, as shown in table V, even when the band-
width is 90% utilized, the prolog time is only twice of the
baseline prolog time; and if the bandwidth utilization is low,
the prolog time decreases quickly and remains at a steady
level when the utilization reaches 0.3. The reason for such
prolog time variation is that the total network downstream
bandwidth is very large compared with the disk IO bandwidth.
When the spare bandwidth available for transferring an image
becomes larger than the available disk IO bandwidth, the disk
IO bandwidth becomes the bottleneck. Hence, the minimum
available network downstream bandwidth and disk IO band-
width decides the image transferring overhead.

2) Network upstream bandwidth Impact: Evaluating the
impact of upstream bandwidth utilization on the VM launching
overhead takes the same steps as for the downstream band-
width limitations. Intuitively, the upstream bandwidth utiliza-
tion does not have significant impact on the VM launching
process and our data confirms this.

As shown in Fig. 14 and Fig. 15, almost all the VMs’
overheads match with each others’. However, there is one

Fig. 14: VM Launching Overhead Comparison Under
Different Network Upstream Bandwidth

Fig. 15: VM Booting Overhead Comparison Under Different
Network Upstream Bandwidth

exception. The VM launched under 40% upstream bandwidth
utilization takes an extremely long time for the entire launching
process. Our further investigation of the system log indicates
that at the time when the VM is launched, the host machine
happens to have IO operations for some system critical ser-
vices.

F. Image Repository Impact

The FermiCloud architecture as shown in Fig. 1 contains
an image repository which can also become a bottleneck when
large number of VMs are launched simultaneously even when
they are deployed on different hosts. In order to evaluate the
impact of sudden large number of simultaneous launches on
the VM launch overhead, we set up another experiment using
the baseline VM configuration. In particular, we launch a VM
to a host, and simultaneously launch more VMs to different
hosts. Fig. 16 illustrates the overall VM launching overheads
when different number of VMs are launched simultaneously. It
is obvious that when more VMs are launched simultaneously,
the image repository’s disk IO/network bandwidth become
a bottleneck. In particular, when seven VMs are launched
simultaneously, the prolog time increases 3.5 times compared
with the baseline prolog time.

Notice that the CPU utilization for the prolog process
becomes lower when a VM is launched with more VMs simul-
taneously. This is because when multiple VMs are launched

Bandwidth(down) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prolog 0.61 0.38 0.23 1.53 0.23 0.76 0.23 0.07 0.31
Boot -0.10 0.05 -0.01 0.27 0 0.32 -0.02 -0.02 0.028
Peak Util. -0.02 0.03 0.016 -0.55 0.11 -0.18 0.15 0.03 0.016

TABLE VI: VM Launching Overhead Comparison under
Upstream Bandwidth

379

Fig. 16: VM Launching Overhead Under Different
Simultaneous Launches on Different Hosts

Fig. 17: VM Prolog Overhead Under Different Simultaneous
Launches on Different Hosts

together, the disk IO bandwidth/network bandwidth of image
repository is evenly distributed among each of them. For each
machine, its prolog process does not fully occupy the disk IO
utilization, hence the CPU utilization for the prolog process
becomes lower.

Fig. 18: VM Booting Overhead Under Different
Simultaneous Launches on Different Hosts

As shown in Fig. 18 and table VII, the overhead for the
VM booting processes remains at the same level as the baseline
VM booting overhead.

G. Summary

From these experiments, we can conclude the following:

Simul. Launches 1VM 2VMs 3VMs 4VMs 5VMs 6VMs 7VMs
Prolog 0.15 0.38 0.46 1.23 1.92 2.53 3.46
Boot -0.12 -0.13 -0.10 0.21 0.02 0.13 0.03
Peak Util. -0.13 0.13 0.11 -0.05 0.01 -0.04 -0.04

TABLE VII: VM Launching Overhead Comparison Under
Different Simultaneous Launches on Different Hosts

• VM launching overhead mainly contains two parts:
prolog (image copying/transferring) overhead and
booting overhead;

• booting overhead is relatively steady, i.e. has less
variations, when it is compared to the prolog overhead;

• prolog overhead, on the other hand, has significant
variations under different disk IO utilization, network
bandwidth utilization on both host machines and im-
age repository; and

• disk IO utilization has significant impact on both
prolog overhead and booting overhead.

In the next section, we present a reference model for the
VM launching overhead based on the data obtained.

IV. VM LAUNCHING OVERHEAD MODELING

Before we present the reference model for the virtual
machine launching overhead in private cloud, we first introduce
notations to be used in defining the reference model. In
particular, A virtual machine in a private cloud is defined
as v = (f, t, h), where f is the image size of the virtual
machine, t is the virtual machine launch time and h is the
host machine that the virtual machine is to be deployed on.
For each host hi, we denote Vhi = {v1, v2, . . . , vn} as the set
of virtual machines the host has. In the set Vi, virtual machines
are sorted according to their launch time in none decreasing
order. The Bn and Bd denote host machine network bandwidth
and disk IO bandwidth, respectively; avn(hi, t), avd(hi, t) and
avi(t) denote the available network bandwidth on host hi,
disk bandwidth on host hi, and network bandwidth on image
repository at time t, respectively.

The proposed reference model contains three different
overheads: timing overhead which is the time needed for
launching a VM untill it is ready to execute tasks; disk IO
utilization overhead and CPU utilization overhead. We first
model the CPU utilization and disk IO utilization that a single
VM consumes on the host machine during the launching
process. Then we model the host machine’s entire system CPU
utilization and disk IO utilization. As discussed in section III,
the complete VM launching process mainly consists of two
parts: prolog and boot process. We discuss the reference
models for these two steps below.

A. Prolog Overhead Model

The prolog overhead we modeled in here also contains
three different overheads: timing overhead which is the time
needed for transferring an image from image repository to the
host machine; disk IO utilization overhead and CPU utilization
overhead. Let AVband = min{avd(hi, ti), avn(hi, ti), avi(ti)}.
The image transfer time for virtual machine vi is defined
below:

(1)Transi =
fi

AVband ∗ w ∗ Us(hi, t− 1)

where Us(hi, t) is the system’s CPU utilization that is defined
in section IV-E, and w is a constant that represents how much
impact that the system’s CPU utilization has on the image
transferring process.

380

From the experiments we know that if the disk IO is fully
utilized for the image transferring process, the process also
fully utilizes one physical core of the host machine. If the
disk IO is not fully utilized for the image transferring process,
then the CPU utilization is the available disk IO bandwidth
proportional to the total IO bandwidth. We first define the
base CPU utilization function for image transferring process
as follows:

(2)Utr base(i, t) =
1

1 + e−0.5(Transi+ti)(t−ti)
−

1

1 + e−0.5(Transi+ti)(t−(Transi+ti))

The IO utilization consumed by a VM’s prolog process is
modeled as the IO bandwidth occupied by image transferring
process to the total bandwidth. Hence, the IO utilization of
transferring an image for virtual machine vi is modeled as:

(3)IOtr(i, t) =

{
AVband

Bd
ti ≤ t ≤ ti + Transi

0 otherwise

Then, the CPU utilization of transferring an image for
virtual machine vi is modeled as:

(4)Utr(i, t) = IOtr(i, t) ∗ Utr base(i, t)

B. Booting Overhead Model

The virtual machine booting overhead also refers to the
timing overhead and CPU utilization overhead. As once the
image is copied to a host, it will not consume any disk IO
utilization for the booting process. We consider that there is
no disk IO overhead for the virtual machine booting process.
The experiments also indicate that the system CPU utilization
impact the booting overhead. Hence, we model the CPU uti-
lization overhead for the virtual machine vi’s booting process
as follow:

Ub(i, t) = c ∗ 1

m
e−γ(1−IOs(hi,t−1))(t−Transi)) (5)

where c and γ are two constants,m is the number of cores on
the host machine and IOs(hi, t) represents the system’s disk
IO utilization at time t. We will formally define the system
disk IO utilization in section IV-E.

In OpenNebula, VMs are not immediately ready for use
until all the necessary services, such as ssh, are started. As
there is no accurate way to tell the actual time when a
virtual machine is booted and ready to use unless entering
the running virtual machine and check the log, therefore, we
base our estimation fo the time points on the variation of the
virtual machine’s CPU utilization consumption. If the virtual
machine’s CPU utilization consumption remain stable, then we
consider the virtual machine is booted and ready to use. We
define the time point tb(i) of a virtual machine vi is ready to
use as:

tb(i) = max{t|U ′b(i, t) ≤ ε} (6)

where ε is the threshold to determine whether the virtual
machine’s CPU utilization consumption become stable. Then,
we can calculate the virtual machine booting time is as
tb(i)− Transi.

C. Virtual Machine Launching Overhead Model

We have formally modeled image transferring overhead
and virtual machine booting overhead. Combining the two
compoments together, we derive virtual machine launching
overhead functions. In particular, combining equation 4 and
equation 5, the virtual machine vi’s launching CPU utilization
function is modeled as:

U(i, t) =

{
Utr(i, t) t ≤ ttran
Ub(i, t) t > ttran

(7)

Since the virtual machine booting process does not con-
sume any IO utilization, the IO utilization function for virtual
machine vi’s launching process is still equation 3.

The total time needed for launching a virtual machine vi
then can be calculated as image copying time plus virtual
machine booting time. It is formally defined as follow:

toverhead(i) = tb(i)− ti (8)

D. Virtual Machine Utilization Consumption Model

The complete virtual machine utilization functions consist
of the virtual machine launching overhead utilization functions
and the utilization functions after workloads are deployed on
the virtual machine. We assume at time t′ ≥ tb(i), the virtual
machine vi starts executing tasks; and the CPU and disk IO
utilization consumption function of vi at t′ are Uw(t) and
IOw(t), respectively. Then the virtual machine CPU utilization
consumption model is defined below:

Uc(i, t) =

{
Utr(i, t) t ≤ ttran
Ub(i, t) t > ttran
Uw(i, t) t ≥ t′

(9)

The virtual machine IO utilization consumption model is
defined as:

IOc(i, t) =

{
IOtr(i, t) ti ≤ t ≤ ti + Transi
IOw(i, t) t ≥ t′

0 otherwise
(10)

E. System Utilization Model

We assume that host machines only run virtual machines
and all other critical system services consumes a small portion
of the system CPU and IO utilization. Then we can calculate
the system CPU and disk IO utilization as the summation of
the virtual machines’ CPU and IO utilization consumptions.
The system CPU utilization of host hi is modeled below:

Us(hi, t) = max{1,
|Vhi

|∑

j=1

{Uc(j, t)}} (11)

The system IO utilization of host hi can be modeled as:

IOs(hi, t) = max{1,
|Vhi

|∑

j=1

{IOc(j, t)}} (12)

381

V. EVALUATION

We build the reference model for the virtual machine
launching overhead from a large amount of real system ex-
perimental data. However, we cannot guarantee the accuracy
of the model unless we compare the calculated data using
the model we built with the real system data and prove the
accuracy of the model. In order to measure the accuracy of the
proposed reference model, we introduce an evaluation criteria
called average utilization difference. We denote N as the total
number of sampling points. The average difference is defined
as follows:

dif =
1

N

N∑

i=1

|Ur(i)− Us(i)| (13)

where Ur(i) and Us(i) represents the real data and calculated
data at ith sampling point.

Another important criteria needed to be evaluated is the
launching time overhead. To check the real time point for the
virtual machine that is ready to use, we use the virtual machine
system log to check the starting time point of the ssh service.
We also calculate the difference between the real VMs’ ready
time and the calculated ready time to evaluate the accuracy of
the proposed model.

We first compare the baseline overhead obtained by calcu-
lating the value based on formula 7, and the real data obtained
on FermiCloud.

Fig. 19: Baseline VM Launching Overhead using Proposed
Model

Fig. 19 draws the CPU utilization during a virtual ma-
chine’s launching process using the proposed VM launching
overhead model. Compare the graph with the utilization vari-
ations shown in Fig. 3 as for the baseline virtual machine
launching overhead. The calculated data using our proposed
model is very close to the real data.

Fig. 20: Baseline VM Launching Overhead Comparison

Utilization Difference Time Difference
Baseline 0.0003 -0.023
2 Sim. Launches 0.0446 -0.051
3 Sim. Launches 0.0628 -0.017
Random Launches 0.0491 -0.069
Overall 0.0392 -0.040

TABLE VIII: Performance of the Proposed Model

If we put two data sets at the same page, as shown in
Fig. 20, our model accurately represents the baseline CPU
utilization variation. Table VIII gives a more detailed com-
parison between the real data and calculated data. From the
table, we can observe that the difference between the real data
and the calculated data using our proposed model is only about
0.03% of the system CPU utilization. The estimated launching
overhead calculated by our model is only 2.3% below the
actual launching overhead.

We further evaluate when more than one VMs are launched
simultaneously. Fig. 21 shows the CPU utilization variation
comparison between the real data and calculated data from the
reference model, i.e., formula 7, when two virtual machines
are launched at the same time. Fig. 21 indicates that the CPU
utilization difference between real data and calculated data is
4.46% of the system CPU utilization, launching time overhead
is also very close to the actual time, only 6% difference. The
detailed analysis is given in table VIII.

We increase the number of simultaneous launches to three
VMs. The results are depicted in Fig. 22. The CPU utilization
difference between real data and calculated data is 6.28% of
the CPU utilization; and the estimated launching time overhead
is about 1.7% less than the actual measured value.

Fig. 21: VM Launching Overhead Comparison with 2
Simultaneous Launches

Fig. 22: VM Launching Overhead Comparison with 3
Simultaneous Launches

For the last set of evaluations, we randomly launch multiple

382

virtual machines under different CPU and IO utilization and
at different time instances. We use the reference model to
calculate the same scenario for the virtual machine launching
process in a real cloud environment. The results are shown in
Fig. 23.

Fig. 23: System Utilization Variation Comparison

As shown in the figure, the two lines are almost merged
together. In real environment, there are additional services
running on the host machine other than the virtual machines.
As a result, they whole system CPU utilization variation is
more unpredictable as there are additional CPU utilization
consumption in addition to virtual machines. However, the
whole system utilization difference between the real data and
calculated data is rather small, only 4.91% of the system CPU
utilization. When we compare the virtual machine launching
time overhead, the difference is still very small, less than 7%.

VI. CONCLUSION

The FermiCloud is a private cloud built by Fermilab for
the scientific workflow. The Cloud Bursting project on the
FermiCloud enables the FermiCloud, when more computa-
tional resources are needed, to automatically launch virtual
machines to available resources such as public clouds. One of
the main challenges in developing the cloud bursting module is
to decide when and where to launch a VM so that all resources
are most effectively utilized and the system performance is
optimized. We have found that the VM launching overhead
has a very large variation under different system states, i.e.
CPU/IO utilizations can have significant impact on cloud
bursting strategies. Hence, being able to model accurately the
dependency between VM launching overhead and system re-
source utilization is critical in deciding when and where a VM
should be launched. This paper has studied the VM launching
overhead patterns based on data obtained on FermiCloud and
presented a VM launching overhead reference model to guide
cloud bursting process. To our best knowledge, this is the first
reference model for virtual machine launching overhead that
incorporates the dynamics and variation during virtual machine
launching process. Our next engineering step is to integrate the
reference model into the cloud bursting decision algorithms.

It is worth pointing out that during our experiments, we
find that virtual machine launching overhead is mainly caused

by the image transferring process. It is not hard to understand
that if the image copying/transferring process can be well con-
trolled, the virtual machine launching overhead will become
relatively stable and easy to model. As overhead reference
model we proposed in this paper consists of two different parts,
i.e., prolog overhead and virtual machine booting overhead,
the model can easily fit the situation when image transferring
process is well managed. We believe that the proposed model
is applicable to other private cloud in general.

REFERENCES

[1] Feature - clouds make way for STAR to shine.
http://www.isgtw.org/feature/isgtw-feature-clouds-make-way-star-shine.

[2] Nimbus and cloud computing meet STAR production
demands. http://www.hpcwire.com/hpcwire/2009-04-
02/nimbus and cloud computing meet star production demands.html.

[3] Opennebula. http://opennebula.org.
[4] Opennebula managing virtual machines.

http://opennebula.org/documentation:archives:rel3.0:vm guide 2.
[5] A. Beloglazov and R. Buyya. Energy efficient allocation of virtual

machines in cloud data centers. In Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, pages
577–578. IEEE, 2010.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

[7] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine provisioning
based on analytical performance and qos in cloud computing environ-
ments. In Parallel Processing (ICPP), 2011 International Conference
on, pages 295–304. IEEE, 2011.

[8] G. G. S. T. G. B. H. W. K. K. C. S.-Y. N. H.-J. J. Hao Wu,
Shangping Ren. Automatic cloud bursting under fermicloud. Workshop
on Cloud Services and Systems, 2013.

[9] N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating and
modeling virtualization performance overhead for cloud environments.
In CLOSER, pages 563–573, 2011.

[10] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling. Scientific workflow applications on amazon ec2.
In E-Science Workshops, 2009 5th IEEE International Conference on,
pages 59–66. IEEE, 2009.

[11] Y. Z. Mengxia Zhu, Qishi Wu. A cost-effective scheduling algorithm for
scientific workflows in cloud. Proceedings of 31st IEEE International
Performance Computing and Communications Conference, 2012.

[12] R. Moreno-Vozmediano, R. Montero, and I. Llorente. Iaas cloud archi-
tecture: from virtualized data centers to federated cloud infrastructures.
2012.

[13] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li,
B. Zhang, T.-L. Wu, Y. Ruan, S. Ekanayake, et al. Hybrid cloud
and cluster computing paradigms for life science applications. BMC
bioinformatics, 11(Suppl 12):S3, 2010.

[14] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya.
Resource provisioning policies to increase iaas provider’s profit in a
federated cloud environment. In High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference
on, pages 279–287. IEEE, 2011.

[15] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman. Ex-
periences using cloud computing for a scientific workflow application.
In Proceedings of the 2nd international workshop on Scientific cloud
computing, pages 15–24. ACM, 2011.

383

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 1

A Reference Model for Virtual Machine
Launching Overhead

Hao Wu⇤, Shangping Ren⇤, Gabriele Garzoglio†, Steven Timm†, Gerard Bernabeu†,Keith
Chadwick†,Seo-Young Noh‡

Abstract—Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting

module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One
of the main challenges in developing cloud bursting module is to decide when and where to launch a VM so that all resources are most
effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from
the FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching
overhead is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM
is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference
model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained
on the FermiCloud. Second, we apply the developed reference model on the FermiCloud and compare calculated VM launching
overhead values based on the model with measured overhead values on the FermiCloud. Our empirical results on the FermiCloud
indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient
resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.

Index Terms—VM Launching Overhead, Reference Model, Cloud, FermiCloud, Virtual Machine, VM Launching,VM Startup Time,
Launch, Overhead, Model, Predict

F

1 INTRODUCTION

CLOUD technology has been benefiting general purpose
computing for a number of years. The pay-on-demand

model brought about by cloud computing allows companies
to avoid over-provisioning in early stages of project de-
velopment. Furthermore, comparing to the traditional grid
computing, cloud computing can better utilize resources
provided by its underlying infrastructure, as it can deploy
different tasks on the same physical computer node. In
addition, computation power can also be dynamically al-
located to tasks when more resources are needed by the
tasks. Another benefit of using a cloud over a grid is that a
cloud has “unlimited“ resources – when a private cloud is
fully occupied, cloud bursting techniques can temporarily
acquire external resources from public clouds to fulfill the
need.

Many scientific research institutions have foreseen the
benefits of using computer clouds and have migrated
their research platforms from traditional grid and dis-
tributed computing platform to the cloud computing en-
vironment [1] [12] [17] [19] [10]. Fermi National Accelerator
Laboratory (Fermilab), a leading research institution in the

⇤Illinois Institute of Technology,10 W 31st street, 013, Chicago, IL, USA,
{hwu28, ren}@iit.edu.
†Fermi National Accelerator Laboratory, Batavia, IL, USA.
{garzogli,timm,gerard1,chadwick}@fnal.gov.
‡National Institute of Supercomputing and Networking, Korea Institute of
Science and Technology Information, Daejeon, Korea, rsyoung@kisti.re.kr
The research is supported in part by NSF under grant number CAREER
0746643 and CNS 101873, by the U.S. Department of Energy under contract
number DE-AC02-07CH11359 and by KISTI under a joint Cooperative
Research and Development Agreement CRADA-FRA 2013-0001 / KISTI-
C13013.

high energy physics (HEP) field, started to build a private
infrastructure-as-a-service facility, the FermiCloud, in 2010.
The FermiCloud has successfully served the HEP experi-
ments since its establishment. S. Y. Noh et al. [20] [16] of
KISTI collaboratively developed the vcluster cloud manage-
ment tool for FermiCloud to automatically allocate cloud cy-
cles on FermiCloud and KISTI’s GCloud as well as Amazon
AWS. However, how to dynamically allocate resources so
that application’s average response time and system’s total
operational cost are reduced is a research and engineering
challenge yet to be addressed.

Resource allocation problems in cloud computing has
drawn more and more attention in research community in
recent years [14], [7]. However, most research in the area
assume that VM launching overheads with respect to time
and resource consumption are negligible. As a result of
this assumption, neither the launching overhead nor the
dependency between the overhead and resource utilization
are taken into consideration in designing resource allocation
algorithms. However, our production line operation data
(Fig. 1) indicates that the VM launching overhead can have
significant variations when it is launched at different time
or on different physical machines. Figure 1 depicts the
launching time for 227 VMs that have been deployed on
FermiCloud over one month period. The VM launching time
ranges from few seconds to over one thousand seconds.

In addition to time overhead, VM launching overhead
also includes system resources a VM consumes during its
launching process. Both of time and utilization overheads
can impact the system’s performance. For instance, VM
launching process consumes a significant amount of CPU
and I/O resources, leads to a high system CPU and I/O

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 2

0 50 100 150 200

0

500

1,000

VMs

Se
co

nd
s

VM Launching Time

Fig. 1: VM Launching Time on FermiCloud
(08/22/2014 - 09/19/2014)

utilization at the time of launching. If each host computer
in the private cloud happens to launch a new VM at the
same time, due to high system utilization caused by VM
creation, the computer cloud may consider all its hosts are
fully occupied and decide to perform cloud bursting and
create VMs on an external public cloud. Such additional
cost of bursting to external public cloud is unnecessarily
rendered and can be prevented if we have a VM launching
overhead reference model. Furthermore, if a task requires
an additional VM in order to complete its work, but the
VM takes much longer time to complete its launching than
expected, it is possible that the task has already finished its
work before the VM is ready for executing the task. This
again leads to resource waste and an added cost due to the
lack of a VM launching overhead information.

In this paper, we are to 1) analyze the patterns of VM
launching process based on large amount of data obtained
from real working systems, 2) define a reference model to
represent the patterns, and 3) validate the accuracy of the
developed reference model with real system operational
data. At this initial study stage, we emphasize a method-
ological point of view rather than definitive numerical re-
sults based on accurate parameter values. The main purpose
of this study is to show how an analytic model can be
developed.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 introduces the FermiCloud
and its architecture. Section 4 defines the terms that are used
in the paper. Section 5 analyzes the VM launching overhead
based on a large set of experiments on the FermiCloud.
Section 6 presents a reference model for VM launching
overhead. Section 7 evaluates the accuracy of the proposed
model. We conclude the work in section 8.

2 RELATED WORK

Researches on modeling and evaluating the cloud’s per-
formance started almost at the same time when computer
cloud itself emerged. One of the most influential cloud
modeling tool is CloudSim [7] developed by the CLOUDS

lab from the University of Melbourne. CloudSim is a Java-
based cloud simulation tool that supports modeling and
simulation of large scale cloud computing environments.
The CloudSim provides a comprehensive modeling tool that
covers almost all basic elements under a cloud environ-
ment. In particular, it provides an infrastructure modeling
to capture the characteristics and behaviors of both VM
and physical infrastructure where VMs are deployed. It also
provides a cloud market model that models the cost of re-
sources, a network model that models the network behavior
of inter-networking of clouds, a cloud federation model
that models the communication between clouds, a power
consumption model that models the power consumptions in
the datacenter, and a resource allocation model that models
VM allocation policies.

Recently, Huber et al. evaluate the virtualization perfor-
mance and propose a virtualization overhead model [9].
In their work, they mainly focus on two virtualization
platforms, i.e., XenServer and VMware ESX. They test the
performance downgrades that are brought by the virtual-
ization. They test the CPU, memory, disk IO, and network
performance degradations on both XenServer and VMware
ESX platforms. Based on the experiments, they categorize
the virtualization performance influencing factors into four
major categories: virtualization type, hypervisor’s architec-
ture, resource management configuration, and workload
profile. However, Huber’s model does not consider virtual
machine launching overhead, it only provides the computa-
tion overhead caused by the virtualization.

Researchers have adapted the above cloud models and
cloud simulations tools and made significant contributions
to optimize resource allocation process on clouds, such as
resources provisioning algorithms from QoS perspective [8],
from service providers’ profit perspective [18], and from
energy consumption perspective [6]. Recently, Mengxia Zhu
et al. have proposed a cost effective scheduling for scientific
workflow under cloud environments [14]. Their scheduling
algorithm aims to shorten the application’s response time
and reduce the energy consumption simultaneously by con-
sidering VM launching overhead. Some of the researches,
such as Zhu’s work [14] and CloudSim [7], have taken VM
launching overhead variation as a key variable for designing
resource allocation algorithms. However, they treat the VM
launching overhead as a constant.

Some of the researchers have observed that VM over-
head may have a large variation on public cloud and re-
alized that the variation of VM launching overhead may
cause significant impact on the resource allocation pro-
cess [13] [11]. Hence, significant contributions have been
made on reducing the impact of VM launching overhead.
For instance, Lagar-Cavilla et al. [11] have developed a cloud
programming paradigm and a system called SnowFlock that
can significantly improve the VM scaling efficiency using
fast VM cloning.

We have also observed significant VM launching over-
head variations on the FermiCloud’s daily operations. In
the FermiCloud bursting project, the design of the resource
allocation algorithm aims to automatically allocate resources
for applications that need extra computational resources. If
the VM launching overhead variation is not well modeled
and calculated, the system utilization and efficiency may

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 3

be pulled down dramatically, causing resource and energy
waste. Hence, we need an accurate mathematical model for
VM launching overhead. Rather than aiming to reduce VM
launching overhead, the goal of this paper is to understand
and analyze VM launching process and developed a refer-
ence model to predict the overhead during such process.

3 FERMICLOUD

The FermiCloud uses OpenNebula [3], [15] as its cloud
infrastructure management tool and uses KVM as its VM
management tool. VMs running on the FermiCloud are all
paravirtualized. Under OpenNebula [4], the VM launching
process consists of four major states. Fig. 2 illustrates the
state change during a VM launching process in OpenNeb-
ula [4]. In particular, when a user creates a new VM, the
VM enters the pending state. In the pending state, the cloud
scheduler decides where to deploy the VM. Once the VM
is deployed on a specific host, it enters into the prologue
state in which all VM related files (images in our case) are
transferred from the image repository to the host machine.
After all the files are copied to the host, the VM enters the
boot state, during which it is booted from the host. Finally,
after the VM is successfully booted, it enters into the running
state. Once a VM is in its running state, it is ready to execute
tasks.

Fig. 2: VM Launching State Diagram[4]

Fig. 3 illustrates the system architecture of FermiCloud.
The FermiCloud system has an OpenNebula front-end
server that manages the entire cloud infrastructure, an
image repository that stores the VM images, and a set of
host machines on which VMs are deployed. Both front-
end server and VM hosts use the GFS2 clustered shared
file system, which is hosted on a fibre-channel connecting
SAN with two NexSan SataBeast servers for storage servers.
The logical unit used in the study has ten 7200-RPM SATA
disk drives in a 9+1 RAID5 configuration for 17TB of usable
space. Each SAN controller has 2GB cache memory. Both
front-end server and VM hosts are configured with 16-core
Intel(R) Xeon(R) E5640 @ 2.67GHz CPU and 48GB memory.
All the machines in FermiCloud are installed with Scientific
Linux operating system [2].

4 TERMINOLOGY

This section defines the terms used in the paper.
Host CPU utilization: The host CPU utilization is defined
as total CPU utilizations consumed by all the processes on
one host machine.
Host disk write utilization: The host disk write utilization
is defined as the total disk write bandwidth utilizations
consumed by all the processes on one host machine.

Fig. 3: System Architecture

Host disk read utilization: The host disk read utilization
is defined as the total disk read bandwidth utilizations
consumed by all the processes on one host machine.
VM CPU utilization: The VM CPU utilization is defined as
the CPU utilization consumed by a VM on a single core. For
example, in a 16-core CPU machine, the VM CPU utilization
is 100% means the VM fully occupies one core. It equals to
the consumption of 6.25% host CPU utilization.
VM disk write utilization: The VM disk write utilization is
defined as the amount of disk write bandwidth consumed
by a VM over the total disk write bandwidth.
VM disk read utilization: The VM disk read utilization is
defined as the amount of disk read bandwidth consumed by
the VM over the total disk read bandwidth.
Prologue: Prologue is an OpenNebula [4] terminology that
indicates the process of copying an image from image
repository to host machine. In the paper, the term prologue is
interchangeable with the term image transmission process.

5 VM LAUNCHING OVERHEAD ON FERMICLOUD

In this section, we study the patterns of VM launching
overhead based on the VM operations in the FermiCloud
environment.

5.1 VM Preparation
In our experiment tests, we focus on two types of VM
instances, i.e., a small instance configured with one virtual
CPU core and 2GB memory, and a large instance configured
with 16 virtual CPU cores and 32GB memory. There are
also two types of VM images tested, i.e., 4.7GB ”QEMU
Copy On Write 2” (QCOW2) image and 15.6GB raw image.
Hence, four different types of VMs are tested during the
experiments, i.e., small instance VM with QCOW2 image
(SQ), small instance VM with raw image (SR), large instance
VM with QCOW2 image (LQ) and large instance VM with
raw image (RL).

5.2 Methodology
We use noninvasive programs, i.e., iostat and sar to obtain
system information. The OpenNebula platform logs the
time points when VMs enter the running state. In order
to minimize the impact of cloud management tools, i.e.,
OpenNebula in our case, on VM launching process, we
count VM start time as the time when a VM is deployed
on the host machine. In cloud environment, VMs are not
considered to be ready for use until the users can access the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 4

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.
CPU

IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(a) Utilization Variation of Small Instance with Uncached
QCOW2 Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(b) Utilization Variation of Small Instance with Cached
QCOW2 Images

Fig. 4: Utilization Variation of Small Instance with QCOW2
Images

VMs. Hence, we retrieve the start time of SSHD service from
VMs’ system logs as the times when VMs are actually ready
for use.

In the cloud environment, existing running VMs may
have significant impact on VM launching overhead. How-
ever, from physical machine (VM host machine)’s point of
viewer, all VMs that are running on it are processes. Appli-
cations that are running on different VMs are transparent
to physical machines. Hence, resources consumed by the
VMs and workloads inside the VMs are reflected by the
consumption of physical resources. Hence, we mimic the
scenario that VM is launched when there are VMs already
running in system by manipulating host machine’s physical
resource usage, i.e. CPU and I/O utilizations.

5.3 Base VM Launching Overhead
We first obtain the baseline overhead of launching a new
VM. In order to obtain the baseline utilization overhead
of launching a new VM, we let all the host machines in
the private cloud be empty, i.e., have no application being
deployed on the cloud. Each time, a single VM is launched
on an empty host machine. The experiment is repeated
twenty times for each type of VM.

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(a) Utilization Variation of Large Instance with Uncached
QCOW2 Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(b) Utilization Variation of Large Instance with Cached
QCOW2 Images

Fig. 5: Utilization variation of Large Instance with QCOW2
Images

Fig. 4(a), Fig 4(b), Fig. 5(a), Fig 5(b), Fig. 6(a), Fig. 6(b),
Fig. 7(a) and Fig. 7(b) illustrate the average utilization
changes for SQ, LQ, SR and RL VMs, respectively. The
blue line depicts the VM CPU utilization, the black line
the host CPU utilization, the brown line the host disk write
utilization, and the red line the host disk read utilization.
Table 1 gives the statistics of the utilization and timing
variations of baseline VM launching processes.

5.3.1 Cached and Uncached Images

File cache is a Linux operating system feature that usually
happens in file copying process. The VM launching process
first copies VM’s image from an image repository to the
host machine. Once the VM image is copied onto the host
machine, it is also cached into host machine’s memory.
If the VM being launched on the host machine has the
same image as the cached one, the VM’s image is directly
copied from the memory instead of copied from an image
repository. Hence, for the four types of tested VMs, we also
test the launching overheads when launch them from both
cached images and uncached images. For convenience, we
use SQ U, SQ C, LQ U, LQ C, SR U, SR C, LR U and
LR C to denote the test cases of small instance VM with

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 5

TABLE 1: Statistics of Base VM Launching Process

SQ U SQ C LQ U LQ C SR U SR C LR U LR C
LAUNCH TIME (Sec.) 74.10 49.40 73.56 51.30 129.80 70.80 135.44 71.50

MAX 79.00 53.00 75.00 56.00 136.00 77.00 140.00 74.00
MIN 72.00 46.00 71.00 47.00 126.00 67.00 132.00 68.00

TRANS. TIME (Sec.) 28.80 4.80 28.30 4.30 87.00 19.80 89.30 19.70
MAX 31.00 5.00 30.00 5.00 90.00 21.00 91.00 21.00
MIN 28.00 4.00 27.00 4.00 88.00 19.00 88.00 19.00

BOOT TIME (Sec.) 45.30 44.60 45.33 47.00 42.80 51.00 46.11 51.80
MAX 48.00 48.00 47.00 51.00 52.00 57.00 52.00 54.00
MIN 44.00 41.00 43.00 42.00 38.00 47.00 44.00 49.00

PEAK Util. (%) 62.83 64.56 81.20 83.42 58.83 57.76 78.28 75.97
MAX 65.40 66.50 85.00 90.70 65.90 59.80 81.90 78.80
MIN 54.30 62.90 78.40 80.60 53.40 55.60 70.90 72.10

TRANS. Util. (%) 24.55 75.89 24.97 72.72 25.91 78.91 25.00 78.40
MAX 26.11 98.50 27.36 79.53 27.56 81.98 28.13 81.25
MIN 22.13 66.13 22.68 66.25 23.77 74.78 23.53 73.96

uncached QCOW2 image, small instance VM with cached
QCOW2 image, large instance VM with uncached QCOW2
image, large instance VM with cached QCOW2 image, small
instance VM with uncached raw image, small instance VM
with cached raw image, large instance VM with uncached
raw image and large instance VM with cached raw image,
respectively. Fig. 4(a), Fig. 5(a), Fig. 6(a) and Fig. 7(a) illus-
trates the utilizations changes for SQ U,LQ U, SR U, and
LR U, respectively. While Fig. 4(b), Fig. 5(b), Fig. 6(b) and
Fig. 7(b) illustrates the utilizations changes for SQ C, LQ C,
SR C and LR C, respectively.

5.3.2 VM Prologue Process

The VM prologue process that copies the VM image from
the image repository to the host machine is the first step
of the entire VM launching process. As the measured disk
read bandwidth of SAN in FermiCloud is 180MB/s, the
measured disk write bandwidth of SAN in FermiCloud
is 400MB/s. The theoretical time of transferring a 4.7GB
QCOW2 image and a 15.6GB raw image from the image
repository to the host machine is 26 seconds and 87 seconds,
respectively. As indicated in Table 1, the average prologue
time of SQ U and LQ U are 28.8 seconds and 28.3 seconds,
respectively; the average prologue time of SR U and LR U
are 87 seconds and 89.3 seconds, respectively. The measured
prologue times align well with the calculated values. It is
also clear from Fig. 4(a), 5(a), 6(a) and 7(a) that during
the prologue time, disk read utilization almost constantly
reaches 100% of the SAN read bandwidth (as shown by
the red lines in the figures). The measured local disk read
bandwidth is 500MB/s. When the local disk read bandwidth
is fully utilized, the host CPU utilization consumption is
around 70% on single core. Hence, the calculated VM CPU
utilization during the prologue process is 180/(500/0.7) =
25.2%. The calculated value matches the measured average
VM CPU utilization, which is around 25%.

Notice from the figures that the disk write activities are
not synchronized with the disk read activities. In Linux,
when a file is copied, the file is written into dirty pages
first, it is then flushed into the hard disk. By Linux default
settings, the flushing process happens if the dirty page size
reaches 10% of the system active memory or 30 seconds
after the content is written into the dirty page. As the
4.7GB QCOW2 image is smaller than the size of 10% of

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(a) Utilization Variation of Small Instance with Uncached
Raw Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(b) Utilization Variation of Small Instance with Cached
Raw Images

Fig. 6: Utilization Variation of Small Instance with Raw
Images

system memory (48GB * 10%) and the transmission time
of the image is less than 30 seconds. The flush process is
activated immediate after the whole image is copied into
the dirty page (as illustrated in Fig. 4(a) and Fig. 5(a)).
For large images, i.e., 16GB raw images, as illustrated in
Fig. 6(a) and Fig. 7(a), the flushing processes are activated

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 6

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.
CPU

IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(a) Utilization Variation of Large Instance with Uncached
Raw Images

0 100 200 300
0

20

40

60

80

100

Seconds

H
os

tC
PU

/I
O

U
til

.

CPU
IO READ
IO WRITE
VM CPU

0

20

40

60

80

100

V
M

C
PU

U
til

.

(b) Utilization Variation of Large Instance with Cached
Raw Images

Fig. 7: Utilization Variation of Large Instance with Raw
Images

after 30 seconds or when the dirty page reaches 10% limits
(whenever happens first).

There is an interesting observation from Fig. 6(a) and
Fig. 7(a) that the write process is not constantly writing im-
ages into the disk. This is because the write speed (400MB/s)
is much faster than the read speed (180MB/s), by Linux
default, the flushing process is awaken every 5 seconds if
such scenario happens.

On the other hand, for cached images, as illustrated in
Fig. 4(b), 5(b), 6(b) and 7(b), there are no disk read activi-
ties happening during the VM prologue processes. This is
because images are read directly from the memory. As the
measured cache read speed in FermiCloud host machines
are around 1.2 GB/s. The theoretical transmission time for
QCOW2 and raw images are 3.9 seconds and 18.5 seconds,
respectively. As given in Table 1, the measured transmission
times for cached images are consistent with the calculated
values. Notice that, when images are read from memory, it
takes about 4 seconds for the dirty pages reaches 10% limit.
Hence, the flushing process happens after 4 seconds of the
VM prologue process, and images are continuously being
written into the disk. Since the prologue process fully utilize
the memory bandwidth, the VM CPU utilization during the

1c
2g

1c
4g

1c
8g

1c
16

g

1c
32

g

1c
48

g

4c
2g

8c
2g

16
c3

2g

40

45

50

55

60

Se
co

nd
s

Fig. 8: VM Booting Time
Comparison for Different

Configurations

1c
2g

1c
4g

1c
8g

1c
16

g

1c
32

g

1c
48

g

4c
2g

8c
2g

16
c3

2g

0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n

Fig. 9: VM Booting Peak
CPU Utilization

Comparison for Different
Configurations

prologue process for cached images also reaches 100%.

5.3.3 VM Boot Process

After the image is copied into the host machine, the VM
then enters the boot process. Once the VM is booted, it
can be used by end users. Note that, the boot process starts
immediately after the image is copied into cache, not after
the entire image is written into the disk. From the figures
we can tell that the patterns of VM CPU utilization variation
for all test cases are similar. The VM CPU utilization soon
reaches a peak after the boot process begins, then VM CPU
utilization slowly decreases and remains a low level. Table 1
also shows that the booting times for all cases are almost the
same. The only difference among the different test cases is
the peak VM CPU utilization. For the small instance VMs,
the peak VM CPU utilization is around 60% of single core
CPU utilization. However, for the large instance VMs, the
peak VM CPU utilization is around 80% of single core CPU
utilization.

5.3.4 VM Boot process comparison under different config-

urations

From the above experiments, we observe that different VM
configurations do not affect the VM booting time. However,
the configurations change the peak VM CPU utilization
during the booting process. In order to understand how the
configuration affects the peak VM CPU utilization during
the booting process, we perform a more detailed test on
varies VM configurations. We first test the VMs with 1 vir-
tual core and change the memory from 2GB to 48 GB. Then
we configure the VMs with 2GB memory and change the
number of virtual cores from 2 to 16. All VMs are launched
with QCOW2 images. The booting times of different VMs
are depicted in Fig. 8. As can be seen from the figure,
the booting times of VMs with different configurations
vary only within a small range. We consider them to have
the same booting times. Fig. 9 depicts the peak VM CPU
utilization of VMs with different configurations during the
booting process. It clearly shows that the memory configu-
ration change does not affect the peak VM CPU utilization.
However, the peak VM CPU utilization increases as the
number of virtual cores increases.

5.4 CPU Utilization Impact
In this experiment, VMs are launched under different host
CPU utilizations. We write a small bash script that con-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 7

0 0.2 0.4 0.6 0.8 1

40

60

80

100

120

Host CPU Utilization

Se
co

nd
s

SQ U
SQ C
LQ U
LQ C

Fig. 10: VM Booting Time
under Different CPU

Utilization for QCOW2
Image

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Host CPU Utilization

V
M

C
PU

U
til

iz
at

io
n

SQ U
SQ C
LQ U
LQ C

Fig. 11: Peak VM CPU
Utilization under Different

CPU Utilization for
QCOW2 Image

0 0.2 0.4 0.6 0.8 1

50

100

150

200

Host CPU Utilization

Se
co

nd
s

SR U
SR C
LR U
LR C

Fig. 12: VM Booting Time
under Different CPU

Utilization for Raw Image

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Host CPU Utilization

V
M

C
PU

U
til

iz
at

io
n

SR U
SR C
LR U
LR C

Fig. 13: Peak VM CPU
Utilization under Different
CPU Utilization for Raw

Image

stantly consume the host CPU utilization. We use cgroup to
control the CPU usage of the script. Each time, we increase
5% of the CPU utilization consumed by the script. Hence,
we can simulate the scenario that VMs are launched under
different host CPU utilizations.

Fig. 10 depicts the launching times of VMs with QCOW2
images. As can be seen from the figure, the launching
time of the VMs are relatively steady. For the uncached
images, the maximum launching time is 79 seconds while
the minimum launching time is 68 seconds for both small
and large VM instances. For the cached images, the range of
the VMs’ launching times is from 48 seconds to 61 seconds.
Comparing with the base VM launching times listed in
Table 1, we consider the variations of the launch times
are in normal condition. Hence, we can conclude that the
host CPU utilization does not impact the VMs’ launching
times. As illustrated in Fig. 11, the peak VM CPU utilization
during the booting process are also quite steady(60% for
the small instances and 80% for the large instances). Hence,
the host CPU utilization does not impact the peak VM CPU
utilization during the booting process.

Fig. 12 and Fig. 13 illustrate the launching times and
peak VM CPU utilization under different host CPU utiliza-
tions for the raw images. Similar to the QCOW2 images,
the launching times and peak VM CPU utilizations are
insensitive to the host CPU utilization changes. Hence, we
can conclude that the host CPU utilization does not impact
the VMs’ launching process.

0.2 0.4 0.6 0.8 1

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ U
SR U
LQ U
LR C

Fig. 14: VM Launching
Time under Different IO

Utilization using Uncached
Images

0.2 0.4 0.6 0.8 1

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ C
SR C
LQ C
LR C

Fig. 15: VM Launching
Time under Different IO
Utilization using Cached

Images

0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Host Disk Write Utilization
Se

co
nd

s

SQ U
SR U
LQ U
LR U

Fig. 16: VM Prologue Time
under Different IO

Utilization using Uncached
Images

0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ C
SR C
LQ C
LR C

Fig. 17: VM Prologue Time
under Different IO

Utilization using Cached
Images

5.5 Disk Write Utilization Impact

In this experiment, we test the VM launching overhead
under different host disk write utilizations. We use dd com-
mand to constantly write files to the disk., and use cgroup
to control the write speed of the dd command. At each
step, we increase 10% of the disk write bandwidth for dd
command. Hence, we can simulated the scenario that VMs
are launching under different host disk write utilizations.

Fig. 14 and Fig. 15 show the VMs’ launching times under
different host disk write utilizations. Overall, when the host
disk write utilization increases, VMs need more time to be
launched as compared with the base VM launching times.
However, for the cached images, i.e., as illustrated in Fig. 15,
the increasing trends are not so obvious when compared
with the uncached images(Fig. 14). As for the VM prologue
times, the prologue times for uncached images are steady
and close to a constant. However, if the image is cached, the
VMs’ prologue times have larger variations. For the QCOW2
images, the variation is from 4 seconds to 24 seconds, and
for a raw image, the variation is from 39 seconds to 92
seconds. This large variation is caused by cache override.
Since the dd command also write files into the cache, it
is possible that the cached image is overridden by the dd
command. Hence, the missing part of the image need to be
re-transferred from the data repository. In the worst case,
the entire cached image is overridden by the dd command,
and the entire image needs to be copied from the image
repository.

Fig. 18 and Fig. 19 illustrate the booting times for un-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 8

0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ U
SR U
LQ U
LR U

Fig. 18: VM Booting Time
under Different IO

Utilization using Uncached
Images

0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Host Disk Write Utilization

Se
co

nd
s

SQ C
SR C
LQ C
LR C

Fig. 19: VM Booting Time
under Different IO

Utilization using Cached
Images

0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Host Disk Write Utilization

V
M

C
PU

U
til

ia
tio

n

SQ U
SR U
LQ U
LR U

Fig. 20: VM Peak CPU
Utilization under Different

IO Utilization using
Uncached Images

0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Host Disk Write Utilization

V
M

C
PU

U
til

iz
at

io
n

SQ C
SR C
LQ C
LR C

Fig. 21: VM Peak CPU
Utilization under Different

IO Utilization using
Cached Images

cached images and cached images, respectively. It is ob-
served that when the host disk write utilization increases,
the booting time of the VMs also increases. When the host
disk write utilization reaches 100%, it almost takes two times
long to boot a VM when compared to the base VMs’ booting
time. In addition, as shown in Fig. 20 and Fig. 21, the host
disk write utilization does not have much impact on the
peak VM CPU utilization during booting processes.

5.6 Image Repository Impact
Under the FermiCloud architecture, as shown in Fig. 3, all
the machines are connected to the SAN. Hence, when large
number of VMs are launched simultaneously, all the VM
images are read and copied from the SAN at the same
time which may lead to significant increase of the VM’s
launching overheads. We set up another set of experiments
to evaluate the impact of sudden large number of simulta-
neous launches on the VM launching overhead. Since for
cached images, the images are directly read from the host
machine’s memory, hence, the SAN activities does not affect
the VM launching process for cached image. We therefore,
only evaluate uncached images. In particular, we launch a
VM on a host, and simultaneously launch more VMs on
other different hosts.

Fig. 22 shows the average launching times and max-
imum and minimum launching times for the SQ U and
SR U test cases. X-axis presents the number of simultaneous
launches. It is clear that when the number of simultaneous
launches increases, the VM launching times also increase.

2 3 4 5 6 7 8

100

200

300

400

No. of Simultaneous Launches

Se
co

nd
s

SQ AVE
SQ MAX
SQ MIN
SR AVE
SR MAX
SR MIN

Fig. 22: VM Launching
Time under Different

Simultaneous Launches

2 3 4 5 6 7 8

0

100

200

300

400

No. of Simultaneous Launches

Se
co

nd
s

SQ AVE
SQ MAX
SQ MIN
SR AVE
SR MAX
SR MIN

Fig. 23: VM Prologue Time
under Different

Simultaneous Launches

2 3 4 5 6 7 8

0

20

40

60

80

No. of Simultaneous Launches

Se
co

nd
s

SQ
SR

Fig. 24: Ave. VM Booting
Time under Different

Simultaneous Launches

2 3 4 5 6 7 8

0

20

40

60

80

No. of Simultaneous Launches

Se
co

nd
s

SQ MAX
SQ MIN
SR MAX
SR MIN

Fig. 25: Max and Min VM
Booting Time under

Different Simultaneous
Launches

2 3 4 5 6 7 8

0

20

40

60

80

100

No. of Simultaneous Launches

V
M

C
PU

U
til

iz
at

io
n

(%
) SQ

SR

Fig. 26: VM Peak CPU
Utilization under Different

Simultaneous Launches

2 3 4 5 6 7 8

0

10

20

30

No. of Simultaneous Launches
V

M
C

PU
U

til
iz

at
io

n
(%

) SQ
SR

Fig. 27: VM Average
Prologue CPU Utilization

under Different
Simultaneous Launches

As the number of simultaneous launches only affect the
image read speed from the SAN, once the image is copied
to the local host machine, the booting process becomes the
same as the base VM booting process. Fig. 24 and 25 show
the average VM booting time and maximum and minimum
VM booting time, respectively. Fig. 26 depicts the average
peak VM CPU utilization during the VM booting process.
It is clear that the VMs’ average booting times and average
peak VM CPU utilization during the booting process are not
influenced much by the number of simultaneous launches
and aligned well with the base VMs’ booting patterns as
stated in Table 1.

As shown in Fig. 23, the number of simultaneous
launches has significant impact on the image transmission
process. When the number of simultaneous launches in-
creases, the image transfer time variation also increases.
This is because when the number of simultaneous launches
increases, the number of requests for read bandwidth of

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 9

the SAN also increases. As a result, the read speed for
each request is decreased. Fig. 27 shows when the read
speed decreases, the average VM CPU utilization during
the prologue process also decreases linearly. As mentioned
before, the local disk read bandwidth is 500MB/s. When the
read bandwidth is fully utilized, the host CPU utilization
consumption is 70% on a single core. When eight VMs are
being launched simultaneously, the measured average read
speed on the SAN is 62MB/s for the tested VM. Hence,
the theoretical VM CPU utilization during the prologue
process is 62/(500/0.7) = 8.6% which is consistent with
the measured average value(8.4%).

5.7 Network Impact
Because the FermiCloud is using SAN as its storage, all
the image transmission processes are treated as local disk
activities. Hence, the network activities will not have im-
pact on the VMs’ launching process. However, the SAN
architecture itself is a special network where the network
bandwidth is much larger than the disk write/read speed
and the network bandwidth is fully dedicated to its con-
nected machines. In the environment where the machines
are connected by the high speed Ethernet, the actual net-
work bandwidth (at GB level) is still much larger than
the disk write/read speed (at hundreds MB level). We also
conducted the same set of experiments that we have done
on the SAN architecture FermiCloud is built upon on the
Ethernet environment [21]. The experimental results are the
same as the observations we have on the SAN architecture.
The disk write/read speed is also the dominant factor that
significantly impact the VMs’ launching overhead.

5.8 Discussion
From these experiments, we can conclude the following:

• VM launching overhead mainly contains two parts: pro-
logue (image copying/transferring) overhead and booting
overhead;

• booting overhead is relatively steady, i.e., has less varia-
tions when it is compared to the prologue overhead;

• prologue overhead, on the other hand, has significant
variations when the disk read speed on image repository
varies; and

• disk write utilization has significant impact on both pro-
logue overhead and booting overhead.

As [5] states that different VM and cloud management
tools have significant performance differences on VM pro-
cess. In the experiments, we are trying to minimize the
impact of OpenNebula by discounting its default scheduler
overhead from VM launching process. We do believe that
different VM management tools may impact VM perfor-
mance on resource consumption. Using different VM man-
agement tool, for instance, Xen may lead different peak CPU
utilization during the VM booting process, but we believe
that the patterns of the image transferring process and VM
booting process are the same regardless of the VM and cloud
management tools.

Another major factor that impacts the VM launching pro-
cess is the cloud infrastructure. In our earlier work, we have
performed the same set of experiments on a different cloud

infrastructure where host machines and image repository
are connected by Ethernet and regular NFS file system [21].
The patterns we have observed from VM launching process
are the same on both cloud infrastructures. Hence, we be-
lieve that the patterns of VM launching process are generally
the same in most of the private cloud systems. One of our
future work is to verify the hypothesis.

In the next section, we present a reference model for the
VM launching overhead based on the data obtained.

6 VM LAUNCHING OVERHEAD REFERENCE
MODEL

Before we present the reference model for the VM launching
overhead in private cloud, we first introduce notations to be
used in defining the reference model.

A VM in a private cloud is defined as vi = (fi, ti, Hi),
where fi is the image size of the VM vi, ti is the VM start
time and Hi is the host machine that the VM is to be de-
ployed on. For each host Hi, we use VHi

= {v1, v2, . . . , vn}
to denote the set of VMs deployed on the host Hi. In the
set VHi

, virtual machines are sorted according to their start
time in non-decreasing order. For each host Hi, pi and mi

are the number of cores and the total memory owned by
the host Hi, respectively. The Bw

Hi
, Br

Hi
and Bc

Hi
denote

host machine disk write bandwidth, disk read bandwidth,
and cache bandwidth, respectively; Sw(Hi, t), Sr(Hi, t) and
Sc(Hi, t) denote the file write speed, file read speed, and file
cache speed on host Hi at time t, respectively.

The proposed reference model contains three different
overheads: CPU utilization overhead, disk write utilization
overhead, and timing overhead which is the time needed
for launching a VM untill it is ready to execute tasks. We
first model the CPU utilization and disk write utilization
that a single VM consumes on the host machine during
the launching process. Then we model the host machine’s
entire system CPU utilization and disk write utilization. As
discussed in section 5, the complete VM launching process
mainly consists of two parts: prologue and boot process. We
discuss the reference models for these two steps below.

6.1 Prologue Overhead Model
The prologue overhead we model here also contains three
different parts: CPU utilization overhead, disk write uti-
lization overhead, and timing overhead which is the time
needed for transferring an image from image repository to
the host machine. Since the prologue overhead for uncached
image and cached image are different, we have separate
models for the uncached and the cached images, respec-
tively.

6.1.1 Uncached Image

The image transferring time for VM vi = {fi, ti, Hi} with
uncached image is defined below:

(1)Transi =
fi

Sr(Hi, ti)

From the experiments we know that if local disk read
bandwidth is fully utilized by a process, the process also
utilizes 70% of one physical core of the host machine. For

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 10

different systems, the ratio may vary. We denote such ratio
as �. For a given system, the � is a constant. We first define
the base VM CPU utilization of prologue as follows:

(2)
Ub pro(i, t) =

1

1 + e�0.5(Transi+ti)(t�ti)
�

1

1 + e�0.5(Transi+ti)(t�(Transi+ti))

From the observation of image transferring process in
previous section we know that when the image transferring
process starts, it consumes all the I/O utilization in a very
short period and occupied the I/O resources until it finishes
transferring, then it releases the I/O resource. Equation (2)
is given to match such utilization variations. The VM CPU
utilization of transferring an image for VM vi is modeled as:

(3)
Utr(i, t)

=

(
Sr(Hi,ti)
Br

Hi
/� ⇤ Utr base(i, t) ti  t  ti + Transi

0 otherwise

The disk write utilization consumed by a VM’s prologue
process is more complicated. As the write process is not
synchronized with the prologue process, we first need to
determine the start time of the disk write process. As dis-
cussed above, by Linux default setting, a file is written into
disk at the time when the dirty page reaches 10% of the
memory or 30 seconds whichever happens first. Hence, we
define the start time of write process for VM vi as:

stUC
w (vi) = ti +min{30, min{fi,mi/10}

Sr(Hi, ti)
} (4)

We then need to define the time points that the VM
launching process actually writes disk. As discussed above,
if the disk write speed is larger than the read speed, the
write process sleeps for 5 seconds after writing all the
content in the dirty page. We calculate the first time duration
that the process writes file into the disk.

fstUC
w (vi) = min{ fi

Sw(Hi,ti)
, (5)

min{30, min{fi,mi/10}
Sr(Hi,ti)

} · Sr(Hi,ti)
Sw(Hi,ti)�Sr(Hi,ti)

}

After the first write duration, the remaining size of the
file is rfi = fi � fstUC

w (vi) ⇤ Sw(Hi, ti). Hence, the total time
of writing the remaining file into the disk is rfi/Sw(Hi, ti).
The write time after each 5 second sleep is wtsleep = 5 ⇤
Sr(Hi, ti)/(Sw(Hi, ti) � Sr(Hi, ti)). Then the total number
of sleeps is Nsleep = drfi/Sw(Hi, ti)/wtsleepe. Hence, we can
obtain the time points that the entire write process finishes
as below:

ltUC
w (vi) = stUC

w (vi)+ fstUC
w (vi)+ rfi/Sw(Hi, ti)+Nsleep ⇤ 5

(6)

The time point set that the write process actual writes
file into disk is defined as:

(7)

T = {[stUC
w (vi), stUC

w (vi) + fstUC
w (vi)] [

[stUC
w (vi) + fstUC

w (vi) + 1 ⇤ 5,
stUC
w (vi) + fstUC

w (vi) + 1 ⇤ 5 + wtsleep] [. . . [
[stUC

w (vi) + fstUC
w (vi) + (Nsleep � 1) ⇤ 5,

stUC
w (vi) + fstUC

w (vi) + (Nsleep � 1) ⇤ 5 + wtsleep] [
[stUC

w (vi) + fstUC
w (vi) +Nsleep ⇤ 5,

stUC
w (vi) + fstUC

w (vi) +Nsleep ⇤ 5
+ (rfi/Sw(hi, ti))modwtsleep]}

At last, we define the disk write utilization consumed
by the VM prologue process and the host CPU utilization it
consumes. We first define the base host disk write utilization
as:

IOUC
w base(i, t) =

1

1 + e�0.5(ltUC
w)(t�stUC

w (vi))
�

1

1 + e�0.5(ltUC
w)(t�ltUC

w (vi))
(8)

Then the host disk write utilization for the prologue
process is defined as:

IOUC
w (i, t) =

(
Sw(Hi,ti)

Bw
Hi

⇤ IOUC
w base(i, t) t 2 T

0 otherwise
(9)

The host CPU utilization consumption of the write pro-
cess is:

UUC
w (i, t) =

1

pi
IOUC

w (i, t) (10)

6.1.2 Cached Image

The prologue time and VM CPU utilization during the pro-
logue process can be calculated using equation (1) and (3)
by replacing the Sr(hi, ti) with Sc(hi, ti), respectively. For
the host disk write utilization during the prologue process,
the model is much simpler compared with the model for the
uncached images.

The start time point stw(vi) of the write process also can
be calculated using equation (4) by replacing Sr(hi, ti) with
Sc(hi, ti). The finish time point of the write process is:

ltw(vi) = stw(vi) +
fi

Sc(Hi, ti)
(11)

Hence, the base host disk write utilization for cached
images is defined as:

IOw base(i, t) =
1

1 + e�0.5(ltw)(t�stw(vi))
�

1

1 + e�0.5(ltw)(t�ltw(vi))
(12)

Then the host disk write utilization for the prologue
process is:

IOC
w(i, t)

=

(
Sc(Hi,ti)

Bc
Hi

⇤ IOw base(i, t) stw(vi)  t  ltw(vi)
0 otherwise

(13)

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 11

The host CPU utilization consumption of the write pro-
cess is:

UC
w (i, t) =

1

pi
IOC

w(i, t) (14)

In general, the host disk write utilization during the VM
prologue process is defined as:

IOw(i, t) =

⇢
IOUC

w (i, t) uncached image
IOC

w(i, t) cached image
(15)

The host CPU utilization consumption of the write pro-
cess is:

Uw(i, t) =

⇢
UUC
w (i, t) uncachedimage

UC
w (i, t) cachedimage

(16)

Note that the model for uncached images only validates
for the scenario when Sw(Hi, ti) > Sr(Hi, ti) and images
are not cached. When Sw(Hi, ti)  Sr(Hi, ti), we need to
use the cached image model by replacing Sc(Hi, ti) with
Sr(Hi, ti).

6.2 Booting Overhead Model
The VM booting overhead also refers to the timing overhead
and CPU utilization overhead. As once the image is copied
to a host, it will not consume any disk write utilization
for the booting process. We consider that there is no disk
write overhead for the virtual machine booting process. The
experiments also indicate that the host disk write utilization
impacts the booting overhead. Hence, we model the CPU
utilization overhead for the VM vi’s booting process as
follows:

(17)Ub(i, t)

=

(
a ⇤ (t� Transi � ti) , t < Transi + ti +

f(vi)
a

f(vi)
1
me�t0�(↵(1+IOs(Hi,t�1))+ �

t0+�
) , otherwise

where f(vi) is the function related to the virtual CPU cores
that vi has and it is used to control the peak VM CPU
utilization during the booting process. In equation(17), a,
�, ↵ and � are constants, and � and � dominate the function
decay rate while ↵ determines the minimum decay rate, m is
the number of cores on the host machine and IOs(Hi, t� 1)

represents the system’s disk write utilization at time t � 1.
t0 = t � Transi � ti � f(vi)/a. We will formally define the
system disk IO utilization in section 6.5.

In OpenNebula, VMs are not immediately ready for use
until all the necessary services, such as SSHD, are started.
As there is no accurate way to tell the actual time when a
virtual machine is booted and ready for use unless entering
into a running virtual machine and check the log, therefore,
we base our estimation of the time points on the variation
of the VM’s CPU utilization consumption. If the VM’s CPU
utilization consumption remain stable, then we consider the
VM is booted and ready for use. We define the time point
tb(i) at which a VM vi is ready to use as:

tb(i) = max{t||U 0
b(i, t)| ✏} (18)

where U 0
b(i, t) is the first derivative of Ub(i, t) and ✏ is

the threshold to determine whether the virtual machine’s
CPU utilization consumption become stable. Then, we can
calculate the VM booting time is as (tb(i)� Transi).

6.3 Virtual Machine Launching Overhead Model
We have formally modeled image transfer overhead and
virtual machine booting overhead. Combining the two com-
poments together, we derive VM launching overhead func-
tions. In particular, combining equation (3) and equation
(17), the VM vi’s launching CPU utilization function is
modeled as:

U(i, t) =

⇢
Utr(i, t) t  ttran
Ub(i, t) t > ttran

(19)

Since IO utilization consumed by the VM booting pro-
cess is negligible, the IO utilization function for VM vi’s
launching process is the same as equation (15).

The total time needed for launching a VM vi then can be
calculated as image copying time plus VM booting time. It
is formally defined as follow:

toverhead(i) = tb(i)� ti (20)

6.4 Virtual Machine Utilization Consumption Model
The complete VM utilization functions consist of the VM
launching overhead utilization functions and the utilization
functions after workloads are deployed on the virtual ma-
chine. We assume at time t0 � tb(i), the VM vi starts execut-
ing tasks; and the CPU and disk IO utilization consumption
function of vi at t0 are Ue(t) and IOe(t), respectively. Then
the VM CPU utilization consumption model is defined
below:

Uc(i, t) =

8
<

:

Utr(i, t) t  ttran
Ub(i, t) t > ttran
Ue(i, t) t � t0

(21)

The VM IO utilization consumption model is defined as:

IOc(i, t) =

⇢
IOw(i, t) ti  t  tb(i)
IOe(i, t) otherwise

(22)

6.5 System Utilization Model
We assume that host machines only run VMs and all other
critical system services consume a small portion of the
system CPU and IO utilization. Then we can calculate the
system CPU and disk IO utilization as the summation of
the VMs’ CPU and IO utilization consumptions. The system
CPU utilization of host hi is modeled below:

Us(Hi, t) = max{1,
|VHi

|X

j=1

{Uc(j, t)}+
|VHi

|X

j=1

{Uw(j, t)}} (23)

The system IO utilization of host hi can be modeled as:

IOs(Hi, t) = max{1,
|VHi

|X

j=1

{IOc(j, t)}} (24)

Intuitively, the mathematical equations used to model the
VM launching process in this section are obtained by finding
the best match equations to the plotted data shown in
Section 5. There may exist other equations that can also
represent the variations of the real data. To balance the
trade offs between accuracy and complexity, we choose the
equations that we believe give fair accuracy within a short
computational time period. In next section, we use data
obtained from real operation cloud to verity the accuracy
of the developed reference model.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 12

7 EVALUATION

We build the reference model for virtual machine launching
overhead based on a large amount of data obtained from
a real production system. However, we cannot guarantee
the accuracy of the model unless we compare the calculated
data using the model we built with the real system data
and prove the accuracy of the model. Since some of the
parameters we use for modeling are system dependent,
we focus the evaluation on the same given system, i.e.,
FermiCloud. We first use base VM launching overhead
values shown in Section 5 to determine all the parameters.
Once the parameters are determined, they are fixed for all
the evaluation experiments. To evaluate the performance of
the developed model, we first launch VMs on FermiCloud
under different system loads. Then we use the developed
reference model to simulate the launch process use the same
VM release pattern.

We use mean square weighted deviation to evaluate the
accuracy of our developed model from four aspects, i.e., VM
CPU Utilization, host CPU utilization, host I/O utilization
and VM launching time. We denote N as the total number
of sampling points. The mean square weighted deviation is
defined as follows:

MSWD =

1

N

NX

i=1

Pn
j=1(Us(i)� Ur(i, j))2

�2
(25)

where n is the number of the repetition of one experiment.
Ur(i, j) is the real data from the ith sampling point and jth

repetition. Us represents the calculated data at ith sampling
point. � is the standard deviation. To check the real time
point for the VM that is ready for use, we use the VM system
log to check the starting time point of the SSHD service.

We first compare the base overhead obtained by calcu-
lating the value based on the model proposed in section 6,
and the real data obtained on FermiCloud.

Fig. 28(a), Fig. 28(b), Fig. 28(c), Fig. 28(d), Fig. 29(a),
Fig. 29(b), Fig. 29(c), and Fig. 29(d), draws the host CPU uti-
lization, host disk write utilization and VM CPU utilization
for SQ U SQ C LQ U LQ C SR U SR C LR U LR C test
cases using the developed VM launching overhead model,
respectively. Compare the graph with the utilization varia-
tions shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 obtained from
the real operation data from FermiCloud. The calculated
data using our developed model is very close to the real
data.

Table 2 gives a more detailed comparison between the
real data and calculated data. From the table, we can observe
that the maximum mean square weighted deviation for the
VM CPU utilization of base test cases is 4.55 and the mini-
mum mean square weighted deviation for the base test cases
is 0.41. As the real data for the base cases shown in Fig. 4(a)
to Fig. 7(b), the VM CPU utilization during the booting
process drops for a small duration after it reaches the peak
utilization, then immediately rises a little bit and finally
decreases continuously. While in our model, the VM CPU
utilization for the booting process keeps decreasing after
reaches its peak utilization. Hence the range of the mean
square weighted deviation for the VM CPU utilization for
the base cases is from 0.41 to 4.55. The average mean square
weighted deviation for VM CPU utilization of all base cases

VM CPU Util. Host CPU U. Host IO U. Time
Base SQ U 2.79 2.32 1.61 2.35
Base SQ C 1.31 2.02 1.61 3.16
Base LQ U 4.28 0.71 1.60 4.21
Base LQ C 1.88 2.53 1.86 2.87
Base SR U 1.62 2.13 2.03 3.18
Base SR C 4.53 3.55 2.12 2.58
Base LR U 0.41 1.12 1.15 2.41
Base LR C 4.55 3.21 0.34 2.85
Sim. Lau. 2.39 1.98 1.38 2.43
Rand. Lau. 1.78 1.83 1.40 2.27
Overall 2.55 2.14 1.51 2.82

TABLE 2: Mean Square Weighted Deviation for Calculated
Overheads in VM CPU Util., Host CPU Util., Host IO Util.,

and Time

is 2.67. While the mean square weighted deviation for host
disk write utilization for base cases only varies from 0.34
to 2.12. And the average mean square weighted deviation
for host disk write utilization for all base cases is 1.54. As
a result, the average mean square weighted deviation of
host CPU utilization for all base cases is 2.19. The range
of the mean square weighted deviation for the predicted
VM launching time for base cases is from 2.35 to 4.21. The
average mean square weighted deviation for VM launching
time predicted by our model for all base cases is 2.93.

We further evaluate when more than one VMs are
launched on the same host machine simultaneously. The
number of simultaneous launch increases from 2 to 4. The
VMs that to be launched are arbitrary selected from our four
different test cases. The obtained data is given in Table 2. The
mean square weighted deviation for calculated overheads
in VM CPU utilization, host CPU utilization, host disk write
utilization and VM launching time are 2.39, 1.98, 1.38 and
2.43, respectively. The performance of our developed model
remain the same level compared to the base test cases
(average mean square deviation for VM CPU utilization,
host CPU utilization, host disk write utilization and VM
launching time are 2.67, 2.19, 1.54 and 2.93, respectively).

For the last set of evaluations, we launch VMs under a
random release pattern. Differ from previous evaluations, as
soon as a VM is launched, it immediately executes an appli-
cation deployed on it. Hence, the host machine has different
CPU and IO utilization at different time instances when a
new VM is released. We use the reference model to simulate
the VM launching process in a real cloud environment using
the same release pattern. From the Table 2, it is clear that
the developed reference model accurately reflects the VM
launching overhead, the mean square weighted deviation
of calculated data is less than 2.5 from all aspects.

Overall, for all our test cases, the average mean square
weighted deviation for VM CPU utilization is 2.55, the
average mean square weighted deviation for host disk write
utilization is 1.51, the average mean square weighted devi-
ation for host CPU utilization is 2.14, and the average mean
square weighted deviation for launch time is 2.82. With an
average mean square weighted deviation less than 3 from
all four aspects, we believe that our developed model can
accurately reflect the VM launching process.

8 CONCLUSION

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 13

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(a) VM launching overhead
with SQ U using proposed
model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(b) VM Launching Overhead
with SQ C using Developed
Model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(c) VM Launching Overhead
with LQ U using Developed
Model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(d) VM Launching Overhead
with LQ C using Developed
Model

Fig. 28: VM Launching Overhead with QCOW2 Image using Developed Model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(a) VM Launching Overhead
with SR U using Developed
Model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(b) VM Launching Overhead
with SR C using Developed
Model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(c) VM Launching Overhead
with LR U using Developed
Model

0 50 100 150 200 250 300

0

20

40

60

80

100

Seconds

U
til

iz
at

io
n

CPU
IO WRITE
VM CPU

(d) VM Launching Overhead
with LR C using Developed
Model

Fig. 29: VM Launching Overhead with Raw Image using Developed Model

One of the main challenges in developing the cloud bursting
module is to decide when and where to launch a VM so that
all resources are most effectively utilized and the system
performance is optimized. We have found that the VM
launching overhead has a large variation under different
system states. The CPU and I/O utilizations caused by
VM launching process can have significant impact on cloud
bursting strategies. Hence, being able to model accurately
the dependency between VM launching overhead and sys-
tem resource utilization is critical in deciding when and
where a VM should be launched. This paper has studied the
VM launching overhead patterns based on data obtained
on FermiCloud and presented a VM launching overhead
reference model to represent such overhead. The evaluation
shows that our proposed model can accurately predict the
VM launching overhead within a mean square weighted
deviation less than 3 from all four aspects, i.e. VM CPU
utilization, system CPU utilization, system I/O utilization
and VM launching time.

The model developed in this paper is based on SAN-
based cloud infrastructures with OpenNebula and KVM as
its cloud and VM management tool, respectively. We do
believe that the patterns we modeled for VM launching
process is applicable to other private cloud in general. It
is our future work to verify our hypothesis that the model
does fit different virtualization techniques, i.e. fully vir-
tualization and hardware-assisted virtualization; different
cloud management tools, i.e., OpenStack etc.; different VM
management tools, i.e., Xen; and different cloud infrastruc-
tures. In addition, following the motivation of developing
the reference model, our immediate work is to integrate the

reference model into the cloud bursting decision algorithms.

REFERENCES

[1] Feature - clouds make way for STAR to shine.
http://www.isgtw.org/feature/isgtw-feature-clouds-make-
way-star-shine.

[2] https://www.scientificlinux.org/.
[3] Opennebula. http://opennebula.org.
[4] Opennebula managing virtual machines.

http://opennebula.org/documentation:archives:rel3.0:vm guide 2.
[5] P. Armstrong, A. Agarwal, A. Bishop, A. Charbonneau, R. Des-

marais, K. Fransham, N. Hill, I. Gable, S. Gaudet, S. Goliath, et al.
Cloud scheduler: a resource manager for distributed compute
clouds. arXiv preprint arXiv:1007.0050, 2010.

[6] A. Beloglazov and R. Buyya. Energy efficient allocation of virtual
machines in cloud data centers. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2010 10th IEEE/ACM International Conference on,
pages 577–578. IEEE, 2010.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms. Software: Practice and Experience, 41(1):23–50,
2011.

[8] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine
provisioning based on analytical performance and qos in cloud
computing environments. In Parallel Processing (ICPP), 2011 Inter-
national Conference on, pages 295–304. IEEE, 2011.

[9] N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating
and modeling virtualization performance overhead for cloud en-
vironments. In CLOSER, pages 563–573, 2011.

[10] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling. Scientific workflow applications on amazon
ec2. In E-Science Workshops, 2009 5th IEEE International Conference
on, pages 59–66. IEEE, 2009.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.XXX, NO.XXX, 2014 14

[11] H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant, P. Patchin,
M. Brudno, E. de Lara, S. M. Rumble, M. Satyanarayanan, and
A. Scannell. Snowflock: Virtual machine cloning as a first-class
cloud primitive. ACM Transactions on Computer Systems (TOCS),
29(1):2, 2011.

[12] J. Lauret, M. Walker, S. Goasguen, and L. Hajdu. From grid to
cloud, the star experience, 2010.

[13] M. Mao and M. Humphrey. A performance study on the vm
startup time in the cloud. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pages 423–430. IEEE, 2012.

[14] Y. Z. Mengxia Zhu, Qishi Wu. A cost-effective scheduling algo-
rithm for scientific workflows in cloud. Proceedings of 31st IEEE
International Performance Computing and Communications Conference,
2012.

[15] R. Moreno-Vozmediano, R. Montero, and I. Llorente. Iaas cloud
architecture: from virtualized data centers to federated cloud
infrastructures. 2012.

[16] S.-Y. Noh, S. C. Timm, and H. Jang. vcluster: a framework for auto
scalable virtual cluster system in heterogeneous clouds. Cluster
Computing, pages 1–9, 2013.

[17] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li,
B. Zhang, T.-L. Wu, Y. Ruan, S. Ekanayake, et al. Hybrid cloud and
cluster computing paradigms for life science applications. BMC
bioinformatics, 11(Suppl 12):S3, 2010.

[18] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya.
Resource provisioning policies to increase iaas provider’s profit in
a federated cloud environment. In High Performance Computing and
Communications (HPCC), 2011 IEEE 13th International Conference on,
pages 279–287. IEEE, 2011.

[19] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman.
Experiences using cloud computing for a scientific workflow ap-
plication. In Proceedings of the 2nd international workshop on Scientific
cloud computing, pages 15–24. ACM, 2011.

[20] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu, H. W. Kim,
K. Chadwick, H.-J. Jang, and S.-Y. Noh. Automatic cloud bursting
under fermicloud. Workshop on Cloud Services and Systems, 2013.

[21] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu, and S.-Y. Noh.
A reference model for virtual machine launching overhead. In
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2014), 2014.

Hao Wu is now a Ph.D candidate in Computer
Science Department at Illinois Institute of Tech-
nology. He received B.E in Information Security
from Sichuan University, Chengdu, China, 2007.
He received M.S. in Computer Science from Uni-
versity of Bridgeport, Bridgeport, CT, 2009. His
current research interests mainly focus on cloud
computing, real-time distributed open systems,
Cyber-Physical System, parallel and distributed
systems, and real-time applications.

Dr. Shangping Ren is an associate professor
in Computer Science Department at the Illinois
Institute of Technology. She earned her Ph.D
from UIUC in 1997. Before she joined IIT in
2003, she worked in software and telecommuni-
cation companies as software engineer and then
lead software engineer. Her current research
interests include coordination models for real-
time distributed open systems, real-time, fault-
tolerant and adaptive systems, Cyber-Physical
System, parallel and distributed systems, cloud

computing, and application-aware many-core virtualization for embed-
ded and real-time applications.

Dr. Gabriele Garzoglio is head of the Grid
and Cloud Services Department of the Scientific
Computing Division at Fermilab and he is deeply
involved in the project management of the Open
Science Grid. He oversees the operations of
the Grid services at Fermilab and sponsors the
Cloud program in the division. Gabriele Gar-
zoglio has a Laura degree in Physics from Uni-
versity of Genova, Italy, and a PhD in Computer
Science from DePaul University, Chicago.

Dr. Steven Timm is the associate head for
Cloud Computing of the Grid and Cloud Services
Department at Fermilab. He has led the Fermi-
Cloud project since its inception in early 2010,
and been a member of the Fermilab staff since
2000. In this role he coordinates working with
visiting students and guest researchers from
other laboratories doing research and devel-
opment on innovative techniques in distributed
computing and cloud computing. He completed
his PhD. Studies at Carnegie Mellon University

in 1995.

Gerard Bernabeu is an IT engineer and re-
searcher of the Grid and Cloud Services De-
partment of the Scientific Computing Division at
Fermilab. He is Linux DevOps enthusiast with
hand-on experience in IP networks, storage and
Cloud Computing in dynamic, collaborative re-
search communities. He received MsC in High
Performance Computing and Information Theory
by the Universitat Autnoma de Barcelona (UAB).

Dr. Keith Chadwick is ITIL Avilability and Ser-
vice Continuity Manager at fermilab. During 2009
- 2013, he was the head of the Grid and Cloud
Services Department of the Scientific Comput-
ing Division at Fermilab. He has been a member
of the Fermilab staff since 1987. Dr. Keith re-
ceived B.S. and M.A. in Physics from the Univer-
sity of Rochester in 1978 and 1980, respectively.
He received Ph.D in Physics from the University
of Rochester in 1984.

Dr. Seo-Young Noh is a principal researcher in
National Institute of Supercomputing and Net-
working at Korea Institute of Science and Tech-
nology Information and an associate professor
at Korea University of Science and Technology.
He is leading the development of virtual cluster
system called vcluster in conjunction with KISTI-
FNAL joint project. Before joining the institutes,
he worked for LG Electronics in the fields of
embedded database systems and Linux mobile
platforms. He received his B.E and M.E in Com-

puter Engineering from Chungbuk National University in Korea and his
M.S. and Ph.D. in Computer Science from Iowa State University, respec-
tively. His research interests are including scientific data management,
cloud & scientific computing, Linux platforms, databases, and natural
language processing.

Overhead-Aware-Best-Fit (OABF) Resource Allocation
Algorithm for Minimizing VM Launching Overhead

Hao Wu
⇤

Illinois Institute of Technology
10 w 31 St.

Chicago, IL, 60616
hwu28@hawk.iit.edu

Shangping Ren
†

Illinois Institute of Technology
10 w 31 St.

Chicago, IL, 60616
ren@iit.edu

Steven Timm
‡

Fermi National Accelerator
Laboratory

Batavia, IL, USA
timm@fnal.gov

Gabriele Garzoglio
Fermi National Accelerator

Laboratory
Batavia, IL, USA

garzogli@fnal.gov

Seo-Young Noh
§

National Institute of
Supercomputing and

Networking,
Korea Institute of Science and

Technology Information
Daejeon, Korea

rsyoung@kisti.re.kr

ABSTRACT
FermiCloud is a private cloud developed in Fermi National
Accelerator Laboratory to provide elastic and on-demand
resources for di↵erent scientific research experiments. The
design goal of the FermiCloud is to automatically allocate
resources for di↵erent scientific applications so that the QoS
required by these applications is met and the operational
cost of the FermiCloud is minimized. Our earlier research
shows that VM launching overhead has large variations. If
such variations are not taken into consideration when mak-
ing resource allocation decisions, it may lead to poor perfor-
mance and resource waste. In this paper, we show how we
may use an VM launching overhead reference model to mini-
mize VM launching overhead. In particular, we first present
a training algorithm that automatically tunes a given refer-
ence model to accurately reflect FermiCloud environment.
Based on the tuned reference model for virtual machine
launching overhead, we develop an overhead-aware-best-fit
resource allocation algorithm that decides where and when

⇤Hao Wu works as an intern in Fermi National Accelerator
Laboratory, Batavia, IL, USA
†The research is supported in part by NSF under grant num-
ber CAREER 0746643 and CNS 1018731.
‡This work is supported by the US Department of Energy
under contract number DE-AC02-07CH11359
§This work is supported by KISTI under a joint Cooperative
Research and Development Agreement CRADA-FRA 2013-
0001 / KISTI-C13013.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to allocate resources so that the average virtual machine
launching overhead is minimized. The experimental results
indicate that the developed overhead-aware-best-fit resource
allocation algorithm can significantly improved the VM launch-
ing time when large number of VMs are simultaneously
launched.

1. INTRODUCTION
Because of its elasticity and flexibility, cloud technology

has not only benefited general purpose computing we en-
counter in our daily life, such as Gmail, Google docs, iCloud,
to name a few. It also brings new opportunities to scientific
applications. For instance, the Nimbus team at Argonne
National Laboratory successfully migrates the STAR exper-
iment at the Brookhaven National Laboratory to Amazon
EC2 to avoid the shortage from local grid service [2]. An-
other successful example of deploying scientific applications
on computer clouds is the ATLAS experiment at the Large
Hadron Collider at CERN which uses Google Cloud to im-
prove the e�ciency of its research process [4].

One of the main advantages of deploying scientific ap-
plications on computer cloud is that computer cloud has
”infinite” amount of resources. Scientific applications often
require large amount computational resources and have long
execution time. With a traditional grid system, if local re-
sources are fully occupied by some applications, the newly
arrived applications have to wait until one of the running ap-
plications finishes and releases its resources. However, with
the cloud technology, even if local resources are fully occu-
pied, public cloud resources are always available to execute
newly arrived applications.

Many institutions and companies have already foreseen
the advantages of deploying scientific applications on cloud
and have developed their specific cloud services for scientific
applications. For instance, Amazon provides a HPC cloud
for scientific applications [1], Microsoft [3] and Google [4]
also provide specific cloud services for scientific applications.

Fermi National Laboratory (Fermilab), as a leading physics

research institution in United States, has developed its own
private cloud – the FermiCloud to support scientific appli-
cations within Fermilab and its collaboration institutions.
Since the establishment of the FermiCloud in 2010, the Fer-
milab Grid and Cloud Services department has smoothly
integrated its grid computing infrastructure with the Fermi-
Cloud. The FermiCloud project has made significant progress
through the collaboration between Fermilab, Korea Institute
of Science Technology and Information (KISTI) global sci-
ence experimental data hub center and Illinois Institute of
Technology(IIT). In particular, we have successfully imple-
mented an automation tool the ”vcluster”, which allows grid
worker virtual machines to run on the cloud in response to
increased demand of grid jobs [11, 13]. The design goal of
the vcluster is to automatically provisioning resources for
di↵erent scientific applications so that the QoS of the sci-
entific application is met and the operational cost of the
FermiCloud is minimized.

Many solutions have been proposed by researchers to achieve
the objectives that are similar to the FermiCloud design
goal. The research includes minimizing application’s makespan
in cloud [10], reducing energy consumption of datacenters [12],
minimizing cost of the application execution [8], to name
a few. However, these researches assume that virtual ma-
chine launching overhead is a constant or even negligible. As
Mao et al. pointed out that the virtual machine launching
overhead can have a very large variation in public cloud [9].
Without considering the variations of virtual machine launch-
ing overhead when designing resource allocation algorithm
in cloud may lead to cost increase and resource waste.

Our earlier work has studied virtual machine launching
overhead under di↵erent system conditions and developed a
reference model to predict virtual machine launching over-
head [14]. However, as each physical host machine has its
own characteristics. Even two host machines that have the
same configuration may di↵er in performances. In order to
obtain accurate predictions, the parameters of the reference
model need to be adjusted for each host machine. In this pa-
per, we first present a training algorithm that automatically
tunes the accuracy of the virtual machine launching over-
head reference model for a given physical platform. Based
on the tuned virtual machine launching overhead reference
model, we present an overhead-aware-best-fit (OABF) re-
source allocation algorithm that decides where and when
to allocate resources so that the average virtual machine
launching overhead is minimized is proposed.

The rest of the paper is organized as follows: In Section 2,
we present our prior work regarding virtual machine launch-
ing overhead and the software we have developed for virtual
resource management . Section 3 discuss the details of the
automatic model training algorithm. The OABF algorithm
is presented in Section 4. Section 5 discusses the experimen-
tal results. We conclude our work in Section 6.

2. PRELIMINARY WORK

2.1 The vcluster System
The vcluster is a middleware jointly developed by KISTI

and Fermilab for automatically managing virtual resources
according based on batch job load in system [11, 13]. It
consists of four major components: batch system plugin in-
terface, cloud plugin interface, monitoring module and load
balancer plugin interface. The batch system plugin interface

provides supports for communicating with di↵erent batch
job systems such as HTCondor, Torque, and Sun Grid En-
gine (SGE). The cloud plugin interface is responsible for
communicating with di↵erent cloud platforms such as Fer-
miCloud in Fermilab, GCloud in KISTI, and public clouds
such as Amazon EC2. The monitoring module collects all
the information from connected batch job systems and cloud
platforms. It translates the data from di↵erent batch job
systems and cloud platforms into a uniform data format that
can be used by load balancer interface. With the design of
plugable modules for di↵erent batch job system, cloud plat-
forms and load balancers, the vcluster can be easily extended
and modified if needed.

The vcluster has been successfully implemented on Fer-
miCloud GCloud and Amazon EC2 [11, 13]. The source
code of the vcluster can be found in [6, 5]. In this paper, we
present the design of resource allocation mechanism used in
the vcluster ’s load balancer module which decide when and
where to deploy virtual machines so that the average virtual
machine launching overhead is minimized.

2.2 VM Launching Overhead Reference Model
Our early study reveals that virtual machine launching

overhead has large variations under di↵erent system condi-
tions. Based on large set of experiments conducted under
operational FermiCloud [14], we have established a virtual
machine launching overhead reference model. It models the
CPU utilization overhead and IO utilization overhead dur-
ing the process of launching a virtual machine. The CPU
utilization overhead consists of two main parts. One is at
the virtual machine image transferring time:

(1)
UTt(t) =

1

1 + e�0.5(Tt+t)(t�tr)
�

1

1 + e�0.5(Tt+tr)(t�(Tt+tr))

where Tt is the image transferring time and tr is the vir-
tual machine release time. The image transferring time is
impacted by the system IO utilization and network band-
width.

The second part of CPU utilization overhead is at the
virtual machine booting time:

Ub(t) = c ⇤
1
m

e��(1�IOs(h,t�1))(t�Tt)) (2)

where c and � are two system configuration dependent con-
stants, m is the number of cores on the host machine and
IOs(h, t) represents the system’s disk IO utilization at time
t. The CPU utilization overhead is also impacted by the IO
utilization.

The main IO utilization overhead occurs at the time when
virtual machine image is transferred. The overhead is pro-
portional to the ratio of available IO bandwidth to the total
IO bandwidth on the physical host machine. The virtual
machine launching time tb can be predicted based on the
CPU utilization overhead, i.e.,

tb = max{t||U 0
b(t)| ✏} (3)

where U 0
b(t) is the first derivative of Ub(t) and ✏ is the thresh-

old to determine whether the virtual machine’s CPU uti-
lization consumption become stable. The virtual machine
launch time is calculated by adding image transfer time and
boot time.

In [14], we have empirically shown that the developed
reference model can accurate predict the virtual machine
launching overhead. However, under di↵erent systems, the
parameters of the model may change. In the next section,
we present a training mechanism that can automatically ad-
just the parameters of the model to accurately reflect a given
physical platform.

3. CALIBRATING VM LAUNCHING OVER-
HEAD REFERENCE MODEL ON FER-
MICLOUD PLATFORM

3.1 Prediction Accuracy Evaluation
There are many di↵erent benchmark methods to evaluate

the accuracy of predictions. One of the most widely used
approach is to compared the absolute error between the ac-
tual data and predicted data. Benchmarks such as mean
square error (MSE), root mean square error (RMSE), mean
absolute error (MAE), and median absolute error (MdAE)
are the di↵erent ways to measure the absolute errors. How-
ever, as pointed by Hyndman et al., one of the disadvantages
the absolute error based measurements face is that they are
scale-dependent [7].

Another category of measurement methods is based on
the percentage error. In contrast to the absolute error based
measurements, the advantage of percentage error based mea-
surements is that they are scale-independent. The percent-
age error based measurement methods include mean abso-
lute percentage error (MAPE), median absolute percentage
error (MdAPE), root mean square percentage error (RM-
SPE), and root median square percentage error (RMdSPE).
However, the percentage error based measurements do not
come flawless either. One of the main concerns with the
percentage error based measurements is that the error can
be infinite or undefined if the actual value is close to zero or
being zero [7].

To overcome the disadvantages of the measurement meth-
ods mentioned above, Hyndman et al. proposed a new mea-
surement method, i.e., the Mean Absolute Scaled Error [7].
The idea of their method is to scale the absolute error based
on the in-sample MAE obtained from a benchmark predic-
tion method. The scaled error is defined as:

qt =
et

1
n�1

nP
i=2

|Yi � Yi�1|

(4)

where, et is the absolute error between the actual data Yt

and predicted data Ft at time point t; and Yi represents the
actual data from ith prediction. The Mean Absolute Scaled
Error is:

MASE = mean(|qt|) (5)

In our model training mechanism, we use MASE to cali-
brate the VM launching overhead reference model for Fer-
miCloud platforms. It is worth pointing out that though
the paper focuses on FermiCloud platforms, the methodol-
ogy developed in this paper can be applied to any physical
cloud platforms.

3.2 Model Training Algorithm

The basic idea of the proposed training algorithm is to ad-
just the ✏ in equation(3) so that the mean absolute scaled er-
ror of the predicted VM launching time is maintained within
a reasonable error range. The detailed algorithm is illus-
trated in Algorithm 1.

Each time when a new actual virtual machine launch-
ing time is read from the system, the training algorithm
is executed to calibrate the accuracy of the virtual ma-
chine launching overhead model. As Line 1 to Line 4 in
Algorithm 1 indicate, if the new MASE value is within the
designed error range, no new calibration needs to be per-
formed. Otherwise, a new ✏ needs to be calculated. We use
an example to explain how to calculate the new ✏.

Assume the calibrated value from last round training is
✏ = 0.032. Intuitively, since all historical predictions are ac-
curate with ✏, when a new actual value is observed, if needed,
just small calibration needs to be performed on ✏ to ensure
MASE within the error range. In this case, the precision
of ✏ is at thousandth level (calculated by Line 5 and obtain
0.001), then the calibration is performed at thousandth pre-
cision level. To start calibration, we first treat ✏ = 0.032 as
✏0 = 0.030 (Line 6) and use ✏0 as a middle start point. Then,
we search the new ✏ above and below the ✏0 in a small range
(±0.001⇥10). In this case, the search range is [0.021, 0.039].

Next, the algorithm calculates the MASE of the each cor-
responding ✏0 from 0.021 to 0.039 and selects the ✏0 that
has the smallest MASE(Line 10 to Line 30). If the smallest
MASE is within the error range, the search is terminated.
Otherwise, the algorithm increases the precision (Line 31)
and repeat the search procedure. For instance, suppose the
✏0 = 0.033, and the precision is increased to 0.0001. Since
✏0 = 0.033 gives smallest MASE in the range [0.021, 0.039],
the desired ✏ must exist in the range of (0.0320, 0.0340). The
algorithm continues the search in the range of (0.0320, 0.0340)
starting from 0.0330 (Line 9 to Line 31). The search termi-
nates when a ✏0 is found such that the MASE value calcu-
lated by it satisfies the error range. It is possible that the
search never find such an ✏0. Hence the other terminate con-
dition for the algorithm is the precision reaches a predefined
precision threshold.

4. OVERHEAD-AWARE-BEST-FIT RESOURCE
ALLOCATION DESIGN AND IMPLEMEN-
TATION

The previous section has discussed how we automatically
calibrate the accuracy of the virtual machine launching over-
head model. In this section, we present an overhead-aware-
best-fit resource allocation algorithm, i.e., the OABF algo-
rithm, that aims to reduce average virtual machine launch-
ing time and show an implementation of the OABF on the
FermiCloud.

4.1 The OABF Algorithm
Our preliminary study [14] reveals that when multiple vir-

tual machines are launched simultaneously, the VM launch-
ing time increases as the number of simultaneous launches
increases. We also have noticed that when a virtual ma-
chine that being deployed uses the same image as the last
virtual machine that has been deployed on the same host
machine, the virtual machine takes less time to launched.
In other words, the VM launching time is significantly re-
duced if memory cache can be used.

Algorithm 1: Model Training Algorithm

Input : Threshold ✏, Predicted Time Set TP , Actual Time
Set TA

Output: Threshold ✏

1 e calculateMASE(TP , TA)
2 if e  ErrorThreshold then
3 return ✏
4 end
5 g calculateCurrentPrecision(✏)
6 ✏0 max{b ✏

g⇥10 c, 1}⇥ g ⇥ 10

7 Recalculate predicted time set TP using ✏0

8 e calculateMASE(TP , TA)
9 do

10 for i 1 to 9 do
11 ✏00 ✏0 � i⇥ g
12 if ✏00  0 then
13 break
14 end
15 Recalculate predicted time set TP using ✏00

16 e0 calculateMASE(TP , TA)
17 if e0  e then
18 e e0

19 ✏ ✏00

20 end
21 end
22 for i 1 to 9 do
23 ✏00 ✏0 + i⇥ g
24 Recalculate predicted time set TP using ✏00

25 e0 calculateMASE(TP , TA)
26 if e0  e then
27 e e0

28 ✏ ✏00

29 end
30 end
31 g g/10
32 while e  ErrorThreshold _g  PrecisionThreshold ;
33 return ✏

Based on the our previous experimental work and exper-
imental observation, we develop an overhead-aware-best-fit
resource allocation algorithm. The fundamental drive be-
hind the algorithm is to avoid simultaneous launches and to
deploy virtual machines with the same image on the same
host machine sequentially. Algorithm 2 gives the pseudo
code of the OABF algorithm.

Each virtual machine v in the system is characterized by
its release time tr, host h that v is deployed on and waiting
time tw that denotes the o↵set from its release time. Once
a virtual machine is released, its release time is recorded
but without any host and waiting information. By running
Algorithm 2, the virtual machine is assigned to the host that
is predicted to have the shortest launching time. Its waiting
time that indicates actual deploy time point o↵sets from its
release time is given.

In particular, the algorithm compares the predicted launch
time for v when it is deployed on each of the hosts (Line 3
to Line 22). For each host, the algorithm calculates the vir-
tual machine launching overhead using equation 1 and 2
and its predicted launch time using equation 3. Then it
compares the predicted launch time for v when v starts at
di↵erent time points (Line 9 to Line 21). As mentioned
before, the intuition of the OABF algorithm is trying to
avoid simultaneous launch, hence we only check the time
points that the virtual machines that have been deploy on
the same host before v have predicted to finish image trans-

Algorithm 2: overhead-aware-best-fit Algorithm

Input : Empty Virtual Machine v = {tr, h, tw}, Host set
H = {h1, . . . , hn}, VM waiting queue
Q = {vq1 , . . . , v

q
m}

Output: Virtual Machine v = {tr, h, tw} with host and
waiting time information

1 v.h null; v.tw 0; h0 null
2 t0w 0; tb 1; t0r v.tr
3 for i 1 to n do
4 v.tr t0r
5 tp calculatePredictLaunchTime(hi, v)
6 if tp  tb then
7 tb tp; h0 hi

8 end
9 for j 1 to m do

10 if vqj is deployed on hi then

11 tt vqj ’s predicted image transfer time

12 if tt + vqj .tr + vqj .tw � v.tr then

13 v.tr tt + vqj .tr + vqj .tw

14 tp calculatePredictLaunchTime(hi, v)

15 if tp + tt + vqj .tr + vqj .tw � v.tr  tb then

16 tb tp; h0 hi

17 t0w tt + vqj .tr + vqj .tw � v.tr

18 end
19 end
20 end

21 end
22 end
23 v.tr t0r; v.h h0; v.tw t0w
24 return v

ferring process(Line 10 to Line 20). Finally, a best fit host h
with shortest predicted virtual machine launching time and
waiting time tw are assigned to v (Line 23).

4.2 Implementation
The implementation of the resource allocation automation

process is embedded into the load balancer module that in
the vcluster. Figure 1 depicts the architecture of load bal-
ancer in the vcluster.

Figure 1: Architecture of Load Balancer

As shown in Figure 1, the load balancer has four sub-
modules: job information update module, cloud informa-
tion synchronization module, launch time monitoring mod-
ule, and decision making module. The job information up-
date module is responsible for fetching information from the
batch job system. Since this paper focuses on reducing the
virtual machine launching overhead, we skip the details of
the job information update module.

The cloud information synchronization module is used to
synchronize real time virtual machine information, host in-

formation and cloud platform information with the informa-
tion predicted by load balancer. Due to the system error or
manual operations, the information predicted and kept in
load balancer may not be consistent with the real system
information. Hence, the cloud information synchronization
module is to check the consistence of stored predicted data
and real system information, and ensure the correct infor-
mation is provided to decision making process.

The launch time monitoring module is used to collect vir-
tual machine’s actual launching time. Once a virtual ma-
chine is actually launched and running, it reports the time
stamp to the launch time monitoring module. After the
launch time monitoring module receives the time stamp,
it calculates the launch time for that virtual machine and
record the time for the virtual machine launching overhead
training process. In the system, there is a virtual machine
waiting queue contains all the virtual machine that yet to
be launched or the virtual machine under launching process.
Once a virtual machine that in the waiting queue reports its
actual launching time, the virtual machine is removed from
the waiting queue.

The decision making module executes the resource allo-
cation algorithm. It takes the information from other three
modules to decide where, when and what to launch virtual
machines. In this paper, we only focus on when and where
to launch the virtual machine so that the average virtual
machine launching overhead is minimized.

Figure 2 depicts the workflow of resource allocation au-
tomation process. It illustrates how di↵erent modules coop-
erate to automatically allocate resources and calibrate the
virtual machine launching overhead reference model.

Figure 2: Resource Allocation Automation Workflow

When the load balancer starts, it first benchmarks all host
machine’s performance, i.e. disk I/O bandwidth, network
bandwidth, etc. It then goes into waiting state. Once a
virtual machine request is released, the load balancer needs
to decide when and where to launch the virtual machine.
Based on the virtual machine launching overhead reference
model, a predicted launch time is calculated. The predicted
launch time is adapted by OABF algorithm to determine the
host machine where the virtual machine should be deployed
on. Finally, the virtual machine is initialized and deployed
on the assigned host machine. After the virtual machine is
launched, the load balancer uses the actual launch time to
calibrate the accuracy of the model using Algorithm 1.

5. EVALUATION

The overhead-aware-best-fit algorithm is evaluated under
real cloud environment–FermiCloud. Since FermiCloud is
designed for scientific applications and it is very likely that
when an application that needs large amount resources is
submitted to the system, large number of virtual machines
are needed to be launched simultaneously. Hence, our eval-
uation focuses on the performance of the propose OABF
algorithm under larger number of simultaneous launches.

5.1 Experiment Setting
The experiments are performed under FermiCloudẆe use

total ten host machines for the experiment. All ten hosts
are configured with 8-core Intel(R) Xeon(R) CPU X5355 @
2.66GHz and 16GB memory. All these machines are con-
nected through high speed Ethernet. We use OpenNebula
as the cloud platform. The OpenNebula front end server
has 16-core Intel(R) Xeon(R) CPU E5640 @ 2.67GHz, 48GB
memory.

5.2 Launching Time Comparison
In order to evaluate the performance of the developed

OABF algorithm, we compare the virtual machine launching
time when the OpenNebula default scheduler is used with
the virtual machine launching time when the OABF algo-
rithm is used. Each time, we launch seventy (70) virtual
machines simultaneously. All virtual machines are using the
same image. Same set of contextualization scripts are used
for launching VMs. The first experiment is to launch virtual
machines using QEMU Copy On Write images (QCOW2)
with size 2.6GB.

0 20 40 60

500

1,000

1,500

2,000

Number of VMs

S
ec
on

d
s

Default Scheduler

OABF

Figure 3: VM Launching Time Comparison using QCOW2
Image

Figure 3 depicts the comparison of virtual machine launch-
ing time with the OpenNebula default scheduler and virtual
machine launching time with the OABF algorithm. All the
virtual machines are ordered by their launching time in in-
creasing order. From the Figure 3, it is clear that with the
OABF algorithm, virtual machines take less time to launch
than using OpenNebula default scheduler. The launching
time reduction from the OABF is rather stable from the
first virtual machine to the last virtual machine. The max-
imum reduction among the seventy virtual machine is 349
seconds. On average, the virtual machine launching time re-
duction is 245.44 seconds, which is more than four minutes
reduction compared to the OpenNebula default scheduler.

The second experiment is to test the performance on large
images. We also launch seventy (70) virtual machines at a

0 10 20 30 40 50 60 70

0

50

100

150

Number of VMs

M
in
u
te
s

Default Scheduler

OABF

Figure 4: VM Launching Time Comparison using RAW
image

time. Each virtual machine now use RAW image with size
16 GB. Figure 4 dispatches the comparison results between
virtual machines’ launching time with the OpenNebula de-
fault scheduler and virtual machines’ launching time with
the OABF algorithm. As shown in Figure 4, when the image
size is large, the virtual machine launching time reduction
from OABF can be clearly observed. The maximum reduc-
tion from OABF algorithm is 907 seconds which is about 15
minutes saving.

In our experiments, we have also observed that after 50
virtual machines being launched, the remaining virtual ma-
chines takes longer time to launch when using the OABF al-
gorithm than with the OpenNebula default scheduler. This
is because most of the remaining virtual machines (15 out of
20) are failed to launch under OpenNebula default scheduler
due to large amount I/O operations, hence there are just few
virtual machines are actually undergoing launching process.
On the other hand, when using the OABF algorithm, only
five virtual machines are failed to launch. The OABF al-
gorithm not only reduces the virtual machines’ launching
times when large amount simultaneous launches occur but
also can improve the success rate of such extreme scenario.
With the OABF algorithm, on average, the virtual machine
saves 103 seconds on launching process compared with the
OpenNebula default scheduler.

6. CONCLUSION
The FermiCloud is a private cloud built in Fermi National

Accelerator Laboratory to provide on-demand resources for
di↵erent scientific applications. The design goal of Fermi-
Cloud is to automatically provision resources for di↵erent
scientific applications so that the QoS of the scientific ap-
plication is met and the operational cost of FermiCloud is
minimized. The main challenge of designing the FermiCloud
system is to decide when and where to allocate resources so
that the goals are met. In this paper, we present a mech-
anism to automatically train the VM launching overhead
reference model that we previously developed. Based on
the virtual machine launching overhead reference model, we
have developed in this paper an overhead-aware-best-fit re-
source allocation algorithm to help the cloud reduce the av-
erage VM launching time. In the paper, we have also pre-
sented an implementation of the developed OABF algorithm
on FermiCloud. The experimental results indicate that the

OABF can significantly reduce the VM launching time (re-
duced VM launch time by 4 minutes on average) when large
number of VMs are launched simultaneously.

7. REFERENCES
[1] AWS HPC cloud computing.

http://aws.amazon.com/hpc/.
[2] Feature - clouds make way for STAR to shine.

http://www.isgtw.org/feature/isgtw-feature-clouds-
make-way-star-shine.

[3] High performance computing on microsoft azure for
scientific and technical applications.
http://research.microsoft.com/en-
us/projects/azure/high-perf-computing-on-windows-
azure.pdf.

[4] Mapping the secrets of the universe with google
compute engine.
https://cloud.google.com/developers/articles/mapping-
the-secrets-of-the-universe-with-google-compute-
engine?hl=ja.

[5] Source code for FermiCloud version vcluster.
https://github.com/philip-wu5/project/tree/fermi.

[6] Source code for KISTI version vcluster.
https://github.com/vcluster/project.

[7] R. J. Hyndman and A. B. Koehler. Another look at
measures of forecast accuracy. International journal of
forecasting, 22(4):679–688, 2006.

[8] M. Mao and M. Humphrey. Auto-scaling to minimize
cost and meet application deadlines in cloud
workflows. In High Performance Computing,
Networking, Storage and Analysis (SC), 2011
International Conference for, pages 1–12. IEEE, 2011.

[9] M. Mao and M. Humphrey. A performance study on
the vm startup time in the cloud. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference
on, pages 423–430. IEEE, 2012.

[10] Y. Z. Mengxia Zhu, Qishi Wu. A cost-e↵ective
scheduling algorithm for scientific workflows in cloud.
Proceedings of 31st IEEE International Performance
Computing and Communications Conference, 2012.

[11] S.-Y. Noh, S. C. Timm, and H. Jang. vcluster: A
framework for auto scalable virtual cluster system in
heterogeneous clouds. Cluster Computing. To appear.

[12] A. M. Sampaio and J. G. Barbosa. Optimizing
energy-e�ciency in high-available scientific cloud
environments. In Cloud and Green Computing (CGC),
2013 Third International Conference on, pages 76–83.
IEEE, 2013.

[13] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu,
H. W. Kimy, K. Chadwick, H. Jang, and S.-Y. Noh.
Automatic cloud bursting under fermicloud. In
Parallel and Distributed Systems (ICPADS), 2013
International Conference on, pages 681–686. IEEE,
2013.

[14] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu,
and S.-Y. Noh. Modeling the virtual machine
launching overhead under fermicloud. In Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, pages

374–383. IEEE, 2014.

Automatic Installation and Deployment of Network File System and On-
Demand

Caching Service on Dynamically Instantiated Large Scale Batch of Virtual
Machines

On Private and Public Clouds
Sandeep Palur* Steven Timm† Dr. Ioan Raicu*

psandeep@hawk.iit.edu timm@fnal.gov iraicu@cs.iit.edu
*Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

†Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia IL, USA

Abstract – Big scientific experiments usually need
a lot of virtual machines for running scientific
workflows on private and public clouds. Virtual
machine images can be large and the software they
need inside them can be constantly changing. The
best solution is to use CERN Virtual Machine File
System - read only, runtime download, and caching
http file system. It is a read-only network file system
that provides access to files from a CVMFS Server
over HTTP. When CVMFS client runs on a groups
of worker nodes that share the same cloud, a HTTP
web proxy, inside the same cloud, can be used to
cache the file system contents, so that all subsequent
requests for that file will be delivered from the local
HTTP web proxy) and doesn’t have to hit the
Internet. Typically, a High Energy Physics (HEP)
computing site has a local or regional Squid HTTP
web proxy, with the central CVMFS servers located
at the main laboratory, such as CERN for the LHC
experiments. Each VM has a list of the available
Squid servers and, in most cases, the Squids are
remote. The optimal Squid may be different
depending on the location of the cloud. Further,
one can imagine dynamically instantiating Squid
servers in an opportunistic cloud environment to
meet application demand. As a result, we use Shoal
as a service that can dynamically publish and
advertise the available Squid servers. In this work,
we automate installation and deployment of
CVMFS(network file system), Squid(on-demand
caching service) and Shoal(squid cache publishing
and advertising tool designed to work in fast
changing environments) on dynamically
instantiated large scale batch of virtual machines on
Fermi Cloud (private cloud) and Amazon Web
Services (Public cloud).

I. Introduction

The CERN Virtual Machine File System (CVMFS)
[1] is widely adopted by the High Energy Physics

(HEP) community for the distribution of project
software. CVMFS is a read-only network file system
that provides access to files from a CVMFS Server
over HTTP. When CVMFS is used on a cluster of
worker nodes, a HTTP web proxy can be used to
cache the file system contents, so that all subsequent
requests for that file will be delivered from the local
HTTP proxy server. Typically, a HEP computing site
has a local or regional Squid HTTP web proxy [2],
with the central CVMFS servers located at the main
laboratory, such as CERN for the LHC experiments.

The use of IaaS cloud resources is becoming a
realistic solution for HEP workloads [3, 4], and
CVMFS is an effective means of providing the
software to the virtual machines (VMs). Each VM
has a list of the available Squid servers and, in most
cases, the Squids are remote. The optimal Squid may
be different depending on the location of the cloud.
Further, one can imagine dynamically instantiating
Squid servers in an opportunistic cloud environment
to meet application demand. However, there is
currently no mechanism other than Shoal for locating
the optimal Squid server. As a result, we use Shoal as
a service that can dynamically publish and advertise
the available Squid servers. Shoal is ideal for an
environment using both static and dynamic Squid
servers.

A. CERN Virtual Machine File System

The CernVM File System (CernVM-FS) provides a
scalable, reliable and low maintenance software
distribution service. It was developed to assist High
Energy Physics (HEP) collaborations to deploy
software on the worldwide-distributed computing
infrastructure used to run data processing
applications. CernVM-FS is implemented as a
POSIX read-only file system in user space (a FUSE
module). Files and directories are hosted on standard
web servers and mounted in the universal namespace
/cvmfs. Internally, it uses content-addressable storage
and Merkle trees in order to maintain file data and
meta-data. CernVM-FS uses outgoing HTTP
connections only, thereby it avoids most of the
firewall issues of other network file systems. It is
actively used by small and large HEP collaborations.

In many cases, it replaces package managers and
shared software areas on cluster file systems as
means to distribute the software used to process
experiment data.

B. Squid

Squid is a caching proxy for the Web supporting
HTTP, HTTPS, FTP, and more. It reduces bandwidth
and improves response times by caching and reusing
frequently-requested web pages. Squid has extensive
access controls and makes a great server accelerator.
It runs on most available operating systems,
including Windows and is licensed under the GNU
GPL.

C. Shoal

Shoal is divided into three logical modules, a server,
an agent, and a client. Each package is uploaded to
the Python Package Index [5] (the standard method
of distributing new components in the Python
language).

Each component is designed to provide the
functionality of different parts of the system as
follows:

Shoal Server - is responsible for the following key
tasks:
1. Maintaining a list of active Squid servers in

volatile memory and handling AMQP messages
sent from active Squid servers.

2. Providing a RESTful interface for Shoal Clients
to retrieve a list of geographically closest Squid
servers.

3. Providing basic support for Web Proxy Auto-
Discovery Protocol (WPAD).

4. Providing a web user interface to easily view
Squid servers being tracked.

Shoal Agent - is a daemon process run on Squid
servers to send an Advanced Message Query Protocol
(AMQP) [6] message to Shoal Server on a set
interval. Every Squid server wishing to publish its
existence runs Shoal Agent on boot. Shoal Agent
sends periodic heartbeat messages to the Shoal Server
(typically every 30 seconds).

Shoal Client - is used by worker nodes to query
Shoal Server to retrieve a list of geographically
nearest Squid servers via the REST interface. Shoal
Client is designed to be simple (less than 100 lines of
Python) with no dependencies beyond a standard
Python installation.

Shoal Server runs at a centralized location with a
public IP address. For agents (i.e. Squid servers),
Shoal Server will consume the heartbeat messages
sent and maintain an up-to-date list of active Squids.
For clients, Shoal Server will return a list of Squids
organized by geographical distance and load. For
regular users of Shoal Server, a web server is
provided. The web server generates dynamic web
pages that display an overview of Shoal. All of the
tracked Squid servers are displayed and updated
periodically on Shoal Server's web user interface, and
all client requests are available in the access logs.

AMQP forms the communications backbone of Shoal
Server. All information exchanges between Shoal
Agent (Squid Servers) and Shoal Server are done
using this protocol, and all messages are routed
through a RabbitMQ [7] Server.

II. Design and Implementation

This project aims to automate installation and
deployment of CVMFS(network file system),
Squid(on-demand caching service) and Shoal(squid
cache publishing and advertising tool designed to
work in fast changing environments) on dynamically
instantiated large scale batch of virtual machines on
Fermi Cloud (private cloud) using Puppet
Master/Agent and Amazon Web Services (Public
cloud) using Serverless Puppet.

As a part of this work, we developed puppet modules
and scripts for installing and deploying shoal client,
agent and server, script to dynamically update the
proxy address. We also fixed potential bugs in Shoal
Server and made it suitable to publish Squid Servers
running on EC2 instances that does not have a static
public IP.

A. Architecture

The architecture of large scale batch of dynamically
instantiated FermiCloud and EC2 worker nodes
provided with network file system, on-demand
caching service and a cache publishing and
advertising tool is shown in Figure1. It consists of the
following components:

a) Worker Node Installed with Shoal Client –
When a worker node is instantiated dynamically,
CVMFS client and Shoal Client are installed on start
up of the machine. Shoal Client is a cron job that
queries the Shoal Server using the REST interface to
get the closest Squid Server and is configured to run
every 2 hours. Shoal Client updates the proxy address
in the CVMFS configuration file. So that when

CVMFS client tries to download any software from
CVMFS server, the request passes through the Squid
Server, whose IP address is configured in CVMFS
configuration file.

Figure1: Architecture of Dynamically Instantiated
Fermi Cloud and EC2 Instances with On-Demand
Caching Service and a Cache Publishing Service

b) Squid Server Installed with Shoal Agent –
When a server node is instantiated dynamically,
Squid Server and Shoal Agent are installed on the
start up of the machine. Shoal Agent running
alongside with Squid Server, sends periodic heartbeat
messages (IP Address, Load, etc) to the Shoal Server
typically every 30 seconds.

c) Shoal Server Installed with RabbitMQ Server
and Apache Server- When a server node is
instantiated dynamically, Shoal Server is installed on
start up of the machine. Shoal Server provides two
major functions: provides a RESTful interface
(hosted on Apache server) for Shoal Clients to
retrieve a list of geographically closest Squid servers
and maintains a list of active Squid servers (active
squid servers send AMQP messages to RabbitMQ
server) in volatile memory.

Since we have our Worker Nodes split over in two
different clouds (AWS and FermiCloud), the idea is
to install sufficient Squid Servers on both the clouds
and restrict the Worker Nodes to use the Squid
Servers in their local cloud for the following reasons:

1) We don't want to open Fermilab cache servers to
outside internet
2) Reduce data transfer from Internet.
3) Faster data transfers.
4) Reduce Latency

When a Shoal Client on any Worker Node queries for
nearest Squid Servers, it is responded back with the
IP addresses of Squid Servers running inside the local
cloud because the Shoal Server finds the closest
Squid server to the Worker Node. Thus only the first

Worker Node in each cloud downloads the software
from Internet (CVMFS server) and rest of the Worker
Nodes that needs the same software, takes it from the
local Squid Server.

III. Conclusion and Future Work

We automate installation and deployment of
CVMFS(network file system), Squid(on-demand
caching service) and Shoal(squid cache publishing
and advertising tool designed to work in fast
changing environments) on dynamically instantiated
large scale batch of virtual machines on Fermi Cloud
(private cloud) and AWS(public cloud) by installing
and deploying all the required software on start up of
the instances and also restrict the Worker Nodes to
use the Squid Servers running on the local cloud
thereby reducing the number of hits to the Internet.

Our future work includes:

a) Installation and deployment on a sum of 1000
virtual machines on both AWS and Fermi Cloud
b) Benchmarking this work at high scales.

IV. References

[1] J. Blomer et al, Status and future perspectives of
CernVM-FS J. Phys.: Conf. Ser. 396052013,
doi:10.1088/1742-6596/396/5/052013
[2] Squid - HTTP proxy server http://www.squid-
cache.org
[3] F. H. B. Megino et al. Exploiting Virtualization
and Cloud Computing in ATLAS J. Phys.: Conf. Ser.
396032011, doi:10.1088/1742-6596/396/3/032011
[4] I. Gable et al, A batch system for HEP
applications on a distributed IaaS cloud J. Phys.:
Conf. Ser. 331062010, doi:10.1088/1742-
6596/331/6/062010
[5] Python Package Index https://pypi.python.org/
[6] S.Vinoski, Advanced Message Queuing Protocol,
IEEE Internet Computing 10 87,
doi:10.1109/MIC.2006.116
[7] RabbitMQ - AMQP Messaging software,
http://www.rabbitmq.com

http://www.squid-cache.org/
http://www.squid-cache.org/
https://pypi.python.org/
http://www.rabbitmq.com/

File: puppetrepo-shoal/files/set-session-proxy.sh
proxy=`/usr/bin/shoal-client -d`
#echo $proxy
if [[$proxy =~ 'export http_proxy=http://']];

then
$proxy > /usr/run-export-command.sh
chmod 755 /usr/run-export-command.sh
source /usr/run-export-command.sh
echo "Proxy set successfully!"

else
echo "Proxy not set!"
echo "No squid servers are active currently!"

fi

File: puppetrepo-shoal/files/shoal-client
#!/usr/bin/python

"""

 Very simple client script used to get nearest squid server using the RESTful API.

"""

import urllib2

import sys

import json

import re

import os

import logging

import time

from shoal_client import config as config

from optparse import OptionParser

from urllib2 import urlopen

server = config.shoal_server_url

cvmfs_config = config.cvmfs_config

default_http_proxy = config.default_squid_proxy

data = None

dump = False

closest_http_proxy = ''

http_proxy_formatted = ''

cvmfs_http_proxy = "CVMFS_HTTP_PROXY="

logging.basicConfig(filename="shoal_client.log", format='%(asctime)s %(message)s')

def get_args():

 """

 gets server and dump variables from command line arguments

 """

 global server

 global dump

 p = OptionParser()

 p.add_option("-s", "--server", action="store", type="string", dest="server",

 help="Also needs string for specifying the shoal server to use. " +

 "Takes presedence over the option in config file")

 p.add_option("-d", "--dump", action="store_true", dest="dump",

 help="Print closest proxies to terminal for debugging "+

 "instead of over writing the CVMFS config file")

 (options, args) = p.parse_args()

 if options.server:

 server = options.server

 if options.dump:

 dump = True

def convertServerData(val):

 """

 converts val to digits if it's not already or else return None

 """

 if val.isdigit():

 return int(val)

 else:

 try:

 return float(val)

 except:

 if "null" in val:

 return None

 else:

 return unicode(val.strip("\""))

TODO is this parser sufficient or should a full JSON parser be implemented?

Seperating out the list of properties should be done but does support

for arbitrary json strings add anything?

def parseServerData(jsonStr):

 """

 creates a multidimensional server data dictionary indexed by

 unicode integers with dataTypes, geo_data and geoDataTypes. Each

 respective entry holds the appropriate dataTypes and geoDataTypes

 found in jsonStr

 """

 # TODO should load this from a config file as it has to match the server

 # Nested properties (i.e geo_data) needs to be handled separately

 dataTypes = ["load", "distance", "squid_port", "last_active", "created",
 "external_ip", "hostname", "public_ip", "private_ip"]

 geoDataTypes = ["city", "region_name", "area_code", "time_zone", "dma_code",
 "metro_code", "country_code3", "latitude", "postal_code",
 "longitude", "country_code", "country_name", "continent"]

 # don't really care about data here

 # it is just a simple way to get number of nearest squids

 p = re.compile("\"" + dataTypes[0] + "\": ([^,}]+)")

 numNearestSquids = len(p.findall(jsonStr))

 ## compiles regex "load": ([^,}]+), although it doesn't really matter that fact that it's a load

 ## this will find the number of above matches in jsonStr and return into numNearestSquids

 ## therefore each match in json is a 'nearest' squid

 # initalize the dictionaries

 outDict = {}

 for i in range(0, numNearestSquids):

 outDict[unicode(str(i))] = {}

 outDict[unicode(str(i))][unicode("geo_data")] = {}

 ## creates a multidimensional dict with each key 1 being u'i' (i in unicode)

 ## and key 2 being "geo_data" for all entries

 # TODO probably don't need seperate regexes

 # test using geodata one for both

 ## for each item in dataTypes, compile a regex for that item and find all the matches with jsonStr

 ## and put those matches in dataList.

 for dataType in dataTypes:

 p = re.compile("\"" + dataType + "\": ([^,]+)[,|}]")

 dataList = p.findall(jsonStr)

 for i, val in enumerate(dataList):

 outDict[unicode(str(i))][unicode(dataType)] = convertServerData(val)

 ## outDict is a multidimensional dict that now holds a val in each dataType per i

 ## same as above just for geoDataTypes

 for geoDataType in geoDataTypes:

 p = re.compile("\"" + geoDataType + "\": (\"[^\"]*|[^,]*)")
 dataList = p.findall(jsonStr)

 for i, val in enumerate(dataList):

 outDict[unicode(str(i))][unicode("geo_data")][unicode(geoDataType)] = convertServerData(val)

 ## outDict in geo_data for each geoDataType holds a val

 return outDict

get_args()

"""

 opens up a url to a server, parses server data from there

 from that data, creates addresses to each squid, stores in cvmfs_http_proxy

 overwrites cvmfs config file with cvmfs_http_proxy if dump is not specified

"""

CVMFS = CERN Virtual Machine File System

reads in server data (if it can be read in) into a dictionary called data

try:

 f = urlopen(server)

 # data = json.loads(f.read())

 data = parseServerData(f.read())

except (urllib2.URLError,ValueError), e:

 logging.error("Unable to open url. %s" % e)

 data = None

if data:

 ## iterates through the data dict and uses all hostname and squid_port keys

 ## to create addresses for each squid in closest_http_proxy

 for i in range(0, len(data)):

 try:

 closest_http_proxy += 'http://%s:%s;' % (data['%s'%i]['hostname'], data['%s'%i]['squid_port'])

 http_proxy_formatted+='http://%s:%s' % (data['%s'%i]['hostname'], data['%s'%i]['squid_port'])+"/:"

 except KeyError, e:

 logging.error("The data returned from '%s' was missing the key: %s. Please ensure the url is running
the latest Shoal-Server." % (server, e))

 sys.exit(1)

cvmfs_http_proxy += "\"" + closest_http_proxy + "\"\n"

if dump -> don't overwrite CVMFS config file

if dump:

 #print "%s would have been written to the CVMFS config file", cvmfs_http_proxy
 print "export http_proxy="+http_proxy_formatted

else:

 # attempt to read the cvmfs_config file, no point in continuing if it can't be read

 try:

 f = open(cvmfs_config)

 lines = f.readlines()

 except:

 logging.error("Could not open and read the CVMFS config file")

 sys.exit(1)

 f.close()

 # create a list of tuples of lines/line numbers that have "CVMFS_HTTP_PROXY"

 CVMFS_proxy_lines = [t for t in enumerate(lines) if "CVMFS_HTTP_PROXY" in t[1]]

 # if there is only one can just replace it with the new proxy

 if len(CVMFS_proxy_lines) == 1:

 lines[CVMFS_proxy_lines[0][0]] = cvmfs_http_proxy

 # add a line if it doesn't exist

 elif len(CVMFS_proxy_lines) == 0:

 lines += cvmfs_http_proxy

 # something is wrong with the CVMFS config; there are multiple entries

 # fixing it by changing the first and removing the extras

 else:

 logging.error("CVMFS file had duplicate CVMFS_HTTP_PROXY entries;" +

 " writing the first deleting the rest")

 lines[CVMFS_proxy_lines[0][0]] = cvmfs_http_proxy

 for line in CVMFS_proxy_lines[1:]:

 lines[line[0]] = ""

 # open the file again this time for writing and replace its contents with the modified lines

 try:

 try:

 f = open(cvmfs_config, "w")

 f.writelines(lines)

 except Exception:

 logging.error("Could not write CVMFS config file")

 finally:

 f.close()

File: puppetrepo-shoal/files/shoal-server.py
#!/usr/bin/python
import os
import sys
import logging

from threading import Thread
from time import sleep
from shoal_server import config
from shoal_server.shoal import ThreadMonitor, WebpyServer

def main():

 shoal_list = {}
 threads = []

 # establishes ThreadMonitor and its thread
 monitor_thread = ThreadMonitor(shoal_list)
 monitor_thread.daemon = True
 threads.append(monitor_thread)

 # establishes WebpyServer and its thread
 webpy_thread = WebpyServer(shoal_list)
 webpy_thread.daemon = True
 threads.append(webpy_thread)

 # starts running threads

 for thread in threads:
 thread.start()

 # keep running threads until KeyboardInterrupt
 #try:
 #while True:
 #for thread in threads:
 #if not thread.is_alive():
 #logging.error('{0} died.'.format(thread))
 #sys.exit()
 #sleep(1)
 #except KeyboardInterrupt:
 #sys.exit()
if __name__ == '__main__':
 # sets up logging file
 shoal_dir = config.shoal_dir
 log_file = config.log_file
 log_format = '%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)s] - %(message)s'

 try:
 logging.basicConfig(level=logging.ERROR, format=log_format, filename=log_file)
 except IOError as e:
 sys.exit(1)

 # change working directory so webpy static files load correctly.
 try:
 os.chdir(shoal_dir)
 except OSError as e:
 sys.exit(1)
 main()

File: puppetrepo-shoal/files/shoal-server.sh
#!/bin/bash
#This script requires puppet installed.
#One needs to be root to apply this.
#This script install shoal server

if ["`whoami`" != "root"]; then
 echo "This should be run by root"
 exit 1
fi

mkdir -p /etc/puppet/modules

if [! -f "/usr/bin/git"]; then
 yum install git -y
fi

if [! -d "/etc/puppet/modules/shoal"]; then
 git clone ssh://p-puppetrepo@cdcvs.fnal.gov/cvs/projects/puppetrepo-shoal
 mkdir -p /etc/puppet/modules/shoal && cp -r puppetrepo-shoal/* /etc/puppet/modules/shoal

else
 cd puppetrepo-shoal
 git pull
 cd ..
 cp -rf puppetrepo-shoal/* /etc/puppet/modules/shoal
fi

if [! -d "/etc/puppet/modules/rabbitmq"]; then
 git clone https://github.com/jcochard/puppet-rabbitmq.git
 mkdir -p /etc/puppet/modules/rabbitmq && mv puppet-rabbitmq/* /etc/puppet/modules/rabbitmq
fi

if [! -d "/etc/puppet/modules/erlang"]; then
 puppet module install dcarley/erlang
fi

if [! -d "/etc/puppet/modules/epel"]; then
 puppet module install stahnma/epel
fi

if [! -d "/etc/puppet/modules/stdlib"]; then
 puppet module install puppetlabs/stdlib
fi

cat << EOF | puppet apply
include epel
include shoal::server_dependancies
include erlang
include rabbitmq
include shoal::server
include shoal::host_server
Class['epel'] -> Class['shoal::server_dependancies'] -> Class['erlang'] -> Class[rabbitmq] ->
Class['shoal::server'] -> Class['shoal::host_server']
EOF

File: puppetrepo-shoal/files/shoal.conf
WSGIDaemonProcess shoal user=apache group=apache threads=10 processes=1
WSGIScriptAlias / /var/www/shoal/scripts/shoal_wsgi.py
WSGIProcessGroup shoal

Alias /static /var/www/shoal/static/

AddType text/html .py

<Directory /var/www/shoal/>
 Order deny,allow
 Allow from all
</Directory>

File: puppetrepo-shoal/files/squid.conf
acl NET_LOCAL src 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16
acl HOST_MONITOR src 131.225.152.0/23
acl snmppublic snmp_community HOST_MONITOR
acl all src all
acl manager proto cache_object
acl localhost src 127.0.0.1/32
acl to_localhost dst 127.0.0.0/8 0.0.0.0/32
acl localnet src 10.0.0.0/8 # RFC1918 possible internal network
acl localnet src 172.16.0.0/12 # RFC1918 possible internal network
acl localnet src 192.168.0.0/16 # RFC1918 possible internal network
acl SSL_ports port 443
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 # https
acl Safe_ports port 70 # gopher
acl Safe_ports port 210 # wais
acl Safe_ports port 1025-65535 # unregistered ports
acl Safe_ports port 280 # http-mgmt
acl Safe_ports port 488 # gss-http
acl Safe_ports port 591 # filemaker
acl Safe_ports port 777 # multiling http
acl CONNECT method CONNECT
http_access allow manager localhost
http_access deny manager
http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports
http_access allow NET_LOCAL
acl our_networks src 131.225.0.0/16 127.0.0.1
http_access allow our_networks
http_access allow localhost
http_access deny all
acl PURGE method PURGE
http_access allow PURGE localhost
http_access deny PURGE
reply_body_max_size 10000000000 allow all
icp_access allow localnet
icp_access deny all
http_port 3128
hierarchy_stoplist cgi-bin
cache_mem 1024 MB
maximum_object_size_in_memory 256 KB
cache_dir ufs /var/spool/squid 290000 16 256
maximum_object_size 10 GB
logformat awstats %>a %ui %un [%{%d/%b/%Y:%H:%M:%S +0000}tl] "%rm %ru HTTP/%rv" %Hs %<st %Ss:%Sh %tr "%{X-
Frontier-Id}>h" "%{Referer}>h" "%{User-Agent}>h"
access_log /var/log/squid/access.log awstats
logfile_daemon /usr/libexec/squid/logfile-daemon
cache_log /var/log/squid/cache.log
cache_store_log none
mime_table /etc/squid/mime.conf
pid_filename /var/run/squid/squid.pid
strip_query_terms off
unlinkd_program /usr/libexec/squid/unlinkd
refresh_pattern ^ftp: 1440 20% 10080
refresh_pattern ^gopher: 1440 0% 1440
refresh_pattern -i /cgi-bin/ 0 0% 0
refresh_pattern \.crl$ 60 25% 1440
refresh_pattern \.der$ 60 25% 1440
refresh_pattern \.pem$ 60 25% 1440
refresh_pattern \.r0$ 60 25% 1440
refresh_pattern \.pacman$ 60 10% 1440
refresh_pattern . 60 20% 4320
negative_ttl 1 minute
acl shoutcast rep_header X-HTTP09-First-Line ^ICY.[0-9]
upgrade_http0.9 deny shoutcast
acl apache rep_header Server ^Apache
broken_vary_encoding allow apache
collapsed_forwarding on
connect_timeout 30 seconds
read_timeout 1 minute
request_timeout 1 minute
client_lifetime 1 hour
cache_mgr fermigrid-help@fnal.gov

cache_effective_user squid
cache_effective_group squid
umask 022
snmp_access allow snmppublic HOST_MONITOR
snmp_access deny all
icp_port 0
icon_directory /usr/share/squid/icons
error_directory /usr/share/squid/errors/English
ignore_ims_on_miss on
coredump_dir /var/spool/squid

File: puppetrepo-shoal/manifests/agent.pp
The shoal agent runs in the squid server and announces it to the shoal server

 class shoal::agent(
 $shoal_server_ip = undef,
)
 {
 if($shoal_server_ip)
 {

 package { "shoal-agent":
 ensure => installed,
 }

 file_line { '/etc/shoal/shoal_agent.conf':
 path => '/etc/shoal/shoal_agent.conf',
 line => "amqp_server_url = ${shoal_server_ip}",
 match => "amqp_server_url =.*$",
 require => Package["shoal-agent"],
 notify => Service["shoal-agent"],

 }

 service { 'shoal-agent':
 ensure => running,
 enable => true,
 hasstatus => false,
 #hasrestart => true,
 path => "/usr/bin",
 #require => File_line["shoal-agent"],
 }

 }
 else{
 warning('Shoal agent is NOT INSTALLED. please pass a valid ip to the parameter "shoal_server_ip" and run it
again')
 warning('eg: shoal_server_url => shoalserver.domain')
 }

}

File: puppetrepo-shoal/manifests/client.pp
The shoal client runs in the WorkeNodes and sets up the squid proxy according to what the server tells

 class shoal::client(

 $shoal_server_url = undef,
)
 {
 if($shoal_server_url)
 {
 package { 'git':
 ensure => installed,
 before => Exec['git-shoal-client'],
 }

 exec { 'git-shoal-client':
 command => "git clone git://github.com/hep-gc/shoal.git",
 path => "/usr/bin",
 cwd => "/usr",
 require => Package['git'],
 before => Exec['install-shoal-client'],
 creates => "/usr/shoal"
 }

 exec { 'install-shoal-client':
 command => "python setup.py install",
 cwd => "/usr/shoal/shoal-client/",
 path => "/usr/bin",
 require => Exec['git-shoal-client'],
 creates => "/etc/shoal/shoal_client.conf",
 }

 file_line { '/etc/shoal/shoal_client.conf':
 path => '/etc/shoal/shoal_client.conf',
 line => "shoal_server_url = ${shoal_server_url}",
 require => Exec['install-shoal-client'],
 match => "shoal_server_url =.*$",
 }

 file { '/usr/bin/shoal-client':
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0755',
 source => "puppet:///modules/shoal/shoal-client",
 require => Exec['install-shoal-client'],
 }

 exec { 'run-shoal-client':
 command => "shoal-client",
 path => "/usr/bin",
 require => File['/usr/bin/shoal-client'],
 refreshonly => true,
 subscribe => File["/usr/bin/shoal-client"],
 }

 cron::job{'shoal-client':
 minute => '0,30',
 hour => '*',
 date => '*',
 month => '*',
 weekday => '*',
 user => 'root',
 command => '/usr/bin/shoal-client >> /var/log/cron_shoal_client.log',
 environment => ['MAILTO=psandeep@hawk.iit.edu'];
 }

 file { '/usr/bin/set-session-proxy.sh':
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0755',
 source => "puppet:///modules/shoal/set-session-proxy.sh",
 }

 }

 else {
 warning('Shoal client is NOT INSTALLED. please pass a valid address to the parameter "shoal_server_url" and
run it again')
 warning('eg: shoal_server_url => \'http://shoalserver.domain/nearest\' ')

 }

}
#exec { 'run-set-session-proxy-script':
 # command => "source set-session-proxy.sh",
 # path => "/usr/bin",
 # require => File['Add script to set session proxy'],
#}

File: puppetrepo-shoal/manifests/frontier.pp
== Class: frontier::squid

Installation and configuration of a frontier squid

=== Parameters

[*customize_file*]

The customization config file to be used.

[*customize_template*]

The customization config template to be used.

[*cache_dir*]

The cache directory.

[*install_resource*]

The cache directory.

[*resource_path*]

The cache directory.

=== Examples

class { frontier::squid:

customize_file => 'puppet:///modules/mymodule/customize.sh',

cache_dir => '/var/squid/cache'

}

=== Authors

Alessandro De Salvo <Alessandro.DeSalvo@roma1.infn.it>

=== Copyright

Copyright 2014 Alessandro De Salvo

Added comment

class shoal::frontier (

 $customize_file = undef,

 $customize_template = undef,

 $cache_dir = $shoal::frontier_params::frontier_cache_dir,

 $install_resource = false,

 $resource_path = $shoal::frontier_params::resource_agents_path

) inherits shoal::frontier_params {

 yumrepo {'cern-frontier':

 baseurl => 'http://frontier.cern.ch/dist/rpms/',

 enabled => 1,

 gpgcheck => 1,

 gpgkey => 'http://frontier.cern.ch/dist/rpms/cernFrontierGpgPublicKey'

 }

 package {$shoal::frontier_params::frontier_packages:

 ensure => latest,

 require => Yumrepo['cern-frontier'],

 notify => Service[$shoal::frontier_params::frontier_service]

 }

 if ($cache_dir) {

 file { $cache_dir:

 ensure => directory,

 owner => squid,

 group => squid,

 mode => 0755,

 require => Package[$shoal::frontier_params::frontier_packages],

 notify => Service[$shoal::frontier_params::frontier_service]

 }

 }

 if ($customize_file) {

 file {$shoal::frontier_params::frontier_customize:

 ensure => file,

 owner => squid,

 group => squid,

 mode => 0555,

 source => $customize_file,

 require => Package[$shoal::frontier_params::frontier_packages],

 notify => Service[$shoal::frontier_params::frontier_service]

 }

 }

 if ($customize_template) {

 file {$shoal::frontier_params::frontier_customize:

 ensure => file,

 owner => squid,

 group => squid,

 mode => 0755,

 content => template($customize_template),

 require => Package[$shoal::frontier_params::frontier_packages],

 notify => Service[$shoal::frontier_params::frontier_service]

 }

 }

 if ($install_resource) {

 file { $resource_path:

 ensure => directory,

 owner => "root",

 group => "root",

 mode => 0755,

 }

 file { "${resource_path}/FrontierSquid":

 ensure => file,

 owner => "root",

 group => "root",

 mode => 0755,

 source => "puppet:///modules/frontier/FrontierSquid",

 require => File[$resource_path]

 }

 }

 service {$shoal::frontier_params::frontier_service:

 ensure => running,

 enable => true,

 hasrestart => true,

 require => Package[$shoal::frontier_params::frontier_packages]

 }

file { "/var/spool/squid":

 ensure => "directory",

 #owner => "root",

 #group => "wheel",

 mode => 766,

}

file { 'Replacing default squid config with new config content':

 ensure => present,

 owner => 'root',

 group => 'root',

 mode => '0755',

 path => '/etc/squid/squid.conf',

 content => inline_template("acl NET_LOCAL src 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

acl HOST_MONITOR src 131.225.152.0/23

acl snmppublic snmp_community HOST_MONITOR

acl all src all

acl manager proto cache_object

acl localhost src 127.0.0.1/32

acl to_localhost dst 127.0.0.0/8 0.0.0.0/32

acl localnet src 10.0.0.0/8 # RFC1918 possible internal network

acl localnet src 172.16.0.0/12 # RFC1918 possible internal network

acl localnet src 192.168.0.0/16 # RFC1918 possible internal network

acl SSL_ports port 443

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

acl Safe_ports port 443 # https

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 1025-65535 # unregistered ports

acl Safe_ports port 280 # http-mgmt

acl Safe_ports port 488 # gss-http

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

acl CONNECT method CONNECT

http_access allow manager localhost

http_access deny manager

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

http_access allow NET_LOCAL

acl our_networks src 131.225.0.0/16 127.0.0.1

http_access allow our_networks

http_access allow localhost

http_access deny all

acl PURGE method PURGE

http_access allow PURGE localhost

http_access deny PURGE

reply_body_max_size 10000000000 allow all

icp_access allow localnet

icp_access deny all

http_port 3128

hierarchy_stoplist cgi-bin

cache_mem 1024 MB

maximum_object_size_in_memory 256 KB

cache_dir ufs /var/spool/squid 290000 16 256

maximum_object_size 10 GB

logformat awstats %>a %ui %un [%{%d/%b/%Y:%H:%M:%S +0000}tl] \"%rm %ru HTTP/%rv\" %Hs %<st %Ss:%Sh %tr \"%{X-
Frontier-Id}>h\" \"%{Referer}>h\" \"%{User-Agent}>h\"

access_log /var/log/squid/access.log awstats

logfile_daemon /usr/libexec/squid/logfile-daemon

cache_log /var/log/squid/cache.log

cache_store_log none

mime_table /etc/squid/mime.conf

pid_filename /var/run/squid/squid.pid

strip_query_terms off

unlinkd_program /usr/libexec/squid/unlinkd

refresh_pattern ^ftp: 1440 20% 10080

refresh_pattern ^gopher: 1440 0% 1440

refresh_pattern -i /cgi-bin/ 0 0% 0

refresh_pattern \\.crl$ 60 25% 1440

refresh_pattern \\.der$ 60 25% 1440

refresh_pattern \\.pem$ 60 25% 1440

refresh_pattern \\.r0$ 60 25% 1440

refresh_pattern \\.pacman$ 60 10% 1440

refresh_pattern . 60 20% 4320

negative_ttl 1 minute

acl shoutcast rep_header X-HTTP09-First-Line ^ICY.[0-9]

upgrade_http0.9 deny shoutcast

acl apache rep_header Server ^Apache

broken_vary_encoding allow apache

collapsed_forwarding on

connect_timeout 30 seconds

read_timeout 1 minute

request_timeout 1 minute

client_lifetime 1 hour

cache_mgr fermigrid-help@fnal.gov

cache_effective_user squid

cache_effective_group squid

umask 022

snmp_access allow snmppublic HOST_MONITOR

snmp_access deny all

icp_port 0

icon_directory /usr/share/squid/icons

error_directory /usr/share/squid/errors/English

ignore_ims_on_miss on

coredump_dir /var/spool/squid

 "),

notify => Service[$shoal::frontier_params::frontier_service],

}

}

File: puppetrepo-shoal/manifests/frontier_params.pp
#contains parameters for shoal::frontier class
class shoal::frontier_params {

 case $::osfamily {
 'RedHat': {
 $frontier_release_provider = 'rpm'
 $frontier_release_package = 'frontier-release-1.0-1.noarch.rpm'
 $frontier_release_package_url = "http://frontier.cern.ch/dist/rpms/RPMS/noarch/${frontier_release_package}"
 $frontier_packages = ['frontier-squid']
 $frontier_service = 'frontier-squid'

 $frontier_customize = '/etc/squid/customize.sh'
 $frontier_cache_dir = '/var/cache/squid'
 $resource_agents_path = '/usr/lib/ocf/resource.d/lcg'
 }
 default: {
 }
 }

}

File: puppetrepo-shoal/manifests/host_server.pp
Installs wsgi module for apache and hosts shoal server
 class shoal::host_server{

 $rabbitmq_server_url = "localhost"

 file { "/var/run/wsgi":
 ensure => "directory",
 }

 package { "httpd":
 ensure => installed,
 }

 exec { 'install-wsgi':
 command => "yum install mod_wsgi -y",
 path => "/usr/bin",
 creates => "/usr/lib64/httpd/modules/mod_wsgi.so",
 }

 file_line { 'Add wsgi module to /etc/httpd/conf/httpd.conf':
 path => '/etc/httpd/conf/httpd.conf',
 line => 'LoadModule wsgi_module modules/mod_wsgi.so',
 require => Exec['install-wsgi'],
 notify => Service["httpd"],
 }

 file_line { '/etc/httpd/conf/httpd.conf':
 path => '/etc/httpd/conf/httpd.conf',
 line => 'WSGISocketPrefix /var/run/wsgi',
 require => Exec['install-wsgi'],
 notify => Service["httpd"],
 }

 exec { 'Host shoal on apache':
 command => "mv /var/shoal/ /var/www/",
 path => "/bin",
 creates => "/var/www/shoal",
 }

 file_line { 'changing shoal dir in /etc/shoal/shoal_server.conf':
 path => '/etc/shoal/shoal_server.conf',
 line => 'shoal_dir = /var/www/shoal/',
 require => Exec['install-wsgi'],
 match => "shoal_dir =.*$",
 }

 file_line { 'changing amqp server url in /etc/shoal/shoal_server.conf':
 path => '/etc/shoal/shoal_server.conf',
 line => "amqp_server_url = ${rabbitmq_server_url}",
 require => Exec['install-wsgi'],
 match => "amqp_server_url =.*$",
 notify => Service["httpd"],
 }

 file { '/etc/httpd/conf.d/shoal.conf':
 ensure => present,
 source => "puppet:///modules/shoal/shoal.conf",
 }

 file {"/var/log/shoal_server.log":
 mode => '777',
 #recurse => true,
 }

 file {"/var/www/shoal/scripts/shoal_wsgi.py":
 mode => '755',
 #recurse => true,
 }

 service { 'httpd':
 ensure => running,
 path => "/usr/sbin/",
 require => Exec['install-wsgi'],
 }

 }

File: puppetrepo-shoal/manifests/replace_squid_conf.pp
class shoal::replace_squid_conf{

 file { "/var/spool/squid":
 ensure => "directory",
 mode => 766,
 }

 file { '/etc/squid/squid.conf':
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => '0755',
 source => "puppet:///modules/shoal/squid.conf",
 #notify => Service['frontier-squid'],
 require => File['/var/spool/squid'],
 }

 exec { 'restart frontier-squid':
 command => "service frontier-squid restart",
 require => File['/etc/squid/squid.conf'],
 path => '/sbin'
 }
}

File: puppetrepo-shoal/manifests/repository.pp
shoal repostory form where we install the shoal agent package

 class shoal::repository {

 package { "yum-conf-epel":
 ensure => installed,
 }

 # exec { 'yum-update':
 # command => "yum update -y",
 # path => "/usr/bin",
 # before => Exec["curl-shoal-repo"],
 # require => Package["yum-conf-epel"],
 # creates => "/usr/bin/shoal-agent",
 #}

 exec { 'curl-shoal-repo':
 command => "curl http://shoal.heprc.uvic.ca/repo/shoal.repo -o /etc/yum.repos.d/shoal.repo",
 path => "/usr/bin",
 before => Exec["rpm-import"],
 # require => Exec["yum-update"],
 require => Package["yum-conf-epel"],
 creates => "/etc/yum.repos.d/shoal.repo",
 }

 exec { 'rpm-import':
 command => "rpm --import http://hepnetcanada.ca/pubkeys/igable.asc",
 path => "/bin",
 require => Exec["curl-shoal-repo"],
 creates => "/usr/bin/shoal-agent",

 }

 }

File: puppetrepo-shoal/manifests/server.pp
Installs the shoal server
 class shoal::server{

 exec { 'git-shoal-server':
 command => "git clone https://github.com/SandeepPalur/shoal.git",
 cwd => "/usr",
 path => "/usr/bin",
 before => Exec["install-shoal-server"],
 creates => "/usr/shoal",
 }

 exec { 'install-shoal-server':
 command => "python setup.py install",
 cwd => "/usr/shoal/shoal-server",
 path => "/usr/bin",

 require => Exec["git-shoal-server"],
 creates => "/etc/shoal/shoal_server.conf",
 }

 exec { "wget-pip":
 command => "wget https://bootstrap.pypa.io/get-pip.py --no-check-certificate",
 before => Exec["install-pip"],
 require => Exec["install-shoal-server"],
 path => "/usr/bin",
 cwd => "/usr",
 creates => "/usr/bin/pip",
 }

 exec { "install-pip":
 path => "/usr/bin",
 cwd => "/usr",
 command => "python get-pip.py",
 require => Exec["wget-pip"],
 before => Exec["install-webpy"],
 creates => "/usr/bin/pip",
 }

 exec { "install-webpy":
 path => "/usr/bin",
 command => "pip install web.py",
 require => Exec["install-pip"],
 before => Exec["install-pygeoip"],
 creates => "/usr/lib/python2.6/site-packages/web.py-0.37-py2.6.egg-info",
 }

 exec { "install-pygeoip":
 path => "/usr/bin",
 command => "pip install pygeoip",
 require => Exec["install-webpy"],
 before => Exec["install-pika"],
 creates => "/usr/lib/python2.6/site-packages/pygeoip",
 }

 exec { "install-pika":
 path => "/usr/bin",
 command => "pip install pika",
 creates => "/usr/lib/python2.6/site-packages/pika",
 }

 file { '/usr/bin/shoal-server.py':
 require => Exec["install-pika"],
 ensure => present,

 owner => 'root',
 source => "puppet:///modules/shoal/shoal-server.py",
 }

 exec { "Run shoal server script":
 path => "/usr/bin",
 command => "python /usr/bin/shoal-server.py",
 require => File['/usr/bin/shoal-server.py'],
 refreshonly => true,
 subscribe => File["/usr/bin/shoal-server.py"],
 }

 }

File: puppetrepo-shoal/manifests/server_dependancies.pp
Installs shoal server dependancy packages
class shoal::server_dependancies{
 Package { ensure => "installed" }

 package { "wget": }
 package { "gcc": }
 package { "make": }
 package { "ncurses":}
 package { "ncurses-devel":}
 package { "openssl-devel":}
 package { "libxslt":}
 package { "zip":}
 package { "unzip":}
 package { "nc":}
 package { "git":}

 }

1

X.509 Authentication/Authorization in FermiCloud

Hyunwoo Kim, Steven C. Timm
Scientific Computing Division

Fermi National Accelerator Laboratory
Batavia, U.S.A

hyunwoo@fnal.gov, timm@fnal.go

Abstract—We present a summary of how X.509
authentication and authorization are used with
OpenNebula in FermiCloud. We also describe a history of
why the X.509 authentication was needed in FermiCloud,
and review X.509 authorization options, both internal and
external to OpenNebula. We show how these options can
be and have been used to successfully run scientific
workflows on federated clouds, which include OpenNebula
on FermiCloud and Amazon Web Services as well as other
community clouds. We also outline federation options
being used by other commercial and open-source clouds
and cloud research projects.

Keywords-Cloud; X.509; Authentication; Authorization;
FermiCloud

I. INTRODUCTION

A. X.509 Certificates For Identity Authentication
FermiCloud relies on X.509 certificates [1] to achieve

identity authentication. X.509 provides us with a way to verify
the user’s identity is in fact who he or she claims to be. The
identity of a user can be verified by a chain of signing
authorities.

Three basic concepts, identification, authentication and
authorization, must be considered with equal importance in
order to make sure the right users are doing the right things in
our system. Identification is how users assert who they are to
our system. It can be your user name if the system is relying
on username and password authentication. Authentication is
how users prove their identity assertion. In other words, it is a
presentation of secret that only the owner must know and the
system can then verify the identity with. If it is password, the
server should keep the secret and use it to verify the user when
the user types in the password when the user wants to sign in.
Furthermore all communications can be encrypted by using
SSL. Since it can be presumed that only a user knows his or
her secret, the user’s claim can be validated by authentication.

Identification and authentication in X.509 scheme are
closely related. Identity in X.509 scheme can be the subject
name on a X.509 digital certificate. In analogy with username
and password scheme, the secret could be the private key
associated with a digital certificate. The difference between
username and password scheme and X.509 scheme is how

users present the secret. With the simple username and
password scheme, as described above, the server must keep
the secret and the user has to type in the password in a
browser. In the X.509 scheme, users present their
Distinguished Name when their account is created. Each time
they authenticate, they present the full certificate and private
key credential, using the passphrase to decrypt the private key.
The login process will sign a simple text (username in case of
OpenNebula) with the private key and transmit this private-
key-signed text to the server. The server verifies this text
using X.509 certificate that came along with the document and
then extract the DN from the X.509 certificate. Then the
server compares this DN against the list of DNs stored in the
server database. The process described above is one of basic
cryptographic assurance that is provided by public key
cryptography. In principle, with RSA[2], we can use private
key to encrypt the entire plaintext. This provides both identity
authentication and message authentication because only the
person that holds the private key can encrypt a document and
because that person alone could guarantee the authenticity of a
document by encrypting the entire document. What are
transmitted are the plaintext and the encryption result. While
PKC uses public and private keys to achieve cryptographic
assurances, we still need to prove the ownership of the public
key, which should be distributed in a manageable way. In
other words, public key must be distributed as digital
certificates. Public key infrastructure (PKI) is one way to
achieve this and X.509 is an ITU-T standard for PKI [16].

B. Authorization with X.509 Certificates
Authentication on its own is not sufficient to allow users to

use resources. We also need to know what actions, if any, a
user is authorized to undertake. The existing OpenNebula[13]
authorization scheme is based on Access Control Lists for
resources. All resources in OpenNebula, including virtual
networks, machine images, and templates, have user, group,
and world permissions similar to Unix permissions. There are
also per-user and per-group quotas of how many machines can
be launched.

FermiCloud is developing a new X.509 based authorization
module for OpenNebula that also can determine the correct
user and group given a grid identity. It uses information from
Virtual Organization Membership Service (VOMS) [3] and
Grid User Management System (GUMS) [4]. With a user’s
subject line in X.509 certificate, we first contact a local

2

VOMS in FermiCloud to acquire a list of Fully Qualified
Attributes Name (FQAN) assigned to that user. We present
this list to the user prompting for the user’s selection. Then we
construct an XACML (eXtensible Access Control Markup
Language) [5] request using an XACML Java client library
called privilege package, developed at Fermilab, and send this
request to a local GUMS server. We expect two answers from
GUMS: a pair of FermiCloud-specific user ID and group ID
mapped by GUMS and secondly whether the user is
authorized to undertake the Role and Capability in the FQAN.
We use this information to finally authorize the user and also
record which VO a virtual machine is running under the name
of. Technical details are found in a later section.

C. History of why X.509 Authentication was needed
X.509 based authentication and authorization became

widespread in the scientific community with the widespread
adoption of grid computing. The Grid Security Infrastructure
(GSI) [6] includes a set of certificate authorities that are
recognized by the International Grid Trust Federation and
accepted worldwide by grid computing sites. All Fermilab-
hosted experiments participate in grid computing via the
FermiGrid [7] campus grid and the Open Science Grid [8] of
which FermiGrid is a major part. When the FermiCloud [17]
project was initiated in 2009 we identified a requirement to
have stronger security than the default username/password or
access key / secret key mechanism could provide. We had
several years of successful operation of X.509 authentication
and authorization on the grid and an interoperability protocol
for authorization based on XACML authorization[18] which
we hoped to reuse. By using X.509 authentication and
authorization we could know exactly who is running virtual
machines on our cloud. An X.509 authorization scheme also
allows us to transparently let a user with a single X.509
Distinguished Name be part of more than one group or
organization, and transparently change between them.
Because Fermilab operates its own Short Lived Credential
Service (SLCS) certificate authority we can further auto-
generate short-lived certificates on behalf of our own users
and revoke them at any point. In practice much of the X.509
certificate manipulation is transparent to the user and invoked
in the login script as they log into the interface node.

II. OPENNEBULA IMPLEMENTATION OF X.509

A. Token-based Authentication in OpenNebula before using
X.509

 Besides X.509 authentication, OpenNebula also
provides another token-based authentication method that uses
ssh keys. When a new user is signed up, the new user has to
use ssh-keygen command to generate a pair of ssh keys and
register the public ssh key in OpenNebula system. For sign-in,
the regular login command with the option of using ssh keys
will create a Single Sign On (SSO) token and this token will
be used for subsequent uses of user commands.

B. X.509 Authentication in Command Line Interface
FermiCloud developed X.509 module for OpenNebula. The

basic idea is token-based SSO authentication using user’s
X.509 certificate and associated private key. A user initially
executes a login command with X.509 certificate and private
key. Internally this command uses the user’s private key to
sign a text document, base64-encodes it and produce
eventually a token as a secure file in the user’s private area.
Subsequent commands issued by the user will present this
token to the OpenNebula server. The server first retrieves the
user’s X.509 certificate and uses it to verify (authenticate) the
identity of the user. This implementation was incorporated
into the main OpenNebula 3.0 code base in 2012 and has
continued to be available since that time in all subsequent
versions.

FermiCloud implementation of X.509 authentication
follows a common approach to achieve X.509-based
authentication. We note that this is also the case for
OpenStack PKI-signed token-based authentication that we will
review in a later section.

1. An X.509 authentication scheme must provide a tool
a user can use to sign in. This command will require
both X.509 certificate and associated private key
from a user. The command then will generate a token
and sign it with the private key.

2. The server side, first of all, should be able to acquire
the user’s X.509 certificate. In the above description,
the client tool requires the user’s X.509 certificate
too besides the private key. In case of OpenNebula,
the client tool appends the X.509 certificate to the
signed token. In case of OpenStack, each service
endpoint (such as Nova) downloads a X.509
certificate from a pre-defined location.

3. The next question is, how to transmit this signed
token to the server side. OpenNebula CLI generates a
token in a form of a file. The user must set an
environment variable to the location of this file so
that the OpenNebula command line tools can
transmit the appropriate authorization data to the
“oned” daemon. As OpenStack only supports
RESTful services (via direct use of URL in a tool
such as cURL, OpenStack SDK or OpenStack CLI),
OpenStack adopts a different method for a
transmission of the signed token and use X-Auth-
Token HTTP header for this purpose.

4. The server side can conduct a simple verify operation
against a private-key-signed token with a X.509
certificate of OpenNebula user or the Keystone
signing certificate in the case of OpenStack.

After verification, OpenNebula extracts the DN of the user

from X.509 certificate and uses it to identify the user against
the list of Distinguished Names stored in the user pool table of
the database. OpenStack simply uses the username for
identification. As mentioned above, this scheme is used by
X.509 authentication of OpenNebula CLI and OpenStack

3

Keystone PKI-based token authentication. Note that the
scheme described above cannot be done with the normal use
of web browser because the browser doesn’t allow the same
flexibility as CLI utilities of using user certificate and private
key for cryptographical purposes.

C. X.509 Authentication in Sunstone OpenNebula Web
Interface

OpenNebula Sunstone is basically a Sinatra-based web
application with Thin [9] in front of it as a Ruby web browser.
Sunstone is usually placed behind Apache HTTPD with SSL
module. There are two types of clients that will access
Sunstone. Users can upload their certificate and private key
pair to web browsers to access REST services provided by
Sunstone. Web browsers allow only PKCS12 [10] format and
require the encryption password when the certificate and key
are imported into the browser. The certificate is then
protected by the password of the certificate store of the
browser, which must be given when the certificate is used at a
given site for the first time. The Sunstone service and other
such services can also be accessed with CLI tools such as the
cURL command. The cURL command for example also
requires the users to provide both private key and certificate at
the same time and prompts for the password (if any)
associated with the private key. The cURL command also
goes through SSL handshake with the SSL module attached to
Apache server that is in front of Sunstone. In both cases, the
SSL module for Apache on the server side is configured to use
the option to verify client for a client-authentication. After the
SSL handshake finishes successfully, the SSL module sets an
environment variable called HTTP_SSL_CLIENT_CERT
equal to the base-64 encoded PEM string of the full client
certificate that was transmitted from the browser or the CLI
tool. Sunstone code uses the X.509 Certificate utility in Ruby
OpenSSL library in order to extract the user’s Distinguished
Name from the PEM string and uses the extracted DN to
compare against a list of DN’s in the user pool in order to
acquire the username that matches the DN. This look-up
process is common to both username-password and X.509
certificate schemes, but using X.509 certificate, we can
identify a user who is verified by Certificate Authority (CA).
We note that this authentication scheme in OpenNebula
Sunstone is functionally similar to the external authentication
option that OpenStack supports besides the regular methods
using username-password or token.

D. X.509 authentication in EC2 emulation
OpenNebula EC2 emulation is also a Sinatra application

with Thin web server behind Apache HTTPD with SSL
module. Current implementation of OpenNebula EC2
emulation client code is using AWS Ruby SDK to generate
REST/Query requests to OpenNebula EC2 emulation server
using AWS signature algorithm to sign the request with
Access Key ID and Secret Access Key. FermiCloud modifies
OpenNebula EC2 emulation codes in order to enable the use
of X.509 certificates. We replace AWS EC2 library with Ruby
cURL library to generate REST requests. This way we can

exploit the options for X.509 certificate and private key
available in the Ruby cURL library and achieve the same
client authentication as what happens between the cURL
command and the OpenNebula Sunstone. In current
implementation of OpenNebula, the EC2 emulation server
shares the same X.509 authentication code with the Sunstone.
Apache with SSL module processes and forwards secure
information to EC2 emulation Sinatra server. EC2 emulation
server uses this information to reconstruct the user’s X.509
certificate with X.509 Certificate utility in Ruby OpenSSL
library and extracts the user’s DN to compare against the list
of DN’s in user pool. It was necessary to modify the code
slightly to allow the server to accept X.509 proxy certificates
as well as full certificates.

E. X.509 Authorization developed by FermiCloud
The existing OpenNebula authorization is based on Access

Control List. After a user is authenticated, relevant access
control information or permissions related to the user are
examined to determine the authorization results. We started by
modifying CLI to use Local Credential Mapping Service
(LCMAPS) [11] developed by NIKHEF. When a user signs in
with OpenNebula CLI, both proxy certificate PEM string and
personal certificate PEM string are available in OpenNebula
server side where we call LCMAPS C function via Ruby C
binding in order contact FermiCloud GUMS server. Then, we
extended this solution to Sunstone. The fact that we need both
proxy and personal certificates to call LCMAPS function
means that we need to plant both proxy certificate and
personal certificate into the browser, which is technically
possible. The problem was with the transmission of
certificates from web browsers to the server. The proxy
certificate is available in the server side as a PEM string, but
the personal certificate that was used to generate the proxy
certificate is not transmitted. Technically this is believed to
originate from the fact that web browsers do not recognize the
personal certificate as a proper CA that signed the proxy
certificate. Using the cURL command, the server sets these
variables properly. For this reason, we do not consider using
LCMAPS to contact GUMS because it does not work with the
web browsers. We decided to use an XACML client library to
build an XACML request. This client library is called
privilege package and was developed in Java programming
language by Fermilab. In order to invoke this Java privilege
package from a Ruby code, we use Ruby Java Bridge (RJB).
A request to GUMS requires user's DN, VO and FQAN. Our
solution to acquire user’s VO and FQAN is contacting
VOMS-Admin server in FermiCloud. We then present this list
to the user asking for the user’s selection. Then with the
selected VO and FQAN, Sunstone constructs a request to
GUMS using privilege package. The query to VOMS-Admin
for all the possible groups and roles has the benefit that we can
use a grid proxy or certificate rather than one with extended
VOMS attributes and these are easier to manage in the
browser. This successful implementation in Sunstone could
also be applied to command line and EC2 emulation interfaces
of OpenNebula.

4

We also tried to use GridSite package as a module for
Apache HTTPD. GridSite can be used to retrieve the VO and
FQAN from a VOMS-signed certificate that is transmitted
from a web browser. In our testing, GridSite package worked
properly only when cURL command was used and it failed
when web browser was used.

Figure 1. FermiCloud new Authorization Scheme

F. Scientific Workflows on Federated Clouds
Fermilab uses the GlideinWMS [19] workflow management

system and the Jobsub client/server submission system to
federate heterogeneous resources including grids and clouds.
Users use their automatically generated SLCS-based X.509
certificates to authenticate to the server and submit jobs. The
GlideinWMS system uses its own certificates and AWS access
keys to obtain grid job slots and virtual machines on behalf of
the federation of users, and then these resources are matched
to user jobs based on the requirements of these jobs. We use
this infrastructure to support Fermilab physics experiments.
We have successfully run the Cosmic Ray simulation of the
NOvA neutrino detectors on Amazon AWS services,
FermiCloud, and a collection of sites on the Open Science
Grid. We continue to increase the amount of virtual machines
we can run simultaneously.

III. X.509 IN AMAZON WEB SERVICES EC2
AWS basically supports two APIs: REST and SOAP. If we

want to use SOAP API, there are two possible ways. We can
use AWS EC2 SDK to generate SOAP requests or we can use
AWS EC2 CLI to generate SOAP requests. In both cases, we
can use X.509 certificate and private key for authentication.
AWS will discontinue the support of SOAP APIs at the end of
2014. If we want to use REST API, there are three ways. We
can access REST API directly by constructing a query with a
command line tool. Or we can use AWS EC2 SDK or CLI to
generate Query requests. The Amazon EC2 REST API
provides HTTP or HTTPS requests that use HTTP GET or
POST methods and a Query parameter named Action. These
AWS REST requests are signed using Access Keys that

consist of Access Key ID and Secret Access Key. Note that
the AWS Command Line Interface or the AWS SDKs
automatically sign requests for us. But if we construct a Query
request directly, we must sign the requests manually, using the
procedure described in AWS signing algorithm.

Also we note that there are several AWS credentials types
for different purposes.

1. Email address and password: when we sign up for
AWS, we provide an email address and password that
is associated with our AWS account. We use these
credentials to sign in to secure AWS web pages.

2. Access Keys: we use access keys to sign requests to
AWS whether we're accessing the REST API via the
AWS SDK, CLI or direct access.

3. X.509 Certificates: we are recommended to use X.509
certificates only to sign SOAP-based requests. In all
other cases, we are recommended to use access keys.

4. Key Pairs: for Amazon EC2, we use key pairs to
access Amazon EC2 instances, such as when we use
SSH to log in to a Linux instance.

IV. EGI FEDERATED CLOUD
European Grid Infrastructure (EGI) [12] recently launched

a project called Federated Cloud (FC). General structure of
EGI FC is rOCCI server in front of cloud resources using
OpenNebula or OpenStack. The rOCCI server consists of a
Rails web application and Apache HTTPD with SSL module
and Passenger [12] module. We can issue an occi client
command with options for X.509 authentication and the use of
VOMS. We are interested in how the rOCCI OpenNebula
backend conducts X.509 authentication. The backend invokes
OpenNebula UserPool method that is available in a local
OpenNebula distribution that resides in rOCCI server
deployment. This UserPool contacts the main OpenNebula
instance via the regular xml-rpc channel to receive a list of
users that are registered. Then local methods in the rOCCI
OpenNebula backend such as do_auth will see if a valid
username is returned from a query using the regular X.509 DN
when auth x509 option is used with occi command or using
the extended DN with FQAN when auth x509 and VOMS
options are used together in occi command. When the
OpenNebula instance that is running behind rOCCI server is
needed to support rOCCI’s VOMS authentication type, each
user should be created with a DN extended with FQAN. This
can be done manually or by using Perun script. In details, the
X.509 based authentication that is conducted by rOCCI
OpenNebula backend relies on the list of users returned from
the actual OpenNebula instance running behind rOCCI server
and is equivalent to what the ordinary OpenNebula does for
X.509 authentication. We are also interested in understanding
how Perun is used in association with rOCCI’s VOMS
authentication. As mentioned in the previous paragraph, a user
can be created with a DN extended with FQAN by using
Perun script. This script first contacts a Perun server to
retrieve an up-to-date list of users and associated virtual

5

organizations and accordingly update OpenNebula’s user pool
with the list and this update process will create a user, if
necessary, with an extended DN with FQAN.

We note that the authentication and authorization model in
EGI Federated Cloud is using information from VOMS only
for authentication purpose and we will still need our new
development for X.509 authorization even if FermiCloud
OpenNebula is placed behind rOCCI server.

V. OPENSTACK AND FEDERATION
First of all, we note that both AWS and OpenStack support

only RESTful Web Services. There are two ways to access
RESTful Web Services. In a direct way we can use cURL or
other external RESTful clients. Here, we need to construct the
request for ourselves and interpret the raw response of XML
or JSON. In an indirect way we can use SDK or CLI. They
both need endpoint URL. They will both access the URL just
like the direct way, but the difference is that the indirect way
via SDK or CLI will process the raw response of XML or
JSON and returned a formatted response. Any statements
with regard to OpenStack refer to OpenStack version
Icehouse, the current version at the writing of this paper.

A. Regular Authentication in Keystone
OpenStack consists of several Services. Keystone is the one

that handles the Identity Service. Another example is Nova
that handles the Compute Service. Keystone supports four
authentication plugins, which are specified in the [auth]
section of the configuration file: password, token, external and
federation. Suppose a user has obtained a credential, i.e.
username and password. This user might use username and
password to issue a Identity API request of a token to the
Keystone. Or if this user already has a token that is still valid,
the user could use the token to issue a new Identity API
request to Keystone. In either case, after a token is acquired,
the user can use this token to issue subsequent API requests
such as Compute API requests to the NOVA service. This is
Single Sign On. The user can also still use username and
password, to issue subsequent API requests.. This use of
username and password as authentication method in Identity
service and other service such as Compute is similar to the use
of Access Keys in Amazon Web Services. When a token is
used, Keystone uses PKI to sign and verify the tokens.
Further, Keystone uses SSL to encrypt the communications.
Use of token is similar to X.509 authentication in
OpenNebula.

B. External Authentication
Web servers like Apache HTTPD support many methods of

authentication. When Keystone is executed in a web server
like Apache HTTPD, Keystone can profit from this feature
and let the authentication be done in the web server. When a
web server is in charge of authentication, it is normally
possible to set the REMOTE_USER environment variable so
that it can be used in the underlying application (Keystone).
Keystone can be configured to use that environment variable

if set. This user must exist in advance in the identity backend
to get a token from the controller. This way, we can use X.509
authentication or Kerberos, for example, instead of using the
username and password combination. To use this method,
Keystone should be running on HTTPD and Apache should be
configured to enable SSL. Note that while it is possible to use
an external authentication method besides password and
tokens, it is also possible to use an external method for
identity provider besides the SQL database backend. Popular
choice is LDAP directory service.

C. OpenStack and Federation
Keystone can be placed behind Apache HTTPD for two

reasons: to use external authentication method, besides the
ordinary two methods, which are password and token. Second
reason is to use federation. New feature in the latest version of
OpenStack is Identity Federation using SAML [14]. External
users authenticate with Identity Provider (IdP). The IdP
communicates the authentication result to Keystone using
SAML assertions. Keystone maps the SAML assertions to
Keystone user groups and assignments created in Keystone. In
order to make this possible, Keystone should be configured
accordingly. First, Keystone should be driven by Apache httpd
and Shibboleth should be installed. Secondly, Shibboleth itself
should be configured. Third, there is an extension called OS-
FEDERATION. This should be enabled. Lastly OS-
FEDERATION extension should be configured.

D. Authorization in OpenStack Keystone
Role is a personality that a user assumes when performing a

specific set of operations. A role includes a set of rights and
privileges. A user assuming that role inherits those rights and
privileges. In OpenStack Identity, a token that is issued to a
user includes the list of roles that user can assume. Services
that are being called by that user determine how they interpret
the set of roles a user has and to which operations or resources
each role grants access. It is up to individual services such as
the Compute service and Image service to assign meaning to
these roles. As far as the Identity service is concerned, a role is
an arbitrary name assigned by the user.

VI. NIMBUS AUTHENTICATION

The Nimbus project [15] implemented X.509 authentication
and authorization using a full Grid Security Infrastructure
system. This included a WSRF (Web Services Resource
Framework) application container based on the Globus toolkit,
which was capable of authentication and authorizations using
certificate/key pairs or proxies. There was also a gridftp-
based image transfer service used by the cloud client. The
project also later added emulations of the SOAP and REST
API's of Amazon EC2 as well as the Cumulus storage
element, which emulates the Amazon S3 API.

6

VII. SUMMARY
We learned from this study that X.509 authentication in

SOAP based API is decreasing in popularity and RESTful API
is the current trend. We reviewed how FermiCloud developed
X.509 authentication for OpenNebula command line interface.
The idea is similar to how OpenStack is using PKI-based
token for single-sign-on type authentication in REST requests.
This approach is one way to support X.509 based
authentication in RESTful services whereas using username
and password in RESTful services is dominantly popular as in
AWS. We have also shown a proof of principle of a unified
procedure based on callouts to VOMS-Admin and GUMS for
X.509-based authorization in OpenNebula. We also reviewed
how OpenNebula Sunstone is using X.509 authentication via
Apache HTTPD with SSL module. This is also similar to how
OpenStack is using Apache HTTPD with SSL module as an
option for external authentication. We also reviewed how EGI
Federated Cloud is using rOCCI to federate cloud facilities
using OpenNebula and OpenStack and how OpenStack is
using SAML based external identity provider to federate users
with external identities. Our plan is to keep looking for the
best way to achieve authentication and authorization on top of
restful cloud services as many new concepts and technologies
are being developed and made available publicly.

ACKNOWLEDGMENT
We thank the developers of OpenNebula for their continued

cooperation in adding authentication and authorization features
that we have requested. We also acknowledge the significant
contribution of former Fermilab employee Ted Hesselroth who
was a member of the project through the fall of 2011 and was
largely responsible for the X.509 authentication code that was
contributed to OpenNebula. This work is supported by the US
Department of Energy under contract number DE-AC02-
07CH11359 and by KISTI under a joint Cooperative Research
and Development Agreement. CRADA-FRA 2014-0002/
KISTI-C14014.

REFERENCES
[1] R.Hously et al, “Internet X.509 Public Key Infrastruture

Certificate and CRL Profile”
https://www.ietf.org/rfc/rfc2459

[2] R. Rivest, A. Shamir, L. Adleman, “A Method for
Obtaining Digital Signature and Public-key
Cryptosystems”, Communications of the ACM 21 120-
126 1978.

[3] R. Alfieri et al. 2004. VOMS, an authorization system
for virtual organizations Proceedings of European across
Grids conference No1, Santiago De Compostela, Spain
2970 33-40

[4] M. Lorch, D. Kafura, I. Fisk, K. Keahey, G. Carcassi, T.
Freeman, T. Peremutov , A. S. Rana. 2005. Authorization
and account management in the Open Science Grid The
6th IEEE/ACM International Workshop on Grid
Computing, 2005

[5] http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-cos01-en.html

[6] http://toolkit.globus.org/toolkit/security/
[7] http://fermigrid.fnal.gov
[8] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny,

A. Roy, P. Avery, K. Blackburn, T. Wenaus, F.
Wurthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky,
J. McGee, and R. Quick 2007. The Open Science Grid
Journal of Physics: Conference Series, 78 15

[9] http://code.macournoyer.com/thin/
[10] https://tools.ietf.org/html/rfc7292
[11] https://wiki.nikhef.nl/grid/LCMAPS
[12] http://www.egi.eu
[13] R. Moreno-Vozmediano, R. S. Monero, I. M. Llorente,

IaaS Cloud Architecture: From Virtualized Datacenters
to Federated Cloud Infrastructures, IEEE Computer, vol.
45, pp. 65-72, Dec. 2012

[14] https://www.oasis-
open.org/committees/download.php/13525/sstc-saml-
exec-overview-2.0-cd-01-2col.pdf

[15] K. Keahey, I. Foster, T. Freeman, X. Zhang, D. Galron,
Virtual Workspaces In The Grid, Europar 2005, Lisbon,
Portugal, Sep. 2005.

[16] http://www.itu.int/ITU-
T/recommendations/rec.aspx?rec=X.509

[17] S. Timm, K. Chadwick, G. Garzoglio, S. Y. Noh, Grids,
virtualization, and Clouds at Fermilab, in Proceedings of
the 20th International Conference on Computing in High
Energy and Nuclear Physics (CHEP 2013), Journal of
Physics: Conference Series 513 (2014). D. L. Groep and
D. Bonacorsi, eds. IOP Publishing.

[18] G. Garzoglio, J. Bester, K. Chadwick, D. Dykstra, D.
Groep, J. Gu, T. Hesselroth et al. "Adoption of a SAML-
XACML Profile for Authorization Interoperability across
Grid Middleware in OSG and EGEE." In Journal of
Physics: Conference Series, vol. 331, no. 6, p. 062011.
IOP Publishing, 2011.

[19] P. Mhashilkar, A. Tiaradani, B. Holzman, K. Larson, I.
Sfiligoi, and M. Rynge, Cloud Bursting With
GlideinWMS: Means to satisfy ever increasing needs for
Scientific Workflows. In Journal of Physics: Conference
Series 513 (2014). D. L. Groep and D. Bonacorsi, eds.,
IOP Publishing.

Puppet&Procedure&to&run&Fermi2AWS&Export&
&

1.&&For&a&Paravirtual&image&on&AWS:&(Copy&these&for&other&images&and&rename&them)&
&
– vi&/etc/puppet/modules/awsexport/manifests/gcso_sl6_pv.pp&&
– change¶meters&to&your&credentials.&
– *Note:&Obtain&HVM&worker&instance&id&from&aws&console&(caws_worker_instance_id&=>&'iS7788c97c',)&
&
– #contains¶meters&for&the&gcso_sl6&PV&image&conversion&
– awsexport::awsexport_params&{'gcso_sl6_pv':&
– cvm_file_location&=>&'/opt/gcso/awsexport',&
– cvm_image_location&=>&'oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5',&
– ckernel_ver&=>&'2.6.32S431.23.3.el6.x86_64',&
– cvm_number&=>&'103',&
– cvm_name&=>&'gcso_sl6',&
– cvm_owner&=>&'your&Fermi&username',&
– caws_image_name&=>&'GCSO_SL6_PV',&
– caws_image_owner&=>&'gcso',&
– caws_instance&=>&'m3.medium',&
– caws_key&=>&'add&aws&owner&key&here',&
– caws_secret_key&=>&'add&aws&secret&owner&key&here',&
– caws_pem_name&=>&'gcso.pem',&
– caws_worker_instance_id&=>&'iS7788c97c',&
– caws_owner_keypair_name&=>&'gcso',&
– caws_eph_mount&=>&'/&ephemeral_mount_dir&or&none',&
– }&

&
2.&&For&a&HVM&image&on&AWS:&(Copy&these&for&other&images&and&rename&them)&
&
– vi&/etc/puppet/modules/awsexport/manifests/gcso_sl6_hvm.pp&&
– change¶meters&to&your&credentials.&
– *Note:&DO&NOT&CHANGE&&(caws_worker_instance_id&=>&'hvm',)&leave&as&‘hvm’&to&create&a&worker&vm&on&aws&
&
– #contains¶meters&for&the&gcso_sl6&HVM&image&conversion&
– awsexport::awsexport_params&{'gcso_sl6_hvm':&
– cvm_file_location&=>&'/opt/gcso/awsexport',&
– cvm_image_location&=>&'oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5',&
– ckernel_ver&=>&'2.6.32S431.23.3.el6.x86_64',&
– cvm_number&=>&'103',&
– cvm_name&=>&'gcso_sl6',&
– cvm_owner&=>&'your&Fermi&username&',&
– caws_image_name&=>&'GCSO_SL6_HVM',&
– caws_image_owner&=>&'gcso',&
– caws_instance&=>&'m3.medium',&
– caws_key&=>&'add&aws&owner&key&here',&
– caws_secret_key&=>&'add&aws&secret&owner&key&here',&
– caws_pem_name&=>&'gcso.pem',&
– caws_worker_instance_id&=>&'hvm',&
– caws_owner_keypair_name&=>&'gcso',&
– caws_eph_mount&=>&'/ephemeral_mount_dir&or&none',&
– }&
&
3.&&To&setup&Crontab&jobs:&
&
– vi&/etc/puppet/modules/awsexport/manifests/awsexport_params.pp&&

&
– Change&MAILTO=username@fnal.gov&to&your&email&address&to&receive&cron&job&completion&emails.&

&
– Change&the&runtime&schedule&to&what&you&want:&

&
– cron&{'awsexport':&

&
&&&&minute&&&&&&=>&'55',&
&
&&&&hour&&&&&&&&=>&'10',&
&
&&&&monthday&&&&=>&'14',&
&
&&&&month&&&&&&&=>&'8',&
&
&&&&weekday&&&&&=>&'*',&

&
&
&
&
4.&&Run&Puppet&apply&to&set&crontab&job&for&AWS&HVM&worker:&
&
– run&‘puppet&apply&/etc/puppet/modules/awsexport/manifests/gcso_sl6_hvm.pp’&

&
– wait&for&cron&completion&email&(in&about&1.5&hours&for&a&HVM&Conversion)&

&
– detail&job&log&is&located&at:&/opt/gcso/awsexport/aws_image_convert.log&&

&
– obtain&aws&console&HVM&worker&node&‘instance&id’&for&subsequent&PV&conversion&runs.&

&
– *Note:&this&HVM&worker&node&is&needed&only&once.&It&can&be&run&again&for&other&images,&if&you&want&to&provide&HVM&AMI’s&and&

instances&on&AWS.&
&

&
5.&&Run&Puppet&apply&to&set&crontab&job&for&AWS&PV&Images:&
&
– run&‘puppet&apply&/etc/puppet/modules/awsexport/manifests/gcso_sl6_pv.pp’&

&
– wait&for&cron&completion&email&(in&about&55&minutes&for&a&PV&Conversion)&

&
– detail&job&log&is&located&at:&/opt/gcso/awsexport/aws_image_convert.log&

&
– check&aws&console&to&see&PV&AMI’s&and&instances.&

&
– *Note:&this&job&can&run,&as&needed,&to&obtain&a&latest&AWS&image.&The&AWS&AMI’s&and&instances&are&timeSstamped&to&identify&the&

latest&version.&
&

&
&
&
&
&
&
&































































































































































































































































































































































































































































































































































































































































































































































































































File: puppetrepo-awsexport/files/opt/gcso/awsexport/Convert.py
#!/usr/bin/env python
encoding: utf-8
'''
FermiCloud.AWS.Images -- Convert FermiCloud KVM Images to AWS Xen Images

@author: khs

@copyright: 2014 Fermilab. All rights reserved.

@license: license

@contact: kirkshal@fnal.gov
'''

import sys
import os
#import random
#import string
import subprocess
import logging
import textwrap
#import socket
import datetime
import time
#import httplib

from argparse import ArgumentParser
from argparse import RawDescriptionHelpFormatter

__all__ = []
__version__ = 0.1
__date__ = '2014-07-15'
__updated__ = '2014-07-15'

DEBUG = 1
TESTRUN = 0
PROFILE = 0

class CLIError(Exception):
 '''Generic exception to raise and log different fatal errors.'''
 def __init__(self, msg):
 super(CLIError).__init__(type(self))
 self.msg = "E: %s" % msg
 def __str__(self):
 return self.msg
 def __unicode__(self):

 return self.msg

class Timer:
 def __enter__(self):
 self.start = time.time()
 return self

 def __exit__(self, *args):
 self.end = time.time()
 self.interval = self.end - self.start

def get_help():
 """This function outputs the general usage of the script and uses
 the text wrapper class to specify 80 columns for display.
 """
 wrapper = textwrap.TextWrapper(width=80,
 initial_indent=" " * 2,
 subsequent_indent=" " * 2,
 break_long_words=False,
 replace_whitespace=False,
 expand_tabs=True,
 break_on_hyphens=False)
 help_text= ("(Run Fermi's Kerberos Initialize before running this script: kinit userid). This script takes
fifteen (15) arguments: "
 " <script dir location>, <vm image location>, <vm kernel version>, <fermicloud worker vm number>,
<fermicloud vm name>, <fermicloud vm owner>, <aws image name>,"
 " <aws image owner>, <aws instance type>, <aws key>, <aws secret key>, <aws pem name>,"
 " <aws worker instance id>, <aws owner keypair name> and </ephemeral_mount_dir or none>."
 " A pre-requisite is to have a Fermicloud worker vm setup ahead of time
(root@fermicloudnnn.fnal.gov) with a /data directory created to store files."
 " The script will accept a VM image
(oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5),"
 " with kernel (2.6.32-431.23.3.el6.x86_64) and will make a worker copy of the image ready for AWS
conversion,"
 " then convert the image (fermi cleanse and resize) and import to AWS by the specified <aws image
name>."
 " The script requires 5 parameters to be obtained ahead of time from the AWS Console. They are:"
 " <aws owner security pem name> <aws instance id of the HVM worker image, use 'hvm' here to
create HVM worker before creating PV's.> <aws owner keypair name>"
 " <aws key> and <aws secret key> which are obtained from the AWS console under EC2 instances and
the IAM security tab prior to running this script."
 " For example, to convert a Fermicloud VM named gcso_slf6 with owner oneadmin,"
 " and to create a AWS image named SLF6Vanilla, with owner oneadmin, and a instance type of
m3.medium and with a worker"
 " vm of fermicloud103.fnal.gov you would run the following script:\n"
 " **\n"

 " /opt/gcso/awsexport/Convert.py /opt/gcso/awsexport
oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5 2.6.32-431.23.3.el6.x86_64 103
gcso_slf6 oneadmin SLF6Vanilla gcso m3.medium awskey awssecretkey gcso.pem i-hvminstanceid gcso /scratch\n"
 " **\n"
 " ...Available.AWS.Instance.Types.listed.below...\n"
 " Type......vCPU..ECU..Memory.(GiB)..Instance Storage (GB)..Cost per hour\n"
 " General.Purpose.-.Current.Generation\n"
 " t2.micro....1....Variable....1....EBSOnly......$0.013 per Hour\n"
 " t2.small....1....Variable....2....EBSOnly......$0.026 per Hour\n"
 " t2.medium...2....Variable....4....EBSOnly......$0.052 per Hour\n"
 " m3.medium...1.......3......3.75...1.x.4.SSD....$0.070 per Hour\n"
 " m3.large....2......6.5.....7.5....1.x.32.SSD...$0.140 per Hour\n"
 " m3.xlarge...4......13.......15....2.x.40.SSD...$0.280 per Hour\n"
 " m3.2xlarge..8......26.......30....2.x.80.SSD...$0.560 per Hour\n"
 " Compute.Optimized.-.Current.Generation\n"
 " c3.large....2.......7......3.75...2.x.16.SSD...$0.105 per Hour\n"
 " c3.xlarge...4......14......7.5....2.x.40.SSD...$0.210 per Hour\n"
 " c3.2xlarge..8......28.......15....2.x.80.SSD...$0.420 per Hour\n"
 " c3.4xlarge..16.....55.......30....2.x.160.SSD..$0.840 per Hour\n"
 " c3.8xlarge..32....108.......60....2.x.320.SSD..$1.680 per Hour\n"
 " GPU.Instances.-.Current.Generation\n"
 " g2.2xlarge..8......26.......15........60.SSD...$0.650 per Hour\n"
 " Memory.Optimized.-.Current.Generation\n"
 " r3.large....2......6.5......15....1.x.32.SSD...$0.175 per Hour\n"
 " r3.xlarge...4.....13.......30.5...1.x.80.SSD...$0.350 per Hour\n"
 " r3.2xlarge..8.....26........61....1.x.160.SSD..$0.700 per Hour\n"
 " r3.4xlarge..16....52.......122....1.x.320.SSD..$1.400 per Hour\n"
 " r3.8xlarge..32....104......244....2.x.320.SSD..$2.800 per Hour\n"
 " Storage.Optimized.-.Current.Generation\n"
 " i2.xlarge...4.....14.......30.5...1.x.800.SSD..$0.853 per Hour\n"
 " i2.2xlarge..8.....27.......61.....2.x.800.SSD..$1.705 per Hour\n"
 " i2.4xlarge..16....53.......122....4.x.800.SSD..$3.410 per Hour\n"
 " i2.8xlarge..32....104......244....8.x.800.SSD..$6.820 per Hour\n"
 " hs1.8xlarge.16....35.......117...24.x.2048.....$4.600 per Hour\n")
 print '\n', wrapper.fill(help_text)
 print
sys.exit()

def copy_to_image_location(vm_script_location, vm_number, vm_name, vm_owner, aws_pem_name, vm_image_location):
 """ This function copies the selected Fermicloud VM image to a worker VM image.
 """
 get_date = datetime.date.today()
 time_differential = datetime.timedelta(days=7)
 delete_date = str(get_date - time_differential)
 logging.info("Start: Copying the selected Fermicloud VM image. Function copy_to_image_location.")
 """ Change to location of your scripts below.
 """
 cp_command = (

 "cp -f {v_script_location}/Fermi_AWS_Modifications.sh /data"
 " && cp -f {v_script_location}/{v_aws_pem_name} /data"
 " && cp -f {v_script_location}/Fermi_AWS_Resize.sh /data"
 " && cp -f {v_script_location}/ec2-get-ssh /data"
 " && cp -f {v_script_location}/cloud.cfg /data"
 " && cp -f {v_script_location}/Fermi_AWS_CLI_Setup.sh /root"
 " && cp -f {v_script_location}/Fermi_AWS_Import.sh /root"
 " && kinit -k -t /var/adm/krb5/cloudadminpp.keytab
cloudadmin/cron/fermicloudpp.fnal.gov@FNAL.GOV"
 " && scp {v_image_location} /data/{v_name}.qcow2tmp"
 # The 2 lines above need to be modified for production to accept a parameter driven image
the one above is pre-production
 # " && scp oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5
/data/{v_name}.qcow2tmp"
 # " && ssh -o StrictHostKeyChecking=no -l {v_owner} fermicloud.fnal.gov 'scp -Cq
{v_owner}@fermicloud.fnal.gov:{v_name}.qcow2 root@fermicloud{v_number}.fnal.gov:/data/{v_name}.qcow2tmp"
 # " && rm -f {v_owner}@fermicloud.fnal.gov:{v_name}.qcow2.{remove} && exit'"
).format (v_owner=vm_owner, today=str(get_date), v_name=vm_name, v_number=vm_number,
v_script_location=vm_script_location, v_aws_pem_name=aws_pem_name, v_image_location=vm_image_location,
remove=delete_date)
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log:

 try:
 with Timer() as t:
 subprocess.check_call(cp_command, shell=True, stdout=my_log, stderr=my_log)
 logging.info("Stop: Completed Copying the selected Fermicloud VM image. Function
copy_to_image_location.")
 except:
 logging.error("Couldn't copy image to temp area")
 raise Exception("Couldn't copy image to temp area! Aborting.")
 sys.exit(1)
 finally:
 min_interval = t.interval / 60
 print('Copying took %.03f minutes.' % min_interval)

def convert_image(vm_number, vm_name, vm_owner, aws_worker_instance_id, aws_instance, kernel_ver, eph_mount):
 """ This function converts the worker Fermicloud VM image for AWS specifics.
 """
 get_date = datetime.date.today()
 logging.info("Start: Converting the worker Fermicloud VM image. Function convert_image.")
 convert_command = (
 # "ssh root@fermicloud{v_number}.fnal.gov 'mkdir -p /data/work"
 "mkdir -p /data/work"
 " && guestmount -a /data/{v_name}.raw -m /dev/sda1 /data/work"
 " && mv /data/Fermi_AWS_Modifications.sh /data/work"
 " && mv /data/ec2-get-ssh /data/work"
 " && mv /data/cloud.cfg /data/work"

 " && /usr/sbin/chroot /data/work ./Fermi_AWS_Modifications.sh {v_aws_worker_instance_id}
{v_aws_instance} {v_kernel_ver} {v_eph_mount}"
 " && sleep 10"
 " && rm -f /data/work/Fermi_AWS_Modifications.sh && rm -f /data/work/ec2-get-ssh && rm -f
/data/work/cloud.cfg"
 " && rm -f /data/Fermi_AWS_Modifications.sh && rm -f /data/ec2-get-ssh && rm -f
/data/cloud.cfg"
 " && fusermount -uz /data/work && rmdir /data/work"
 # " && exit'"
).format (v_owner=vm_owner, today=str(get_date), v_name=vm_name, v_number=vm_number,
v_aws_worker_instance_id=aws_worker_instance_id, v_aws_instance=aws_instance, v_kernel_ver=kernel_ver,
v_eph_mount=eph_mount)
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log:

 try:
 with Timer() as t:
 subprocess.check_call(convert_command, shell=True, stdout=my_log, stderr=my_log)
 logging.info("Stop: Completed Converting the worker Fermicloud VM image. Function
convert_image.")
 except:
 logging.error("Couldn't convert image in temp area")
 raise Exception("Couldn't convert image in temp area! Aborting.")
 sys.exit(1)
 finally:
 min_interval = t.interval / 60
 print('Converting took %.03f minutes.' % min_interval)

def resize_image(vm_number, vm_name, vm_owner, aws_worker_instance_id):
 """ This function resizes the worker Fermicloud VM image for AWS image import.
 """
 get_date = datetime.date.today()
 logging.info("Start: Resizing the worker Fermicloud VM image. Function resize_image.")
 resize_command = (
 # "ssh root@fermicloud{v_number}.fnal.gov 'cd /data"
 "cd /data"
 " && ./Fermi_AWS_Resize.sh {v_name} {v_aws_worker_instance_id}"
 " && rm -f /data/Fermi_AWS_Resize.sh"
 # " && exit'"
).format (v_owner=vm_owner, today=str(get_date), v_name=vm_name, v_number=vm_number,
v_aws_worker_instance_id=aws_worker_instance_id)
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log:

 try:
 with Timer() as t:
 subprocess.check_call(resize_command, shell=True, stdout=my_log, stderr=my_log)
 logging.info("Stop: Completed Resizing the worker Fermicloud VM image. Function resize_image.")
 except:
 logging.error("Couldn't resize image in temp area")

 raise Exception("Couldn't resize image in temp area! Aborting.")
 sys.exit(1)
 finally:
 min_interval = t.interval / 60
 print('Resizing took %.03f minutes.' % min_interval)

def import_image(vm_number, vm_name, vm_owner, aws_instance, aws_key, aws_secret_key, aws_pem_name,
aws_worker_instance_id, aws_image_owner, aws_image_name, aws_owner_keypair_name, my_env):
 """ This function sets up the AWS CLI tools and imports the resized raw worker Fermicloud VM image to a AWS
HVM Instance.
 """
 get_date = datetime.date.today()
 logging.info("Start: Importing the worker Fermicloud VM image. Function import_image.")
 import_command = (
 # "ssh root@fermicloud{v_number}.fnal.gov 'cd /root && chmod +x
Fermi_AWS_CLI_Setup.sh"
 "cd /root && chmod +x Fermi_AWS_CLI_Setup.sh"
 " && ./Fermi_AWS_CLI_Setup.sh {v_aws_key} {v_aws_secret_key}"
 " && rm -f /root/Fermi_AWS_CLI_Setup.sh && cd /root && chmod +x Fermi_AWS_Import.sh"
 " && ./Fermi_AWS_Import.sh {v_aws_key} {v_aws_secret_key} {v_name} {v_aws_instance}
{v_aws_pem_name} {v_aws_worker_instance_id} {v_aws_image_owner} {v_aws_image_name} {v_aws_owner_keypair_name}"
 " && rm -f /root/Fermi_AWS_Import.sh"
 # " && exit'"
).format (v_owner=vm_owner, today=str(get_date), v_name=vm_name,
v_number=vm_number, v_aws_instance=aws_instance, v_aws_key=aws_key,
 v_aws_secret_key=aws_secret_key, v_aws_pem_name=aws_pem_name,
v_aws_worker_instance_id=aws_worker_instance_id,
 v_aws_image_owner=aws_image_owner, v_aws_image_name=aws_image_name,
v_aws_owner_keypair_name=aws_owner_keypair_name)
 with open('/opt/gcso/awsexport/aws_image_convert.log', 'a') as my_log:

 try:
 with Timer() as t:
 subprocess.check_call(import_command, env=my_env, shell=True, stdout=my_log, stderr=my_log)
 logging.info("Stop: Completed Importing the worker Fermicloud VM image. Function import_image.")
 except:
 logging.error("Couldn't import image to AWS")
 raise Exception("Couldn't import image to AWS! Aborting.")
 sys.exit(1)
 finally:
 min_interval = t.interval / 60
 print('Importing took %.03f minutes.' % min_interval)

def main(argv=None): # IGNORE:C0111
 """ Change location of Log file.
 """
 logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)s %(levelname)-8s %(message)s',

 datefmt='%b %d %H:%M:%S',
 filename='/opt/gcso/awsexport/aws_image_convert.log')

 my_env = os.environ.copy()

 '''Command line options.'''

 if argv is None:
 argv = sys.argv
 else:
 sys.argv.extend(argv)

 get_help()
 program_name = os.path.basename(sys.argv[0])
 program_version = "v%s" % __version__
 program_build_date = str(__updated__)
 program_version_message = '%%(prog)s %s (%s)' % (program_version, program_build_date)
 program_shortdesc = __import__('__main__').__doc__.split("\n")[1]
 program_license = '''%s

 Created by khs on %s.
 Copyright 2014 Fermilab. All rights reserved.

 Licensed under the Apache License 2.0
 http://www.apache.org/licenses/LICENSE-2.0

 Distributed on an "AS IS" basis without warranties
 or conditions of any kind, either express or implied.

USAGE

''' % (program_shortdesc, str(__date__))
 try:
 with Timer() as t:
 # Setup argument parser
 parser = ArgumentParser(description=program_license, formatter_class=RawDescriptionHelpFormatter)
 parser.add_argument('-V', '--version', action='version', version=program_version_message)
 parser.add_argument(dest="cvm_script_location", help="Location of all scripts",
metavar="cvm_script_location")
 parser.add_argument(dest="cvm_image_location", help="Location of Fermi Image",
metavar="cvm_image_location")
 parser.add_argument(dest="ckernel_ver", help="Kernel version of Fermi Image", metavar="ckernel_ver")
 parser.add_argument(dest="cvm_number", help="Fermicloud Work VM number", metavar="cvm_number")
 parser.add_argument(dest="cvm_name", help="Fermicloud VM name", metavar="cvm_name")
 parser.add_argument(dest="cvm_owner", help="Fermicloud Owner name", metavar="cvm_owner")
 parser.add_argument(dest="caws_image_name", help="AWS AMI VM name", metavar="caws_image_name")
 parser.add_argument(dest="caws_image_owner", help="AWS AMI Owner name", metavar="caws_image_owner")
 parser.add_argument(dest="caws_instance", help="AWS AMI Instance Type", metavar="caws_instance")

 parser.add_argument(dest="caws_key", help="AWS key", metavar="caws_key")
 parser.add_argument(dest="caws_secret_key", help="AWS Secret Key", metavar="caws_secret_key")
 parser.add_argument(dest="caws_pem_name", help="AWS PEM Name", metavar="caws_pem_name")
 parser.add_argument(dest="caws_worker_instance_id", help="AWS Worker Instance ID from AWS Console",
metavar="caws_worker_instance_id")
 parser.add_argument(dest="caws_owner_keypair_name", help="AWS Owner Keypair Name",
metavar="caws_owner_keypair_name")
 parser.add_argument(dest="caws_eph_mount", help="AWS ephemeral mount dir (/ephemeral_mount_dir or
none)", metavar="caws_eph_mount")

 # Process arguments
 args = parser.parse_args()
 cvm_script_location = args.cvm_script_location
 cvm_image_location = args.cvm_image_location
 ckernel_ver = args.ckernel_ver
 cvm_number = args.cvm_number
 cvm_name = args.cvm_name
 cvm_owner = args.cvm_owner
 caws_image_name = args.caws_image_name
 caws_image_owner = args.caws_image_owner
 caws_instance = args.caws_instance
 caws_key = args.caws_key
 caws_secret_key = args.caws_secret_key
 caws_pem_name = args.caws_pem_name
 caws_worker_instance_id = args.caws_worker_instance_id
 caws_owner_keypair_name = args.caws_owner_keypair_name
 caws_eph_mount = args.caws_eph_mount

 logging.info('Begin script run')
 print("Arguments supplied:")
 print("location of all files and scripts->", cvm_script_location)
 print("location of fermicloud vm image->", cvm_image_location)
 print("kernel version of fermicloud vm image->", ckernel_ver)
 print("fermicloud worker vm number->", cvm_number)
 print("fermicloud vm image name->", cvm_name)
 print("fermicloud vm owner->", cvm_owner)
 print("aws vm image name->", caws_image_name)
 print("aws vm image owner->", caws_image_owner)
 print("aws instance type->", caws_instance)
 print("aws owner key->", caws_key)
 print("aws owner secret key->", caws_secret_key)
 print("aws owner pem name->", caws_pem_name)
 print("aws hvm worker instance id from aws console for PV or 'hvm' for HVM->",
caws_worker_instance_id)
 print("aws owner keypair name->", caws_owner_keypair_name)
 print("aws ephemeral mount->", caws_eph_mount)
 print("Starting AWS VM conversion. This job can take up to 60 minutes for PV and 84 for HVM...")
 print("Copying the Golden Fermicloud VM image takes under 1 minute...")

 copy_to_image_location(cvm_script_location, cvm_number, cvm_name, cvm_owner, caws_pem_name,
cvm_image_location)
 print("Resizing the worker Fermicloud VM image takes up to 20 minutes for PV and 10 for HVM...")
 resize_image(cvm_number, cvm_name, cvm_owner, caws_worker_instance_id)
 print("Converting the worker Fermicloud VM image takes over 24 minutes...")
 convert_image(cvm_number, cvm_name, cvm_owner, caws_worker_instance_id, caws_instance, ckernel_ver,
caws_eph_mount)
 print("Importing the raw image to AWS takes up to 15 minutes for PV and 49 for HVM...")
 import_image(cvm_number, cvm_name, cvm_owner, caws_instance, caws_key, caws_secret_key,
caws_pem_name, caws_worker_instance_id, caws_image_owner, caws_image_name, caws_owner_keypair_name, my_env)
 print("Completed AWS VM conversion.")
 logging.info('End script run')
 return 0
 except KeyboardInterrupt:
 ### handle keyboard interrupt ###
 return 0
 except Exception, e:
 if DEBUG or TESTRUN:
 raise(e)
 indent = len(program_name) * " "
 sys.stderr.write(program_name + ": " + repr(e) + "\n")
 sys.stderr.write(indent + " for help use --help")
 return 2
 finally:
 min_interval = t.interval / 60
 print('Job took %.03f minutes. Thank you.' % min_interval)

if __name__ == "__main__":
 sys.exit(main())

File: puppetrepo-awsexport/files/opt/gcso/awsexport/Fermi_AWS_CLI_Setup.sh
#!/bin/bash

Use the following steps to install the Amazon API Tools and the Amazon AMI Tools on the Linux platform. 2
positional parameters are needed; You will need your AWS_ACCESS_KEY as the 1st parameter and AWS_SECRET_KEY as
the second parameter.
Remember to 'chmod +x Fermi_AWS_CLI_Setup.sh' after copying this script to your root directory
Syntax Format is ./Fermi_AWS_CLI_Setup.sh <AWS_ACCESS_KEY> <AWS_SECRET_KEY>

Shell Login Script

Add the following environment variables to your shell login script (i.e. /root/.bashrc). Make any necessary
changes for your specific environment by replacing AWS_ACCOUNT_NUMBER, AWS_ACCESS_KEY_ID, and

AWS_SECRET_ACCESS_KEY with your AWS account number and security credentials. Make certain to remove the < and >
characters when providing your values.

cp /root/.bashrc /root/.bashrc.backup
cd /root
rm -f .bashrc

echo '# .bashrc' >> .bashrc
echo ' ' >> .bashrc
echo '# User specific aliases and functions' >> .bashrc
echo ' ' >> .bashrc
echo "alias rm='rm -i'" >> .bashrc
echo "alias cp='cp -i'" >> .bashrc
echo "alias mv='mv -i'" >> .bashrc
echo ' ' >> .bashrc
echo '# Source global definitions' >> .bashrc
echo 'if [-f /etc/bashrc]; then' >> .bashrc
echo ' . /etc/bashrc' >> .bashrc
echo 'fi' >> .bashrc
echo ' ' >> .bashrc
echo 'PATH=$PATH:$HOME/bin' >> .bashrc
echo ' ' >> .bashrc
echo 'export PATH' >> .bashrc
echo ' ' >> .bashrc
echo 'export EC2_BASE=/usr/local/ec2' >> .bashrc
echo 'export EC2_HOME=$EC2_BASE/ec2-api-tools-1.7.1.0' >> .bashrc
echo 'export EC2_PRIVATE_KEY=$EC2_BASE/certificates/ec2-pk.pem' >> .bashrc
echo 'export EC2_CERT=$EC2_BASE/certificates/ec2-cert.pem' >> .bashrc
echo 'export EC2_URL=https://ec2.us-west-2.amazonaws.com' >> .bashrc
echo 'export AWS_ACCOUNT_NUMBER=159067897602' >> .bashrc
echo 'export AWS_ACCESS_KEY_ID='$1 >> .bashrc
echo 'export AWS_ACCESS_KEY='$1 >> .bashrc
echo 'export AWS_SECRET_ACCESS_KEY='$2 >> .bashrc
echo 'export AWS_SECRET_KEY='$2 >> .bashrc
echo 'export PATH=$PATH:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin:$EC2_HOME/bin' >> .bashrc
echo 'export JAVA_HOME=/usr/lib/jvm/jre-1.6.0-openjdk.x86_64' >> .bashrc

source ~/.bashrc

cp /root/.bash_profile /root/.bash_profile.backup
cd /root
rm -f .bash_profile

echo '# Get the aliases and functions' >> .bash_profile
echo 'if [-f ~/.bashrc]; then' >> .bash_profile
echo ' . ~/.bashrc' >> .bash_profile
echo 'fi' >> .bash_profile
echo ' ' >> .bash_profile

echo '# User specific environment and startup programs' >> .bash_profile
echo ' ' >> .bash_profile
echo 'PATH=$PATH:$HOME/bin' >> .bash_profile
echo ' ' >> .bash_profile
echo 'export PATH' >> .bash_profile
echo ' ' >> .bash_profile
echo 'export EC2_BASE=/usr/local/ec2' >> .bash_profile
echo 'export EC2_HOME=$EC2_BASE/ec2-api-tools-1.7.1.0' >> .bash_profile
echo 'export EC2_PRIVATE_KEY=$EC2_BASE/certificates/ec2-pk.pem' >> .bash_profile
echo 'export EC2_CERT=$EC2_BASE/certificates/ec2-cert.pem' >> .bash_profile
echo 'export EC2_URL=https://ec2.us-west-2.amazonaws.com' >> .bash_profile
echo 'export AWS_ACCOUNT_NUMBER=159067897602' >> .bash_profile
echo 'export AWS_ACCESS_KEY_ID='$1 >> .bash_profile
echo 'export AWS_ACCESS_KEY='$1 >> .bash_profile
echo 'export AWS_SECRET_ACCESS_KEY='$2 >> .bash_profile
echo 'export AWS_SECRET_KEY='$2 >> .bash_profile
echo 'export PATH=$PATH:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin:$EC2_HOME/bin' >>
.bash_profile
echo 'export JAVA_HOME=/usr/lib/jvm/jre-1.6.0-openjdk.x86_64' >> .bash_profile

source ~/.bash_profile

Install Java

The EC2 API Tools and Amazon EC2 AMI Tools are Java based. If you don't already have a version of Java
installed, do so now.

yum -y install java-1.6.0-openjdk

The JAVA_HOME environment variable should be set to the appropriate home directory in your shell login script
(i.e. /root/.bashrc) which was handled in the previous step. Verify the JAVA_HOME environment variable is set for
the current shell and confirm that Java is installed correctly.

echo $JAVA_HOME

java -version

Install the Amazon EC2 Tools

Download the Amazon EC2 API Tools.

mkdir -p $EC2_HOME

curl -o /tmp/ec2-api-tools.zip http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip

unzip -qq -o /tmp/ec2-api-tools.zip -d /tmp

cp -r /tmp/ec2-api-tools-*/* $EC2_HOME

Download the Amazon EC2 AMI Tools to the EC2 image.

curl -o /tmp/ec2-ami-tools.zip http://s3.amazonaws.com/ec2-downloads/ec2-ami-tools.zip

unzip -qq -o /tmp/ec2-ami-tools.zip -d /tmp

cp -rf /tmp/ec2-ami-tools-*/* $EC2_HOME

EC2 Private Certificate Key File and EC2 Certificate File

If used (Certificates are being depracated), Copy your X.509 Certificate (private key file and certificate
file) to appropriate directory. For the purpose of this example, I will be renaming my private key file from pk-
2L7LZYRTNEAC4KGZMPPZWAOZ4KYCTCA4.pem to ec2-pk.pem and my certificate file from cert-
2L7LZYRTNEAC4KGZMPPZWAOZ4KYCTCA4.pem to ec2-cert.pem.

mkdir -p $EC2_BASE/certificates

cp pk-2L7LZYRTNEAC4KGZMPPZWAOZ4KYCTCA4.pem $EC2_BASE/certificates/ec2-pk.pem

cp cert-2L7LZYRTNEAC4KGZMPPZWAOZ4KYCTCA4.pem $EC2_BASE/certificates/ec2-cert.pem

Verify Amazon EC2 Tools

Verify that the Amazon EC2 Tools have been installed correctly.

Test the ec2-describe-regions script which is found in the EC2 API Tools to list the regions you have access
to.

ec2-describe-regions

Install Expect used for interaction 'yes' prompts throughout script

yum -y install tcl-devel tk-devel expect-devel expectk

Package updates completed
sleep 1
echo 'AWS CLI Tools Setup Completed.'

File: puppetrepo-awsexport/files/opt/gcso/awsexport/Fermi_AWS_Import.sh
#!/bin/bash

Use the following steps to perform a VM import to create a HVM Instance on AWS.
Remember to 'chmod +x Fermi_AWS_Import.sh' after copying this script to your root directory

Syntax Format is ./Fermi_AWS_Import.sh <AWS_ACCESS_KEY> <AWS_SECRET_KEY> <Fermicloud VM Name> <AWS Instance
Type> <PEM Name> <AWS Worker Instance ID> <AWS image owner> <AWS image name> <AWS owner keypair name>

cd /data
dte=`date +%Y%m%d%H%M%S`
chmod 400 $5

if ["$6" == "hvm"]; then
VM Import used to create AWS HVM Worker Image that is used for building Paravirtual Images
Note: That the size of the primary boot partition must stay at 12G to prevent freeze at 53% conversion
import=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2iin -f RAW -t $4 -a x86_64 -b fcloudimport$dte -o $1 -O $1 -w
$2 -W $2 -p Linux -g sg-a6a010c3 -s 13 -d $8_$dte -K $9 --region us-west-2 -z us-west-2a $3.raw | grep
IMPORTINSTANCE | awk {'print($4)'}`
sleep 5
poll every 60 seconds to see if import is completed
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-conversion-tasks -O $1 -W $2 $import | awk
'/IMPORTINSTANCE/{print $8}')
while ["$status" != "completed"] ; do
sleep 60
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-conversion-tasks -O $1 -W $2 $import | awk
'/IMPORTINSTANCE/{print $8}')
done
sleep 5

volimp=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-conversion-tasks -O $1 -W $2 $import | grep
DISKIMAGE | awk {'print($7)'}`
sleep 2
vmimpinstance=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-conversion-tasks -O $1 -W $2 $import | grep
IMPORTINSTANCE | awk {'print($10)'}`
sleep 2
Create Snapshot to be used to create HVM AMI
snap=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-create-snapshot -O $1 -W $2 --region us-west-2 -d "$8_$dte HVM
Snapshot" $volimp | grep SNAPSHOT | awk {'print($2)'}`
sleep 5
poll every 10 seconds to see if snapshot is completed
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-snapshots -O $1 -W $2 $snap | awk
'/SNAPSHOT/{print $4}')
while ["$status" != "completed"] ; do
sleep 10
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-snapshots -O $1 -W $2 $snap | awk
'/SNAPSHOT/{print $4}')
done
sleep 5

Create HVM AMI
ami=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-register -O $1 -W $2 -n "$8_$dte" -d "$8_$dte" -b
"/dev/sda1=$snap:13:true:standard" -b "/dev/sdb=ephemeral0" --architecture x86_64 --region us-west-2 --
virtualization-type hvm | grep IMAGE | awk {'print($2)'}`

sleep 30

Create and run Instance from HVM AMI (Comment out for golive)
instance=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-run-instances -O $1 -W $2 --region us-west-2 -z us-west-2a
$ami -g sg-a6a010c3 -n 1 -t $4 -k $9 | grep INSTANCE | awk {'print($2)'}`
sleep 5
poll every 10 seconds to see if instance status is running
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $instance | awk
'/INSTANCE/{print $6}')
while ["$status" != "running"] ; do
sleep 10
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $instance | awk
'/INSTANCE/{print $6}')
done
sleep 5

Get Volume for create tags
vol2=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-volumes -O $1 -W $2 | grep $instance | awk
{'print($2)'}`
sleep 10

Create and attach a work volume for ongoing PV conversions
vol3=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-create-volume -O $1 -W $2 --size 20 --region us-west-2 -z us-
west-2a --type standard | grep VOLUME | awk {'print($2)'}`
sleep 10

/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-attach-volume $vol3 -O $1 -W $2 --instance $instance --device
/dev/sdf

Create tags for all resources
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-create-tags -O $1 -W $2 $vmimpinstance $volimp $snap $ami $instance
$vol2 $vol3 --tag "Name=$8_$dte" --tag "User=$7"
sleep 10

Stop the AWS HVM Worker and delete temp work volume
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-stop-instances $instance -O $1 -W $2
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-terminate-instances $vmimpinstance -O $1 -W $2
sleep 90
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-delete-volume $volimp -O $1 -W $2
pip install --upgrade awscli
aws s3 rb s3://fcloudimport$dte --force

echo 'AWS HVM VM Import Completed.'
exit
fi

Launch new HVM AMI Instance (AWS Instance ID is needed as a parameter to the script)
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-start-instances $6 -O $1 -W $2

poll every 10 seconds to see if instance status is running
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $6 | awk '/INSTANCE/{print
$6}')
while ["$status" != "running"] ; do
sleep 10
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $6 | awk '/INSTANCE/{print
$6}')
done
sleep 5

Wait for instance to launch and get public ip address and setup staging area
ip=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $6 | grep NICASSOCIATION | awk
{'print($2)'}`
sleep 10

Create new volume on AWS Worker to be used for PV snapshot
vol=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-create-volume -O $1 -W $2 --size 10 --region us-west-2 -z us-
west-2a | grep VOLUME | awk {'print($2)'}`
sleep 10

Attach volume on AWS Worker and Wait for attachment to complete and setup mount for data
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-attach-volume -O $1 -W $2 --instance $6 --device /dev/sdg $vol --
region us-west-2
sleep 10

build the expect script in bash

 expect1_sh=$(expect -c "
 spawn ssh -i $5 root@$ip
 expect \"yes/no\"
 send \"yes\r\"
 expect \"#\"
 send \"mkfs -t ext4 /dev/xvdf\r\"
 expect \"#\"
 send \"mount -t ext4 /dev/xvdf /mnt\r\"
 expect \"#\"
 send \"cd /mnt\r\"
 expect \"#\"
 send \"mkdir -p images\r\"
 expect \"#\"
 send \"mkfs -t ext4 /dev/xvdg\r\"
 expect \"#\"
 send \"mkdir -p /opt/ec2/mnt\r\"
 expect \"#\"
 send \"mount -t ext4 /dev/xvdg /opt/ec2/mnt\r\"
 expect \"#\"
 send \"exit\r\"

 expect eof
 puts \"spawned process completed...\"
 exit
 ")

 # run the expect script and then exit it
 echo "$expect1_sh"

echo "Back to script. Please wait..."
sleep 5

Upload Fermicloud prepaed raw image to AWS Worker stage area (about 3 minutes)
rsync or scp can be used, rsync requies root password to be passed (so default to scp)
echo "Copying (SCP) Raw image to AWS. Please wait..."
rsync -S -z -q -e ssh -i $5 /data/$3.raw root@$ip:/mnt/images
scp -Cq -i $5 /data/$3.raw root@$ip:/mnt/images

sleep 5

Prepare raw image to become extracted boot volume on AWS Worker

build the expect script in bash

 expect3_sh=$(expect -c "
 spawn ssh -i $5 root@$ip
 expect \"#\"
 send \"cd /mnt/images\r\"
 expect \"#\"
 send \"mkdir -p raw\r\"
 expect \"#\"
 send \"kpartx -a $3.raw\r\"
 expect \"#\"
 send \"mount /dev/mapper/loop0p1 /mnt/images/raw\r\"
 expect \"#\"
 send \"cd /mnt/images/raw\r\"
 expect \"#\"
 send \"rsync -aqHx /mnt/images/raw/ /opt/ec2/mnt\r\"
 sleep 120
 expect \"#\"
 send \"rsync -aqHx /mnt/images/raw/dev /opt/ec2/mnt\r\"
 expect \"#\"
 send \"cd /opt/ec2/mnt\r\"
 expect \"#\"
 send \"tune2fs -L \'/\' /dev/xvdg\r\"
 expect \"#\"
 send \"sync;sync;sync;sync\r\"
 expect \"#\"
 send \"cd /mnt/images\r\"

 expect \"#\"
 send \"umount /mnt/images/raw\r\"
 expect \"#\"
 send \"kpartx -d $3.raw\r\"
 expect \"#\"
 send \"exit\r\"
 expect eof
 puts \"spawned process completed...\"
 exit
 ")

 # run the expect script and then exit it
 echo "$expect3_sh"

echo "Back to script. Please wait..."
sleep 5

Detach temp worker volume
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-detach-volume $vol -O $1 -W $2
sleep 60

Create Snapshot to be used to create PV AMI
snap=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-create-snapshot -O $1 -W $2 --region us-west-2 -d "$8_$dte PV
Snapshot" $vol | grep SNAPSHOT | awk {'print($2)'}`
sleep 5
poll every 10 seconds to see if snapshot is completed
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-snapshots -O $1 -W $2 $snap | awk
'/SNAPSHOT/{print $4}')
while ["$status" != "completed"] ; do
sleep 10
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-snapshots -O $1 -W $2 $snap | awk
'/SNAPSHOT/{print $4}')
done
sleep 5

Create PV AMI
ami=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-register -O $1 -W $2 -n "$8_$dte" -d "$8_$dte" -b
"/dev/sda1=$snap:10:true:standard" -b "/dev/sdb=ephemeral0" --architecture x86_64 --kernel aki-fc8f11cc --region
us-west-2 | grep IMAGE | awk {'print($2)'}`
sleep 30

Create and run Instance from PV AMI (Comment out for golive)
instance=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-run-instances -O $1 -W $2 --region us-west-2 -z us-west-2a
$ami -g sg-a6a010c3 -n 1 --kernel aki-fc8f11cc -t $4 -k $9 | grep INSTANCE | awk {'print($2)'}`
sleep 5
poll every 10 seconds to see if instance status is running
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $instance | awk
'/INSTANCE/{print $6}')

while ["$status" != "running"] ; do
sleep 10
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $instance | awk
'/INSTANCE/{print $6}')
done
sleep 5

Get Volume for create tags (Comment out for golive)
vol2=`/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-volumes -O $1 -W $2 | grep $instance | awk
{'print($2)'}`
sleep 10

Create tags for all resources
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-create-tags -O $1 -W $2 $vol $snap $ami $instance $vol2 --tag
"Name=$8_$dte" --tag "User=$7"
sleep 10

Stop the AWS HVM Worker and new PV instances and delete temp HVM work volume
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-stop-instances $6 -O $1 -W $2
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-stop-instances $instance -O $1 -W $2
sleep 5
poll every 10 seconds to see if instance status is stopped
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $instance | awk
'/INSTANCE/{print $5}')
while ["$status" != "stopped"] ; do
sleep 10
status=$(/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-describe-instances -O $1 -W $2 $instance | awk
'/INSTANCE/{print $5}')
done
sleep 5
/usr/local/ec2/ec2-api-tools-1.7.1.0/bin/ec2-delete-volume $vol -O $1 -W $2

echo 'AWS VM Import Completed.'

File: puppetrepo-awsexport/files/opt/gcso/awsexport/Fermi_AWS_Modifications.sh
#!/bin/bash
This is a script to add or modify several OS networking files required for the AWS image conversion

Remove glideinwms-vm-one (OpenNebula), if exists, and Install glideinwms-vm-ec2 (AWS)

yum -y remove glideinwms-vm-one
yum -y install glideinwms-vm-core
yum -y install glideinwms-vm-ec2

Install cloud-init for aws metadata user data and scripts

rpm -Uvh http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
yum -y install cloud-init
yum -y install cloud-utils
yum -y install http://repos.fedorapeople.org/repos/openstack/openstack-havana/epel-6/python-backports-1.0-
4.el6.x86_64.rpm
cd /
mv -f cloud.cfg /etc/cloud

Modify ifcfg-eth0
cd /etc/sysconfig/network-scripts
rm -f ifcfg-eth0
echo DEVICE=eth0 >> ifcfg-eth0
echo BOOTPROTO=dhcp >> ifcfg-eth0
echo ONBOOT=yes >> ifcfg-eth0
echo TYPE=Ethernet >> ifcfg-eth0

Modify network
cd /etc/sysconfig
rm -f network
echo NETWORKING=yes >> network

Remove fermi network resolv and hosts that AWS will not use
cd /etc
rm -f /etc/resolv.conf
rm -f /etc/hosts
rm -f /etc/hosts.allow
rm -f /etc/hosts.deny

Remove fermi specifics that AWS will not use
rm -f /etc/yp.conf
rm -f /etc/auto.master
rm -f /etc/auto.misc
rm -f /etc/rc.d/rc3.d/K99.credentials
rm -f /etc/rc.d/rc3.d/S09one-context
rm -f /etc/rc.d/rc3.d/K84one-context
rm -f /etc/init.d/one-context
rm -f /etc/init.d/.credentials*

Create grub.conf for AWS paravitual
cd /boot/grub
rm -f grub.conf
echo default=0 >> grub.conf
echo timeout=0 >> grub.conf
echo 'title Scientific Linux Fermi ('$3')' >> grub.conf
if ["$1" == "hvm"]; then

echo 'root (hd0,0)' >> grub.conf
echo 'kernel /boot/vmlinuz-'$3' ro root=/dev/xvda1 rd_NO_PLYMOUTH' >> grub.conf
else
echo 'root (hd0)' >> grub.conf
echo 'kernel /boot/vmlinuz-'$3' ro root=/dev/xvde1 rd_NO_PLYMOUTH' >> grub.conf
fi
echo 'initrd /boot/initramfs-'$3'.img' >> grub.conf

Create symbolic link for boot
cd /boot; ln -s . boot

Create fstab for AWS paravirtual
cd /etc
rm -f fstab

if ["$1" == "hvm"]; then
 echo '/dev/xvda1 / ext3 defaults 1 1' >> fstab
 if ["$4" != "none"] && ["$2" != "t2.micro"] && ["$2" != "t2.small"] && ["$2" != "t2.medium"]; then
 echo '/dev/xvdb '$4' xfs defaults 0 0' >> fstab
 fi
else
 echo '/dev/xvde1 / ext4 defaults 1 1' >> fstab
 if ["$4" != "none"] && ["$2" != "t2.micro"] && ["$2" != "t2.small"] && ["$2" != "t2.medium"]; then
 echo '/dev/xvdf '$4' xfs defaults 0 0' >> fstab
 fi
fi

echo 'tmpfs /dev/shm tmpfs defaults 0 0' >> fstab
echo 'devpts /dev/pts devpts gid=5,mode=620 0 0' >> fstab
echo 'sysfs /sys sysfs defaults 0 0' >> fstab
echo 'proc /proc proc defaults 0 0' >> fstab

Modify rc.local final init script to add additional ephemeral drive and mount scratch there
if ["$4" != "none"]; then
cd /etc/rc.d
echo ' ' >>rc.local
echo '# Create additional Scratch directory' >>rc.local
echo 'mkdir -p '$4'' >>rc.local
echo ' ' >>rc.local
echo '# Mount scratch as XFS' >>rc.local
 if ["$1" == "hvm"]; then
 echo 'mkfs.xfs -f /dev/xvdb' >>rc.local
 if ["$2" != "t2.micro"] && ["$2" != "t2.small"] && ["$2" != "t2.medium"]; then
 echo 'mount /dev/xvdb '$4'' >>rc.local
 fi
 else
 echo 'mkfs.xfs -f /dev/xvdf' >>rc.local

 if ["$2" != "t2.micro"] && ["$2" != "t2.small"] && ["$2" != "t2.medium"]; then
 echo 'mount /dev/xvdf '$4'' >>rc.local
 fi
 fi
fi

Modify sshd_config
cd /etc/ssh
rm -f sshd_config
echo 'SyslogFacility AUTHPRIV' >> sshd_config
echo 'RSAAuthentication no' >> sshd_config
echo 'PubkeyAuthentication yes' >> sshd_config
echo 'AuthorizedKeysFile .ssh/authorized_keys' >> sshd_config
echo 'PasswordAuthentication yes' >> sshd_config
echo 'KerberosAuthentication no' >> sshd_config
echo 'KerberosOrLocalPasswd no' >> sshd_config
echo 'KerberosTicketCleanup no' >> sshd_config
echo 'GSSAPIAuthentication no' >> sshd_config
echo 'GSSAPICleanupCredentials no' >> sshd_config
echo 'UsePAM no' >> sshd_config
echo 'AllowTcpForwarding yes' >> sshd_config
echo 'X11Forwarding yes' >> sshd_config
echo 'UseLogin no' >> sshd_config
echo 'UseDNS no' >> sshd_config

Create ec2-get-ssh authenication script for public keypair
cd /
mv ec2-get-ssh /etc/init.d
/bin/chmod +x /etc/init.d/ec2-get-ssh

Modify /sbin/chkconfig services
/sbin/chkconfig ec2-get-ssh on
/sbin/chkconfig rpcbind off
/sbin/chkconfig postfix off
/sbin/chkconfig autofs off
/sbin/chkconfig vmcontext off
Prevent 10 minute automatic vm shutdown for testing (**turn back on after testing**)
/sbin/chkconfig glideinwms-pilot off

Clear history
history -c

exit chroot
exit

File: puppetrepo-awsexport/files/opt/gcso/awsexport/Fermi_AWS_Resize.sh
#!/bin/bash
This is a script to resize the converted image (accepts param $1=vmimage name $2="hvm") from a QCOW2 256G image
down to a 12G primary partiton required for the AWS HVM image upload or a 3G primary partiton for a AWS PV image
upload

Remove previous raw image, if exists, and formats new raw image
cd /data
rm -f $1.raw

Use guestfish to delete 2nd and 3rd partitions, if present, clean up count errors and resize primary partiton
content (about 8.5 minutes)
 guestfish -a $1.qcow2tmp <<_EOF1_
 run
 part-del /dev/sda 2
 part-del /dev/sda 3
EOF1
sleep 2
 guestfish -a $1.qcow2tmp <<_EOF2_
 run
 e2fsck-f /dev/sda1
EOF2
sleep 2

if ["$2" == "hvm"]; then

 guestfish -a $1.qcow2tmp <<_EOF3_
 run
 resize2fs-size /dev/sda1 12G
EOF3
sleep 2
Resize boot partiton takes about 3.5 minutes
 qemu-img create -f raw $1.raw 12291M
 virt-resize --resize /dev/sda1=12G $1.qcow2tmp $1.raw

else

 guestfish -a $1.qcow2tmp <<_EOF4_
 run
 resize2fs-size /dev/sda1 3G
EOF4
sleep 2
Resize boot partiton takes about 3.5 minutes
 qemu-img create -f raw $1.raw 3075M
 virt-resize --resize /dev/sda1=3G $1.qcow2tmp $1.raw
fi

Status of converted raw file
qemu-img info $1.raw

File: puppetrepo-awsexport/files/opt/gcso/awsexport/cloud.cfg
#Bare-bone cloud.cfg, add parameters as needed for FermiCloud

user: root

#If this is not explicitly false, cloud-init will change things so that root
#login via ssh is disabled. Set it false to allow root login via ssh keypair.

disable_root: false

#add additional cloud-init output logging

output: {all: '| tee -a /var/log/cloud-init-output.log'}

#Since cloud-init runs at multiple stages of boot, this needs to be set so
#it can log in all of them to /var/log/cloud-init.

syslog_fix_perms: null

#This is the piece that makes userdata work. You need this to have userdata
#scripts be run by cloud-init.

datasource_list: [Ec2]
datasource:
 Ec2:
 metadata_urls: ['http://169.254.169.254']

#modules that run early in boot

cloud_init_modules:
 - bootcmd #for running commands during boot. Commands can be defined in cloud-config userdata.

#modules that run after boot

cloud_config_modules:
 - runcmd #like bootcmd, but runs after boot. Use this instead of bootcmd for after boot processing.

#modules that run at some point after config is finished

cloud_final_modules:
 - scripts-per-once #all of these run scripts at specific events. Like bootcmd, can be defined in cloud-config.

 - scripts-per-boot
 - scripts-per-instance
 - scripts-user
 - phone-home #if defined, can make a post request to a specified url when done booting
 - final-message #if defined, can write a specified message to the log
 - power-state-change #if defined, can trigger stuff based on power state changes

system_info:
 distro: rhel

vim:syntax=yaml

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/AWS Convert files Inventory.txt
Fermicloud AWS Convert documentation and script files:

1. AWS Convert files Inventory.txt -- This document inventory file

2. Fermi2AWS Readme 1st.txt -- Read this file 1st to get overview of conversion process

3. fermi2aws.pdf -- Diagram of script process flow

4. fermi_VM_Convert.txt -- Manual working notes to identify script process flow

5. keypair.pem -- AWS Private key pair user file (Retrieved from AWS EC2 Console under key pairs - when created
it will ask you to save, save it to this directory)

6. Convert.py -- Python script to run conversion (you can modify log output location otherwise will default to
this directory)

7. ec2-get-ssh -- bash script to setup ec2 ssh authentication (loads public key pair for user on server)

8. cloud.cfg -- Cloud Init package bare-bone config file

9. Fermi_AWS_Modifications.sh -- bash script to perform aws conversion modifications to fermi golden image

10. Fermi_AWS_Resize.sh -- bash script to perform resizing of 256G qcow2 image to 12G for HVM and 3G for PV
images

11. Fermi_AWS_CLI_Setup.sh -- bash script to load ec2 api tools, setup ec2 environment variables and expect
package

12. Fermi_AWS_Import.sh -- bash script to perform import of raw image and ec2 steps to create instances, ami,
snapshot and volumes used in conversion process

13. aws_image_convert_hvm.log -- example output log file of actual run for HVM

14. aws_image_convert_pv.log -- example output log file of actual run for PV

15. HVM Run.txt -- capture of terminal console during HVM script run

16. PV Run.txt -- capture of terminal console during PV script run

17. create_samplemime.txt -- example userdata (metadata) that creates a multipart mime txt file for cloud init

18. samplemime.txt -- example userdata (metadata) that executes on AWS vm boot up

19. Puppet Procedure to run Fermi2AWS Export.pdf -- Puppet procedures to run cron jobs

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/AWS2Fermi PreProduction/AWS2Fermi Manual Procedures.txt
Importing an Amazon Web Services (AWS) PV VM into FermiCloud

Suppose to have two running VMs on Amazon EC2, both of them in the same region (e.g. us-west-2c):
one of these (e.g. i-a966649d) is an Amazon Linux image, with has got all the EC2 tools (CLI and AMI) by default;
the other (e.g. i-f61f83c2) is the Red Hat instance that you want to import on FermiCloud.
The EC2 tools are assumed well configured. This means that you have set up the environment with the variables
AWS_ACCESS_KEY, AWS_SECRET_KEY and EC2_URL.

To begin you have to connect to the first one, using for example SSH. So, from your computer's terminal, run:

 $ ssh -i foo gcso.pem root@nn.nn.nn.nn

Then obtain root access using:

 $ sudo su

Now you can get a raw image of the second VM with the following instructions:

 # cd /tmp/
 # ec2-stop-instances i-f61f83c2
 # ec2-detach-volume vol-5f6fbe36
 # ec2-attach-volume vol-5f6fbe36 -i i-a966649d -d /dev/sda2

 # dd if=/dev/xvdg | cp --sparse=always /dev/stdin gcso_pv.img

 # chmod 644 gcso_pv.img
 # exit
 $ exit

Then, you will find your PC's terminal. So get the image with the command:

 $ rsync -S -z -v --progress -e "ssh -i gcso.pem" root@54.191.161.121:/tmp/gcso_pv.img .

After that you can begin the conversion procedure. So:

 $ su
 # dd if=/dev/zero of=newimage.img bs=1M seek=10240 count=0
 # losetup -fv newimage.img

Take now the path of the loop device you have created (e.g. /dev/loop1) and use it in the next instruction:

 cfdisk /dev/loop1

Go ahead and create a New Primary Bootable partition. Then Write the partition table and Quit. Then find the
partition beginning, ending, number of blocks, number of cylinders, and block size using:

 fdisk -l -u /dev/loop1

In our example we have:

 Disk /dev/loop1: 10.7 GB, 10737418240 bytes
 255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors
 Units = sectors of 1 * 512 = 512 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
 I/O size (minimum/optimal): 512 bytes / 512 bytes
 Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System
 /dev/loop1p1 * 63 20971519 10485728+ 83 Linux

Then create a new loop device (e.g. /dev/loop2), using the beginning of the image and the block size:

 # losetup -fv -o $((512*63)) newimage.img

After that create the filesystem on the image. Use the end, the beginning and the block size again:

 # mkfs.ext3 -b 4096 /dev/loop2 $(((20971519 - 63)*512/4096))

Now fill the image:
If you have boot problem with the VM, maybe you have to change your kernel with a KVM compatible one. To do that
substitute all your /boot/ folder with a SLF /boot/ folder.

 # mkdir /mnt/gcso
 # mount gcso_pv.img /mnt/gcso/ -o loop
 # mkdir /mnt/loop
 # mkdir /mnt/loop/2

 # mount /dev/loop2 /mnt/loop/2/
 # cp -a /mnt/gcso/* /mnt/loop/2/
 # vim /mnt/loop/2/boot/grub/menu.lst

At this point use this sample configuration file:

 default=0
 timeout=5
 hiddenmenu
 title Scientific Linux Fermi (2.6.32-431.23.3.el6.x86_64)
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.32-431.23.3.el6.x86_64 ro root=/dev/sda1 selinux=0 enforcing=0
 initrd /boot/initramfs-2.6.32-431.23.3.el6.x86_64.img

 default=0
 timeout=0
 title Scientific Linux Fermi (2.6.32-431.23.3.el6.x86_64)
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.32-431.23.3.el6.x86_64 ro root=UUID=17898259-6979-4bb3-9d73-26ae917e8ed9
rd_NO_LUKS rd_NO_LVM LANG=en_US.UTF-8 rd_NO_MD SYSFONT=latarcyrheb-sun16 crashkernel=auto KEYBOARDTYPE=pc
KEYTABLE=us rd_NO_DM rhgb quiet edd=off
 initrd /boot/initramfs-2.6.32-431.23.3.el6.x86_64.img

Then you have to edit another file:

 # vim /mnt/loop/2/etc/fstab

Use for example:

 /dev/sda1 / ext3 defaults 1 1
 tmpfs /dev/shm tmpfs defaults 0 0
 devpts /dev/pts devpts gid=5,mode=620 0 0
 sysfs /sys sysfs defaults 0 0
 proc /proc proc defaults 0 0

 UUID=17898259-6979-4bb3-9d73-26ae917e8ed9 / ext3 defaults 1 1
 tmpfs /dev/shm tmpfs defaults 0 0
 devpts /dev/pts devpts gid=5,mode=620 0 0
 sysfs /sys sysfs defaults 0 0
 proc /proc proc defaults 0 0

Now you have to configure the image to be executed on OpenNebula. Remove the Amazon context and install
OpenNebula context:

 # # echo 0 > /selinux/enforce (did not do)
 # cp /data/one-context_4.6.0.rpm /mnt/loop/2/tmp/
 # chroot /mnt/loop/2
 # mv /etc/rc.local /etc/rc.local.old

 # passwd root
 # rpm -e cloud-init
 # rpm -e rh-amazon-rhui-client
 # cd /tmp/
 # rpm -i one-context_4.6.0.rpm
 # After this command you may get this error: /var/tmp/rpm-tmp.UdnuNi: line 26: cd: /etc/rcunknown.d: No
such file or directory. To fix that simply copy /S99vmcontext in the right runlevel folder (e.g. /etc/rc3.d/).
 # exit
 # # echo 1 > /selinux/enforce (did not do)
 # umount /mnt/gcso/
 # umount /mnt/loop/2
 # losetup -d /dev/loop1
 # losetup -d /dev/loop2

Then install the boot loader on the image. Using again those parameters grabbed with fdisk (cylinders, heads,
sectors) you can state:

 # grub --device-map=/dev/null
 > device (hd0) /data/newimage.img
 > geometry (hd0) 1305 255 63
 > root (hd0,0)
 > setup (hd0)
 > quit

Make a qcow2 from the raw image:

 $ qemu-img convert newimage.img -O qcow2 gcso_sl6_pv.qcow2

>>>>>>>>>>>>> Perform AWS2Fermi export procedures (see that document aws2ferm_export.txt start at >>>>>>
guestmount ... <<<<<<<<<<<<)

** At this point a manual image setup in OpenNebula (see 'opennebtemplate.tx' for template setup) and launch
creates a Kernel Panic with the following error: **

Kernel Panic - not syncing: Attempted to kill init!
Pid: 1 comm: init Not tainted 2.6.32-431.23.3.el6.x86_64 #1
Call Trace:
[] ? panic+0xs7/0x16f
[] ? do_exit+0x862/0x870
[] ? fput+0x25/0x30
[] ? do_group_exit+0x58/0xd0
[] ? sys_exit_group+0x17/0x20
[] ? system_call_fastpath+0x16/0x1b

Googling shows there are issues with grub under rhel 6.4 (http://bugs.centos.org/view.php?id=6327)

Contract ends 8/26/14 not able to finish debugging this.

--

>>> Below procedures are for OpenNebula command line launch <<<<<<
Now the image is ready to be deployed in FermiCloud with OpenNebula 3.2. Let's use the EC2 interface:

 $ rsync -S -z -v --progress -e ssh gcso_sl6_pv.qcow2 fcl316.fnal.gov:~
 $ ssh fcl316.fnal.gov
 $ export ONE_LOCATION=/opt/one32
 $ export PATH=$PATH:/opt/one32/bin
 $ export ONE_AUTH=/cloud/login/user/.one/one_x509
 $ econe-upload --url https://fermicloudpp.fnal.gov:8444/ --access-key /tmp/x509up_u502 --secret-key
/tmp/x509up_u502 ~/gcso_sl6_pv.qcow2
The last command returns the AMI ID (e.g. ami-00000106). With this you can finally launch your instance:

 $ econe-run-instances --url https://fermicloudpp.fnal.gov:8444/ --access-key /tmp/x509up_u502 --secret-key
/tmp/x509up_u502 ami-00000106 --user-data abc -t m1.small.francesco

The template used is m1.small.francesco. To define it you need to edit /cloud/app/one/3.2/etc/econe.conf. It has
to look like:

 # Configuration for the image repository
 # IMAGE_DIR will store the Cloud images, check space!
 IMAGE_DIR=/var/lib/one/local/pub_scratch

 # OpenNebula sever contact information
 :one_xmlrpc: http://fermicloudpp.fnal.gov:2633/RPC2

 # Host and port where econe server will run
 :server: localhost
 :port: 4567

 # SSL proxy that serves the API (set if is being used)
 :ssl_server: https://fermicloudpp.fnal.gov:8444/

 # Authentication driver for incomming requests
 # ec2, default Acess key and Secret key scheme
 # x509, for x509 certificates based authentication
 #:auth: ec2
 :auth: x509

 # Authentication driver to communicate with OpenNebula core
 # cipher, for symmetric cipher encryption of tokens
 # x509, for x509 certificate encryption of tokens
 #:core_auth: cipher
 :core_auth: x509

 # VM types allowed and its template file (inside templates directory)

 :instance_types:
 :m1.small:
 :template: m1.small.erb
 :m1.small.francesco:
 :template: m1.small.francesco.erb

Then you have to edit the file /cloud/app/one/3.2/etc/ec2query_templates/m1.small.francesco.erb. For example you
can use:

 NAME = eco-vm
 CPU = 1
 VCPU = 1
 MEMORY = 1024
 OS = [ARCH = x86_64]

 DISK = [IMAGE_ID = <%= erb_vm_info[:img_id] %>]

 DISK = [
 type = swap,
 size = 5120]

 #NIC=[NETWORK_ID=<EC2-VNET-ID>]
 NIC=[NETWORK_ID=0,
 MODEL = virtio]

 #IMAGE_ID = <%= erb_vm_info[:ec2_img_id] %>
 #INSTANCE_TYPE = <%= erb_vm_info[:instance_type] %>

 FEATURES=[acpi="yes"]

 GRAPHICS = [
 type = "vnc",
 listen = "127.0.0.1",
 port = "-1",
 autoport = "yes",
 keymap="en-us"]

 #<% if erb_vm_info[:user_data] %>
 #CONTEXT = [
 # EC2_USER_DATA="<%= erb_vm_info[:user_data] %>",
 # TARGET="hdc"
 #]
 #<% end %>

 <% if erb_vm_info[:user_data] %>
 CONTEXT=[

 CTX_USER="$USER[TEMPLATE]",
 ETH0_DNS="$NETWORK[DNS, NETWORK_ID=0]",
 ETH0_GATEWAY="$NETWORK[GATEWAY, NETWORK_ID=0]",
 ETH0_IP="$NIC[IP, NETWORK_ID=0]",
 ETH0_MASK="$NETWORK[NETWORK_MASK, NETWORK_ID=0]",
 FILES=/opt/one32/share/init.sh,
 IB=false,
 ROOT_PUBKEY=id_dsa.pub,
 SSH_PUBLIC_KEY=id_dsa.pub,
 TARGET=hdc,
 USERNAME=opennebula,
 EC2_USER_DATA="<%= erb_vm_info[:user_data] %>"
]
 <% else %>
 CONTEXT=[
 CTX_USER="$USER[TEMPLATE]",
 ETH0_DNS="$NETWORK[DNS, NETWORK_ID=0]",
 ETH0_GATEWAY="$NETWORK[GATEWAY, NETWORK_ID=0]",
 ETH0_IP="$NIC[IP, NETWORK_ID=0]",
 ETH0_MASK="$NETWORK[NETWORK_MASK, NETWORK_ID=0]",
 FILES=/opt/one32/share/init.sh,
 IB=false,
 ROOT_PUBKEY=id_dsa.pub,
 SSH_PUBLIC_KEY=id_dsa.pub,
 TARGET=hdc,
 USERNAME=opennebula
]
 <% end %>

 REQUIREMENTS = "HYPERVISOR=\"kvm\""
 RANK = "FREEMEMORY"

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/AWS2Fermi PreProduction/AWS2Fermi_Export.txt
Export HVM image from AWS back to Fermi

the following original Fermicloud files should be copied from a current working Opennebula vm and saved to a
temp work area (/data/readd) for resuse
[root@fermicloud103 readd]# ls
.credentials auto.master auto.misc fstab grub.conf hosts hosts.allow hosts.deny network one-context.prod
resolv.conf sshd_config vmcontext.pp vmcontext.prod yp.conf

AWS ec2 api and cli tools need to be installed on worker vm

ec2-create-instance-export-task i-eb5218e0 -e Citrix -f VHD -b fcloudexport

ec2-describe-export-tasks

wait until status completed then download VHD image

cd /data
aws s3 sync s3://fcloudexport .

Delete temp S3 bucket and VHD image

aws s3 rb s3://fcloudexport --force

convert downloaded vhd to qcow2

qemu-img convert export-i-fgpsizu8.vhd -O qcow2 gcso_sl6_hvm.qcow2

Access the image to add fermicloud dependencies

guestmount -a gcso_sl6_hvm.qcow2 -m /dev/sda1 /mnt

>>>>>>>>>>>>>> Start up from here for PV image convert <<<<<<<<<<<<<<<<<<<

guestmount -a gcso_sl6_pv.qcow2 -m /dev/sda1 /mnt

mkdir /mnt/data
mkdir /mnt/data/readd
cp /data/readd/* /mnt/data/readd
cp /data/readd/.credentials /mnt/data/readd

chroot to mnt image
chroot /mnt

reverse aws modifications made back to fermicloud dependencies ...

if home.orig exists
mv home home.aws
mv home.orig home

For Glidein Images do
yum -y remove glideinwms-vm-ec2
yum -y install glideinwms-vm-one

Modify network
cd /etc/sysconfig
cp -f /data/readd/network .

Add back fermi network resolv and hosts
cd /etc
cp -f /data/readd/resolv.conf .
cp -f /data/readd/hosts .
cp -f /data/readd/hosts.allow .
cp -f /data/readd/hosts.deny .

Add back fermi specifics
cp -f /data/readd/yp.conf .
cp -f /data/readd/auto.master .
cp -f /data/readd//auto.misc .

cd /etc/init.d
cp -f /data/readd/.credentials .
for production only
cp -f /data/readd/one-context.prod one-context

Recreate symbolic links
ln -s /etc/init.d/.credentials /etc/rc.d/rc3.d/K99.credentials
for production only
ln -s /etc/init.d/one-context /etc/rc.d/rc3.d/S09one-context
ln -s /etc/init.d/one-context /etc/rc.d/rc3.d/K84one-context

copy vmcontext from pp for pp testing and prod for prod testing
cd /etc/init.d

for preproduction only
cp -f /data/readd/vmcontext.pp vmcontext

for production only
cp -f /data/readd/vmcontext.prod vmcontext

Delete ifcfg-eth0
cd /etc/sysconfig/network-scripts
rm -f ifcfg-eth0

Modify sshd_config
cd /etc/ssh
cp -f /data/readd/sshd_config .

modify grub.conf using uuid

cd /boot/grub
cp -f /data/readd/grub.conf .

default=0
timeout=0

title Scientific Linux Fermi (2.6.32-431.23.3.el6.x86_64)
root (hd0,0)
kernel /boot/vmlinuz-2.6.32-431.23.3.el6.x86_64 ro root=UUID=17898259-6979-4bb3-9d73-26ae917e8ed9 rd_NO_LUKS
rd_NO_LVM LANG=en_US.UTF-8 rd_NO_MD SYSFONT=latarcyrheb-sun16 crashkernel=auto KEYBOARDTYPE=pc KEYTABLE=us
rd_NO_DM rhgb quiet edd=off
initrd /boot/initramfs-2.6.32-431.23.3.el6.x86_64.img

modify fstab using uuid

cd /etc
cp -f /data/readd/fstab .

UUID=17898259-6979-4bb3-9d73-26ae917e8ed9 / ext3 defaults 1 1
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0

Modify /sbin/chkconfig services
/sbin/chkconfig ec2-get-ssh off
/sbin/chkconfig rpcbind on
/sbin/chkconfig postfix on
/sbin/chkconfig autofs off
/sbin/chkconfig vmcontext on
Prevent 10 minute automatic vm shutdown for testing (**turn back on after testing**)
/sbin/chkconfig glideinwms-pilot off

Clear history
history -c

exit chroot
exit

Unmount image
cd /data
fusermount -u /mnt

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/AWS2Fermi PreProduction/opennebtemplate.txt
Update image properties

BUS=virtio
DEV_PREFIX=hd
DRIVER=qcow2

Update template properties (change IMAGE_ID= and TEMPLATE_ID= when creating new images under OpenNebula)

CONTEXT=[
 CTX_USER="$USER[TEMPLATE]",
 ETH0_DNS="$NETWORK[DNS, NETWORK=\"DynamicIP\"]",
 ETH0_GATEWAY="$NETWORK[GATEWAY, NETWORK=\"DynamicIP\"]",
 ETH0_IP="$NIC[IP, NETWORK=\"DynamicIP\"]",
 ETH0_MASK="$NETWORK[NETWORK_MASK, NETWORK=\"DynamicIP\"]",
 ETH0_NETWORK="$NETWORK[NETWORK_ADDRESS, NETWORK=\"DynamicIP\"]",
 FILES="/cloud/images/OpenNebula/scripts/one3.2/contextualization/init.sh
/cloud/images/OpenNebula/scripts/one3.2/contextualization/credentials.sh
/cloud/images/OpenNebula/scripts/one3.2/contextualization/kerberos.sh",
 GATEWAY="$NETWORK[GATEWAY, NETWORK=\"DynamicIP\"]",
 INIT_SCRIPTS="init.sh credentials.sh kerberos.sh",
 IP_PUBLIC="$NIC[IP, NETWORK=\"DynamicIP\"]",
 NETMASK="$NETWORK[NETWORK_MASK, NETWORK=\"DynamicIP\"]",
 NETWORK=YES,
 ROOT_PUBKEY=id_dsa.pub,
 TARGET=hdc,
 USERNAME=opennebula,
 USER_PUBKEY=id_dsa.pub]
CPU=0.5
DISK=[
 IMAGE_ID=223,
 IMAGE_UNAME=oneadmin,
 TARGET=vda]
DISK=[
 SIZE=2048,
 TARGET=vdb,
 TYPE=swap]
FEATURES=[
 ACPI=yes]
GRAPHICS=[
 AUTOPORT=yes,
 KEYMAP=en-us,
 LISTEN=127.0.0.1,
 PORT=-1,
 TYPE=vnc]
MEMORY=2048
NAME="aws hvm export"
NIC=[
 MODEL=virtio,
 NETWORK=DynamicIP,
 NETWORK_UNAME=oneadmin]
NPTYPE=NPERNLM
OS=[
 ARCH=x86_64,

 BOOT=hd]
RANK=FREEMEMORY
RAW=[
 DATA="
 <devices>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target type='serial' port='0'/>
 </console>
 </devices>",
 TYPE=kvm]
REQUIREMENTS="HYPERVISOR=\"kvm\" & HOSTNAME=\"fcl010.fnal.gov\""
TEMPLATE_ID=139
VCPU=1

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/Fermi2AWS Readme 1st.txt
Date: August 14, 2014

Steve/Gerard/Nick,

I have successfully implemented a conversion of a Fermicloud Golden image to a launched AWS Para virtual image
using a python script with several subprocess bash scripts and puppet modules. The entire process takes about 60
to 84 minutes for a PV and HVM conversion. The actual processing time is less than that, but asynchronous
conditional sleeps on the amazon side were implemented to make sure those ec2 steps completed before going on to
the next step.

If you would like to test this script, you can run the puppet apply procedures. (See 'Puppet Procedure to run
Fermi2AWS Export.pdf'). Change the parameters as described in that document, prior to running the script.

**Note: the following 4 steps are a pre-requisite prior to running this puppet module:

1. kinit username

2. Obtain a fermicloud worker vm instance from the OpenNebula Fermicloud. This is used as a interim work area for
the conversions. Identify the 3 digit assigned number to the worker vm as in fermiicloud(nnn).fnal.gov.

3. This script also requires 5 parameters and files to be obtained ahead of time from the AWS Console. They are:
 - <aws owner security pem name> (keypair_name.pem) (Download this file from the AWS console to your terminal
root directory. *Important* You must run 'chmod 400 keypair_name.pem' to allow a ssh session to connect to a aws
instance.)
 - <aws instance id of the HVM worker image> (use 'hvm' here to create AWS HVM worker before creating AWS PV's,
Otherwise view ec2 hvm under aws ec2 console and get i-xxxxxxx for hvm worker)

 - <aws owner keypair name> (create in aws console ec2-key pairs - create key pair)
 - <aws key> (create in aws console IAM Users - Security Credentials tab and download)
 - <aws secret key> (create in aws console IAM Users - Security Credentials tab and download)
 (all of these are obtained from the AWS console under EC2 instances and the IAM Users-Security Credentials tab
prior to running this script).

4. Run the puppet procedure with 15 positional parameters and adjust your crontab start time (as documented in
'Puppet Procedure to run Fermi2AWS Export.pdf').

A log file (aws_image_convert.log) is created for each run in the /opt/gcso/awsexport directory for review. The
Python module can be modified to point that log file to another writeable directory that GCSO's monitoring system
runs from, if you wish to have it monitored there.

To support the use of userdata (metadata), to install 3rd party packages, you will need to create a multipart
mime txt file to be used in advanced userdata when launching a AWS instance from a AMI. (see
create_samplemime.txt and samplemime.txt files)

Kirk

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/HVM Run.txt
(Run Fermi's Kerberos Initialize before running this script: kinit userid).
 This script takes twelve (12) arguments: <script dir location>, <fermicloud
 worker vm number>, <fermicloud vm name>, <fermicloud vm owner>, <aws image
 name>, <aws image owner>, <aws instance type>, <aws key>, <aws secret key>,
 <aws pem name>, <aws worker instance id>, and <aws owner keypair name>. A
 pre-requisite is to have a Fermicloud worker vm setup ahead of time
 (root@fermicloudnnn.fnal.gov) with a /data directory created to store files.
 The script will accept a VM image that is pre-loaded on your
 username@fermicloud.fnal.gov root directory, (it must have a qcow2 extension),
 and will make a worker copy of the image ready for AWS conversion, then
 convert the image (fermi cleanse and resize) and import to AWS by the
 specified <aws image name>. The script requires 5 parameters to be obtained
 ahead of time from the AWS Console. They are: <aws owner security pem name>
 <aws instance id of the HVM worker image, use 'hvm' here to create HVM worker
 before creating PV's.> <aws owner keypair name> <aws key> and <aws secret key>
 which are obtained from the AWS console under EC2 instances and the IAM
 security tab prior to running this script. For example, to convert a
 Fermicloud VM named gcso_slf6 with owner oneadmin, and to create a AWS image
 named SLF6Vanilla, with owner oneadmin, and a instance type of m3.medium and
 with a worker vm of fermicloud103.fnal.gov you would run the following script:
 **
 ./Convert.py /Users/terminalroot 103 gcso_slf6 oneadmin SLF6Vanilla
 oneadmin m3.medium awskey awssecretkey awsowner.pem i-hvminstanceid
 aws_owner_keypair_name

 **
 ...Available.AWS.Instance.Types.listed.below...
 Type......vCPU..ECU..Memory.(GiB)..Instance Storage (GB)..Cost per hour
 General.Purpose.-.Current.Generation
 t2.micro....1....Variable....1....EBSOnly......$0.013 per Hour
 t2.small....1....Variable....2....EBSOnly......$0.026 per Hour
 t2.medium...2....Variable....4....EBSOnly......$0.052 per Hour
 m3.medium...1.......3......3.75...1.x.4.SSD....$0.070 per Hour
 m3.large....2......6.5.....7.5....1.x.32.SSD...$0.140 per Hour
 m3.xlarge...4......13.......15....2.x.40.SSD...$0.280 per Hour
 m3.2xlarge..8......26.......30....2.x.80.SSD...$0.560 per Hour
 Compute.Optimized.-.Current.Generation
 c3.large....2.......7......3.75...2.x.16.SSD...$0.105 per Hour
 c3.xlarge...4......14......7.5....2.x.40.SSD...$0.210 per Hour
 c3.2xlarge..8......28.......15....2.x.80.SSD...$0.420 per Hour
 c3.4xlarge..16.....55.......30....2.x.160.SSD..$0.840 per Hour
 c3.8xlarge..32....108.......60....2.x.320.SSD..$1.680 per Hour
 GPU.Instances.-.Current.Generation
 g2.2xlarge..8......26.......15........60.SSD...$0.650 per Hour
 Memory.Optimized.-.Current.Generation
 r3.large....2......6.5......15....1.x.32.SSD...$0.175 per Hour
 r3.xlarge...4.....13.......30.5...1.x.80.SSD...$0.350 per Hour
 r3.2xlarge..8.....26........61....1.x.160.SSD..$0.700 per Hour
 r3.4xlarge..16....52.......122....1.x.320.SSD..$1.400 per Hour
 r3.8xlarge..32....104......244....2.x.320.SSD..$2.800 per Hour
 Storage.Optimized.-.Current.Generation
 i2.xlarge...4.....14.......30.5...1.x.800.SSD..$0.853 per Hour
 i2.2xlarge..8.....27.......61.....2.x.800.SSD..$1.705 per Hour
 i2.4xlarge..16....53.......122....4.x.800.SSD..$3.410 per Hour
 i2.8xlarge..32....104......244....8.x.800.SSD..$6.820 per Hour
 hs1.8xlarge.16....35.......117...24.x.2048.....$4.600 per Hour

Arguments supplied:
('location of all scripts->', '/Users/kshallcross')
('fermicloud work vm number->', '103')
('fermicloud vm name->', 'gcso_sl6')
('fermicloud vm owner->', 'kirkshal')
('aws image name->', 'GCSO_SL6_HVM')
('aws image owner->', 'kirkshal')
('aws instance type->', 'm3.medium')
('aws key->', 'xxxxx')
('aws secret key->', 'xxxxxx')
('aws owner pem name->', 'khs-fermi.pem')
('aws owner keypair name->', 'khs-fermi')
('aws worker instance id from aws console->', 'hvm')
Starting AWS VM conversion. This job can take up to 52 minutes for PV and 77 for HVM...
Copying the Golden Fermicloud VM image takes under 1 minute...
Copying took 0.908 minutes.

Resizing the worker Fermicloud VM image takes up to 20 minutes for PV and 10 for HVM...
Resizing took 9.787 minutes.
Converting the worker Fermicloud VM image takes over 18 minutes...
Converting took 19.033 minutes.
Importing the raw image to AWS takes up to 13 minutes for PV and 48 for HVM...
Importing took 44.233 minutes.
Completed AWS VM conversion.
Job took 73.961 minutes. Thank you.

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/PV Run.txt
(Run Fermi's Kerberos Initialize before running this script: kinit userid).
 This script takes twelve (12) arguments: <script dir location>, <fermicloud
 worker vm number>, <fermicloud vm name>, <fermicloud vm owner>, <aws image
 name>, <aws image owner>, <aws instance type>, <aws key>, <aws secret key>,
 <aws pem name>, <aws worker instance id>, and <aws owner keypair name>. A
 pre-requisite is to have a Fermicloud worker vm setup ahead of time
 (root@fermicloudnnn.fnal.gov) with a /data directory created to store files.
 The script will accept a VM image that is pre-loaded on your
 username@fermicloud.fnal.gov root directory, (it must have a qcow2 extension),
 and will make a worker copy of the image ready for AWS conversion, then
 convert the image (fermi cleanse and resize) and import to AWS by the
 specified <aws image name>. The script requires 5 parameters to be obtained
 ahead of time from the AWS Console. They are: <aws owner security pem name>
 <aws instance id of the HVM worker image, use 'hvm' here to create HVM worker
 before creating PV's.> <aws owner keypair name> <aws key> and <aws secret key>
 which are obtained from the AWS console under EC2 instances and the IAM
 security tab prior to running this script. For example, to convert a
 Fermicloud VM named gcso_slf6 with owner oneadmin, and to create a AWS image
 named SLF6Vanilla, with owner oneadmin, and a instance type of m3.medium and
 with a worker vm of fermicloud103.fnal.gov you would run the following script:
 **
 ./Convert.py /Users/terminalroot 103 gcso_slf6 oneadmin SLF6Vanilla
 oneadmin m3.medium awskey awssecretkey awsowner.pem i-hvminstanceid
 aws_owner_keypair_name
 **
 ...Available.AWS.Instance.Types.listed.below...
 Type......vCPU..ECU..Memory.(GiB)..Instance Storage (GB)..Cost per hour
 General.Purpose.-.Current.Generation
 t2.micro....1....Variable....1....EBSOnly......$0.013 per Hour
 t2.small....1....Variable....2....EBSOnly......$0.026 per Hour
 t2.medium...2....Variable....4....EBSOnly......$0.052 per Hour
 m3.medium...1.......3......3.75...1.x.4.SSD....$0.070 per Hour
 m3.large....2......6.5.....7.5....1.x.32.SSD...$0.140 per Hour
 m3.xlarge...4......13.......15....2.x.40.SSD...$0.280 per Hour

 m3.2xlarge..8......26.......30....2.x.80.SSD...$0.560 per Hour
 Compute.Optimized.-.Current.Generation
 c3.large....2.......7......3.75...2.x.16.SSD...$0.105 per Hour
 c3.xlarge...4......14......7.5....2.x.40.SSD...$0.210 per Hour
 c3.2xlarge..8......28.......15....2.x.80.SSD...$0.420 per Hour
 c3.4xlarge..16.....55.......30....2.x.160.SSD..$0.840 per Hour
 c3.8xlarge..32....108.......60....2.x.320.SSD..$1.680 per Hour
 GPU.Instances.-.Current.Generation
 g2.2xlarge..8......26.......15........60.SSD...$0.650 per Hour
 Memory.Optimized.-.Current.Generation
 r3.large....2......6.5......15....1.x.32.SSD...$0.175 per Hour
 r3.xlarge...4.....13.......30.5...1.x.80.SSD...$0.350 per Hour
 r3.2xlarge..8.....26........61....1.x.160.SSD..$0.700 per Hour
 r3.4xlarge..16....52.......122....1.x.320.SSD..$1.400 per Hour
 r3.8xlarge..32....104......244....2.x.320.SSD..$2.800 per Hour
 Storage.Optimized.-.Current.Generation
 i2.xlarge...4.....14.......30.5...1.x.800.SSD..$0.853 per Hour
 i2.2xlarge..8.....27.......61.....2.x.800.SSD..$1.705 per Hour
 i2.4xlarge..16....53.......122....4.x.800.SSD..$3.410 per Hour
 i2.8xlarge..32....104......244....8.x.800.SSD..$6.820 per Hour
 hs1.8xlarge.16....35.......117...24.x.2048.....$4.600 per Hour

Arguments supplied:
('location of all scripts->', '/Users/kshallcross')
('fermicloud work vm number->', '103')
('fermicloud vm name->', 'gcso_sl6')
('fermicloud vm owner->', 'kirkshal')
('aws image name->', 'GCSO_SL6_PV')
('aws image owner->', 'kirkshal')
('aws instance type->', 'm3.medium')
('aws key->', 'xxx')
('aws secret key->', 'xxxxx')
('aws owner pem name->', 'khs-fermi.pem')
('aws owner keypair name->', 'khs-fermi')
('aws worker instance id from aws console->', 'i-94fe889f')
Starting AWS VM conversion. This job can take up to 53 minutes for PV and 75 for HVM...
Copying the Golden Fermicloud VM image takes under 1 minute...
Copying took 0.906 minutes.
Resizing the worker Fermicloud VM image takes up to 20 minutes for PV and 10 for HVM...
Resizing took 19.422 minutes.
Converting the worker Fermicloud VM image takes over 19 minutes...
Converting took 20.174 minutes.
Importing the raw image to AWS takes up to 13 minutes for PV and 45 for HVM...
Importing took 12.136 minutes.
Completed AWS VM conversion.
Job took 52.638 minutes. Thank you.

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/aws_image_convert_hvm.log
Aug 02 14:52:36 INFO Begin script run
Aug 02 14:52:36 INFO Start: Copying the selected Fermicloud VM image. Function copy_to_image_location.
Aug 02 14:53:31 INFO Stop: Completed Copying the selected Fermicloud VM image. Function
copy_to_image_location.
Aug 02 14:53:31 INFO Start: Resizing the worker Fermicloud VM image. Function resize_image.
stdin:2: libguestfs: error: e2fsck_f: /dev/sda1: 94023/786432 files (0.3% non-contiguous), 550839/3145728
blocks
Formatting 'gcso_sl6.raw', fmt=raw size=12888047616
Examining gcso_sl6.qcow2tmp ...

Summary of changes:

/dev/sda1: This partition will be left alone.

There is a surplus of 864.0K. The surplus space is not large enough
for an extra partition to be created and so it will just be ignored.

Setting up initial partition table on gcso_sl6.raw ...
Copying /dev/sda1 ...

Resize operation completed with no errors. Before deleting the old
disk, carefully check that the resized disk boots and works correctly.
image: gcso_sl6.raw
file format: raw
virtual size: 12G (12888047616 bytes)
disk size: 12G
Aug 02 15:03:18 INFO Stop: Completed Resizing the worker Fermicloud VM image. Function resize_image.
Aug 02 15:03:18 INFO Start: Converting the worker Fermicloud VM image. Function convert_image.
warning: /var/tmp/rpm-tmp.UDfdjD: Header V3 RSA/SHA256 Signature, key ID 0608b895: NOKEY
Retrieving http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
Preparing... ##
epel-release ##
Loaded plugins: security
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package cloud-init.noarch 0:0.7.4-2.el6 will be installed
--> Processing Dependency: python-boto >= 2.6.0 for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-requests for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-prettytable for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-jsonpatch for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-configobj for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-cheetah for package: cloud-init-0.7.4-2.el6.noarch

--> Processing Dependency: python-argparse for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: policycoreutils-python for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: libselinux-python for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: PyYAML for package: cloud-init-0.7.4-2.el6.noarch
--> Running transaction check
---> Package PyYAML.x86_64 0:3.10-3.el6 will be installed
--> Processing Dependency: libyaml-0.so.2()(64bit) for package: PyYAML-3.10-3.el6.x86_64
---> Package libselinux-python.x86_64 0:2.0.94-5.3.el6 will be installed
---> Package policycoreutils-python.x86_64 0:2.0.83-19.30.el6 will be installed
--> Processing Dependency: libsemanage-python >= 2.0.43-4 for package: policycoreutils-python-2.0.83-
19.30.el6.x86_64
--> Processing Dependency: audit-libs-python >= 1.4.2-1 for package: policycoreutils-python-2.0.83-
19.30.el6.x86_64
--> Processing Dependency: setools-libs-python for package: policycoreutils-python-2.0.83-19.30.el6.x86_64
--> Processing Dependency: libcgroup for package: policycoreutils-python-2.0.83-19.30.el6.x86_64
---> Package python-argparse.noarch 0:1.2.1-2.el6 will be installed
---> Package python-boto.noarch 0:2.27.0-1.el6 will be installed
---> Package python-cheetah.x86_64 0:2.4.1-1.el6 will be installed
--> Processing Dependency: python-pygments for package: python-cheetah-2.4.1-1.el6.x86_64
--> Processing Dependency: python-markdown for package: python-cheetah-2.4.1-1.el6.x86_64
---> Package python-configobj.noarch 0:4.6.0-3.el6 will be installed
---> Package python-jsonpatch.noarch 0:1.2-2.el6 will be installed
--> Processing Dependency: python-jsonpointer for package: python-jsonpatch-1.2-2.el6.noarch
---> Package python-prettytable.noarch 0:0.7.2-1.el6 will be installed
---> Package python-requests.noarch 0:1.1.0-4.el6 will be installed
--> Processing Dependency: python-urllib3 for package: python-requests-1.1.0-4.el6.noarch
--> Processing Dependency: python-ordereddict for package: python-requests-1.1.0-4.el6.noarch
--> Processing Dependency: python-chardet for package: python-requests-1.1.0-4.el6.noarch
--> Running transaction check
---> Package audit-libs-python.x86_64 0:2.2-2.el6 will be installed
---> Package libcgroup.x86_64 0:0.37-7.el6 will be installed
---> Package libsemanage-python.x86_64 0:2.0.43-4.2.el6 will be installed
---> Package libyaml.x86_64 0:0.1.6-1.el6 will be installed
---> Package python-chardet.noarch 0:2.0.1-1.el6 will be installed
---> Package python-jsonpointer.noarch 0:1.0-3.el6 will be installed
---> Package python-markdown.noarch 0:2.0.1-3.1.el6 will be installed
---> Package python-ordereddict.noarch 0:1.1-2.el6 will be installed
---> Package python-pygments.noarch 0:1.1.1-1.el6 will be installed
--> Processing Dependency: python-setuptools for package: python-pygments-1.1.1-1.el6.noarch
---> Package python-urllib3.noarch 0:1.5-7.el6 will be installed
--> Processing Dependency: python-six for package: python-urllib3-1.5-7.el6.noarch
--> Processing Dependency: python-backports-ssl_match_hostname for package: python-urllib3-1.5-7.el6.noarch
---> Package setools-libs-python.x86_64 0:3.3.7-4.el6 will be installed
--> Processing Dependency: setools-libs = 3.3.7-4.el6 for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1(VERS_1.3)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libpoldiff.so.1(VERS_1.3)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libapol.so.4(VERS_4.1)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1(VERS_1.2)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64

--> Processing Dependency: libqpol.so.1(VERS_1.4)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libseaudit.so.4(VERS_4.2)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libpoldiff.so.1(VERS_1.2)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libsefs.so.4(VERS_4.0)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libapol.so.4(VERS_4.0)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libseaudit.so.4(VERS_4.1)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libseaudit.so.4()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libapol.so.4()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libpoldiff.so.1()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libsefs.so.4()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Running transaction check
---> Package python-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.el6 will be installed
--> Processing Dependency: python-backports for package: python-backports-ssl_match_hostname-3.4.0.2-1.el6.noarch
---> Package python-setuptools.noarch 0:0.6.10-3.el6 will be installed
---> Package python-six.noarch 0:1.6.1-1.el6 will be installed
---> Package setools-libs.x86_64 0:3.3.7-4.el6 will be installed
--> Running transaction check
---> Package python-backports.x86_64 0:1.0-3.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository
 Size
==
Installing:
 cloud-init noarch 0.7.4-2.el6 epel 487 k
Installing for dependencies:
 PyYAML x86_64 3.10-3.el6 epel 157 k
 audit-libs-python x86_64 2.2-2.el6 slf 58 k
 libcgroup x86_64 0.37-7.el6 slf 110 k
 libselinux-python x86_64 2.0.94-5.3.el6 slf 201 k
 libsemanage-python x86_64 2.0.43-4.2.el6 slf 80 k
 libyaml x86_64 0.1.6-1.el6 epel 52 k
 policycoreutils-python x86_64 2.0.83-19.30.el6 slf 341 k
 python-argparse noarch 1.2.1-2.el6 epel 48 k
 python-backports x86_64 1.0-3.el6 epel 5.3 k
 python-backports-ssl_match_hostname noarch 3.4.0.2-1.el6 epel 12 k
 python-boto noarch 2.27.0-1.el6 epel 1.6 M
 python-chardet noarch 2.0.1-1.el6 epel 225 k
 python-cheetah x86_64 2.4.1-1.el6 slf 364 k
 python-configobj noarch 4.6.0-3.el6 slf 181 k
 python-jsonpatch noarch 1.2-2.el6 epel 14 k
 python-jsonpointer noarch 1.0-3.el6 epel 9.2 k
 python-markdown noarch 2.0.1-3.1.el6 slf 117 k
 python-ordereddict noarch 1.1-2.el6 epel 7.6 k

 python-prettytable noarch 0.7.2-1.el6 epel 37 k
 python-pygments noarch 1.1.1-1.el6 slf 561 k
 python-requests noarch 1.1.0-4.el6 epel 71 k
 python-setuptools noarch 0.6.10-3.el6 slf 335 k
 python-six noarch 1.6.1-1.el6 epel 25 k
 python-urllib3 noarch 1.5-7.el6 epel 41 k
 setools-libs x86_64 3.3.7-4.el6 slf 399 k
 setools-libs-python x86_64 3.3.7-4.el6 slf 221 k

Transaction Summary
==
Install 27 Package(s)

Total download size: 5.6 M
Installed size: 25 M
Downloading Packages:
--
Total 562 kB/s | 5.6 MB 00:10
Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-6
warning: rpmts_HdrFromFdno: Header V3 RSA/SHA256 Signature, key ID 0608b895: NOKEY
Importing GPG key 0x0608B895:
 Userid : EPEL (6) <epel@fedoraproject.org>
 Package: slf-release-6.4-1.x86_64 (@anaconda-ScientificLinuxFermi-201304091346.x86_64/6)
 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-6
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Warning: RPMDB altered outside of yum.

 Installing : python-ordereddict-1.1-2.el6.noarch 1/27

 Installing : libselinux-python-2.0.94-5.3.el6.x86_64 2/27

 Installing : python-argparse-1.2.1-2.el6.noarch 3/27

 Installing : libsemanage-python-2.0.43-4.2.el6.x86_64 4/27

 Installing : python-boto-2.27.0-1.el6.noarch 5/27

 Installing : python-six-1.6.1-1.el6.noarch 6/27

 Installing : python-configobj-4.6.0-3.el6.noarch 7/27

 Installing : python-setuptools-0.6.10-3.el6.noarch 8/27

 Installing : python-pygments-1.1.1-1.el6.noarch 9/27

 Installing : python-markdown-2.0.1-3.1.el6.noarch 10/27

 Installing : python-cheetah-2.4.1-1.el6.x86_64 11/27

 Installing : python-chardet-2.0.1-1.el6.noarch 12/27

 Installing : python-prettytable-0.7.2-1.el6.noarch 13/27

 Installing : libcgroup-0.37-7.el6.x86_64 14/27

 Installing : setools-libs-3.3.7-4.el6.x86_64 15/27

 Installing : setools-libs-python-3.3.7-4.el6.x86_64 16/27

 Installing : libyaml-0.1.6-1.el6.x86_64 17/27

 Installing : PyYAML-3.10-3.el6.x86_64 18/27

 Installing : audit-libs-python-2.2-2.el6.x86_64 19/27

 Installing : policycoreutils-python-2.0.83-19.30.el6.x86_64 20/27

 Installing : python-backports-1.0-3.el6.x86_64 21/27

 Installing : python-backports-ssl_match_hostname-3.4.0.2-1.el6.noarch 22/27

 Installing : python-urllib3-1.5-7.el6.noarch 23/27

 Installing : python-requests-1.1.0-4.el6.noarch 24/27

 Installing : python-jsonpointer-1.0-3.el6.noarch 25/27

 Installing : python-jsonpatch-1.2-2.el6.noarch 26/27

 Installing : cloud-init-0.7.4-2.el6.noarch 27/27

 Verifying : python-jsonpointer-1.0-3.el6.noarch 1/27

 Verifying : python-backports-1.0-3.el6.x86_64 2/27

 Verifying : libselinux-python-2.0.94-5.3.el6.x86_64 3/27

 Verifying : audit-libs-python-2.2-2.el6.x86_64 4/27

 Verifying : setools-libs-python-3.3.7-4.el6.x86_64 5/27

 Verifying : libyaml-0.1.6-1.el6.x86_64 6/27

 Verifying : setools-libs-3.3.7-4.el6.x86_64 7/27

 Verifying : libcgroup-0.37-7.el6.x86_64 8/27

 Verifying : python-jsonpatch-1.2-2.el6.noarch 9/27

 Verifying : python-pygments-1.1.1-1.el6.noarch 10/27

 Verifying : python-prettytable-0.7.2-1.el6.noarch 11/27

 Verifying : python-backports-ssl_match_hostname-3.4.0.2-1.el6.noarch 12/27

 Verifying : python-urllib3-1.5-7.el6.noarch 13/27

 Verifying : python-chardet-2.0.1-1.el6.noarch 14/27

 Verifying : python-requests-1.1.0-4.el6.noarch 15/27

 Verifying : python-cheetah-2.4.1-1.el6.x86_64 16/27

 Verifying : policycoreutils-python-2.0.83-19.30.el6.x86_64 17/27

 Verifying : cloud-init-0.7.4-2.el6.noarch 18/27

 Verifying : python-markdown-2.0.1-3.1.el6.noarch 19/27

 Verifying : python-setuptools-0.6.10-3.el6.noarch 20/27

 Verifying : python-configobj-4.6.0-3.el6.noarch 21/27

 Verifying : python-six-1.6.1-1.el6.noarch 22/27

 Verifying : PyYAML-3.10-3.el6.x86_64 23/27

 Verifying : python-boto-2.27.0-1.el6.noarch 24/27

 Verifying : python-ordereddict-1.1-2.el6.noarch 25/27

 Verifying : libsemanage-python-2.0.43-4.2.el6.x86_64 26/27

 Verifying : python-argparse-1.2.1-2.el6.noarch 27/27

Installed:
 cloud-init.noarch 0:0.7.4-2.el6

Dependency Installed:
 PyYAML.x86_64 0:3.10-3.el6
 audit-libs-python.x86_64 0:2.2-2.el6

 libcgroup.x86_64 0:0.37-7.el6
 libselinux-python.x86_64 0:2.0.94-5.3.el6
 libsemanage-python.x86_64 0:2.0.43-4.2.el6
 libyaml.x86_64 0:0.1.6-1.el6
 policycoreutils-python.x86_64 0:2.0.83-19.30.el6
 python-argparse.noarch 0:1.2.1-2.el6
 python-backports.x86_64 0:1.0-3.el6
 python-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.el6
 python-boto.noarch 0:2.27.0-1.el6
 python-chardet.noarch 0:2.0.1-1.el6
 python-cheetah.x86_64 0:2.4.1-1.el6
 python-configobj.noarch 0:4.6.0-3.el6
 python-jsonpatch.noarch 0:1.2-2.el6
 python-jsonpointer.noarch 0:1.0-3.el6
 python-markdown.noarch 0:2.0.1-3.1.el6
 python-ordereddict.noarch 0:1.1-2.el6
 python-prettytable.noarch 0:0.7.2-1.el6
 python-pygments.noarch 0:1.1.1-1.el6
 python-requests.noarch 0:1.1.0-4.el6
 python-setuptools.noarch 0:0.6.10-3.el6
 python-six.noarch 0:1.6.1-1.el6
 python-urllib3.noarch 0:1.5-7.el6
 setools-libs.x86_64 0:3.3.7-4.el6
 setools-libs-python.x86_64 0:3.3.7-4.el6

Complete!
Loaded plugins: security
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package cloud-utils.x86_64 0:0.27-10.el6 will be installed
--> Processing Dependency: qemu-img for package: cloud-utils-0.27-10.el6.x86_64
--> Processing Dependency: python-paramiko for package: cloud-utils-0.27-10.el6.x86_64
--> Processing Dependency: euca2ools for package: cloud-utils-0.27-10.el6.x86_64
--> Processing Dependency: cloud-utils-growpart for package: cloud-utils-0.27-10.el6.x86_64
--> Running transaction check
---> Package cloud-utils-growpart.x86_64 0:0.27-10.el6 will be installed
---> Package euca2ools.noarch 0:2.1.4-1.el6 will be installed
--> Processing Dependency: m2crypto for package: euca2ools-2.1.4-1.el6.noarch
---> Package python-paramiko.noarch 0:1.7.5-2.1.el6 will be installed
--> Processing Dependency: python-crypto >= 1.9 for package: python-paramiko-1.7.5-2.1.el6.noarch
---> Package qemu-img.x86_64 2:0.12.1.2-2.415.el6_5.10 will be installed
--> Processing Dependency: libusbredirparser.so.1()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Processing Dependency: libgfxdr.so.0()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Processing Dependency: libgfrpc.so.0()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Processing Dependency: libgfapi.so.0()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Running transaction check
---> Package glusterfs-api.x86_64 0:3.4.0.36rhs-1.el6 will be installed

---> Package glusterfs-libs.x86_64 0:3.4.0.36rhs-1.el6 will be installed
---> Package m2crypto.x86_64 0:0.20.2-9.el6 will be installed
---> Package python-crypto.x86_64 0:2.0.1-22.el6 will be installed
---> Package usbredir.x86_64 0:0.5.1-1.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 cloud-utils x86_64 0.27-10.el6 epel 43 k
Installing for dependencies:
 cloud-utils-growpart x86_64 0.27-10.el6 epel 25 k
 euca2ools noarch 2.1.4-1.el6 epel 326 k
 glusterfs-api x86_64 3.4.0.36rhs-1.el6 slf-security 44 k
 glusterfs-libs x86_64 3.4.0.36rhs-1.el6 slf-security 225 k
 m2crypto x86_64 0.20.2-9.el6 slf 470 k
 python-crypto x86_64 2.0.1-22.el6 slf 157 k
 python-paramiko noarch 1.7.5-2.1.el6 slf 727 k
 qemu-img x86_64 2:0.12.1.2-2.415.el6_5.10 slf-security 595 k
 usbredir x86_64 0.5.1-1.el6 slf 39 k

Transaction Summary
==
Install 10 Package(s)

Total download size: 2.6 M
Installed size: 13 M
Downloading Packages:
--
Total 589 kB/s | 2.6 MB 00:04
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction

 Installing : glusterfs-libs-3.4.0.36rhs-1.el6.x86_64 1/10

 Installing : glusterfs-api-3.4.0.36rhs-1.el6.x86_64 2/10

 Installing : usbredir-0.5.1-1.el6.x86_64 3/10

 Installing : 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64 4/10

 Installing : python-crypto-2.0.1-22.el6.x86_64 5/10

 Installing : python-paramiko-1.7.5-2.1.el6.noarch 6/10

 Installing : cloud-utils-growpart-0.27-10.el6.x86_64 7/10

 Installing : m2crypto-0.20.2-9.el6.x86_64 8/10

 Installing : euca2ools-2.1.4-1.el6.noarch 9/10

 Installing : cloud-utils-0.27-10.el6.x86_64 10/10

 Verifying : 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64 1/10

 Verifying : euca2ools-2.1.4-1.el6.noarch 2/10

 Verifying : m2crypto-0.20.2-9.el6.x86_64 3/10

 Verifying : cloud-utils-growpart-0.27-10.el6.x86_64 4/10

 Verifying : glusterfs-libs-3.4.0.36rhs-1.el6.x86_64 5/10

 Verifying : python-crypto-2.0.1-22.el6.x86_64 6/10

 Verifying : python-paramiko-1.7.5-2.1.el6.noarch 7/10

 Verifying : cloud-utils-0.27-10.el6.x86_64 8/10

 Verifying : usbredir-0.5.1-1.el6.x86_64 9/10

 Verifying : glusterfs-api-3.4.0.36rhs-1.el6.x86_64 10/10

Installed:
 cloud-utils.x86_64 0:0.27-10.el6

Dependency Installed:
 cloud-utils-growpart.x86_64 0:0.27-10.el6
 euca2ools.noarch 0:2.1.4-1.el6
 glusterfs-api.x86_64 0:3.4.0.36rhs-1.el6
 glusterfs-libs.x86_64 0:3.4.0.36rhs-1.el6
 m2crypto.x86_64 0:0.20.2-9.el6
 python-crypto.x86_64 0:2.0.1-22.el6
 python-paramiko.noarch 0:1.7.5-2.1.el6
 qemu-img.x86_64 2:0.12.1.2-2.415.el6_5.10
 usbredir.x86_64 0:0.5.1-1.el6

Complete!
Loaded plugins: security
Setting up Install Process
Examining /var/tmp/yum-root-bFavOG/python-backports-1.0-4.el6.x86_64.rpm: python-backports-1.0-4.el6.x86_64

Marking /var/tmp/yum-root-bFavOG/python-backports-1.0-4.el6.x86_64.rpm as an update to python-backports-1.0-
3.el6.x86_64
Resolving Dependencies
--> Running transaction check
---> Package python-backports.x86_64 0:1.0-3.el6 will be updated
---> Package python-backports.x86_64 0:1.0-4.el6 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Updating:
 python-backports x86_64 1.0-4.el6 /python-backports-1.0-4.el6.x86_64 318

Transaction Summary
==
Upgrade 1 Package(s)

Total size: 318
Downloading Packages:
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction

 Updating : python-backports-1.0-4.el6.x86_64 1/2

 Cleanup : python-backports-1.0-3.el6.x86_64 2/2

 Verifying : python-backports-1.0-4.el6.x86_64 1/2

 Verifying : python-backports-1.0-3.el6.x86_64 2/2

Updated:
 python-backports.x86_64 0:1.0-4.el6

Complete!
Aug 02 15:22:20 INFO Stop: Completed Converting the worker Fermicloud VM image. Function convert_image.
Aug 02 15:22:20 INFO Start: Importing the worker Fermicloud VM image. Function import_image.
Loaded plugins: refresh-packagekit, security
Setting up Install Process
Package 1:java-1.6.0-openjdk-1.6.0.0-6.1.13.4.el6_5.x86_64 already installed and latest version
Nothing to do
/usr/lib/jvm/jre-1.6.0-openjdk.x86_64
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
 0 14.2M 0 13021 0 0 121k 0 0:01:59 --:--:-- 0:01:59 153k
 96 14.2M 96 13.7M 0 0 12.5M 0 0:00:01 0:00:01 --:--:-- 12.8M
100 14.2M 100 14.2M 0 0 12.7M 0 0:00:01 0:00:01 --:--:-- 13.0M
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 152k 100 152k 0 0 718k 0 --:--:-- --:--:-- --:--:-- 807k
Loaded plugins: refresh-packagekit, security
Setting up Install Process
Package 1:tcl-devel-8.5.7-6.el6.x86_64 already installed and latest version
Package 1:tk-devel-8.5.7-5.el6.x86_64 already installed and latest version
Package expect-devel-5.44.1.15-2.el6.x86_64 already installed and latest version
Package expectk-5.44.1.15-2.el6.x86_64 already installed and latest version
Nothing to do
AWS CLI Tools Setup Completed.
ATTACHMENT vol-5f6ff95e i-94fe889f /dev/sdf attaching 2014-08-02T21:04:24+0000
TAG instance i-32f68039 Name GCSO_SL6_HVM_20140802152232
TAG instance i-32f68039 User kirkshal
TAG volume vol-2b63f52a Name GCSO_SL6_HVM_20140802152232
TAG volume vol-2b63f52a User kirkshal
TAG snapshot snap-69d4759e Name GCSO_SL6_HVM_20140802152232
TAG snapshot snap-69d4759e User kirkshal
TAG image ami-21d2a911 Name GCSO_SL6_HVM_20140802152232
TAG image ami-21d2a911 User kirkshal
TAG instance i-94fe889f Name GCSO_SL6_HVM_20140802152232
TAG instance i-94fe889f User kirkshal
TAG volume vol-5c6ff95d Name GCSO_SL6_HVM_20140802152232
TAG volume vol-5c6ff95d User kirkshal
TAG volume vol-5f6ff95e Name GCSO_SL6_HVM_20140802152232
TAG volume vol-5f6ff95e User kirkshal
INSTANCE i-94fe889f running stopping
INSTANCE i-32f68039 stopped terminated
VOLUME vol-2b63f52a
Requirement already up-to-date: awscli in /usr/local/lib/python2.7/site-packages
Requirement already up-to-date: botocore>=0.59.0,<0.60.0 in /usr/local/lib/python2.7/site-packages (from awscli)
Requirement already up-to-date: bcdoc>=0.12.0,<0.13.0 in /usr/local/lib/python2.7/site-packages (from awscli)
Requirement already up-to-date: six>=1.1.0 in /usr/local/lib/python2.7/site-packages (from awscli)
Requirement already up-to-date: colorama==0.2.5 in /usr/local/lib/python2.7/site-packages (from awscli)
Requirement already up-to-date: docutils>=0.10 in /usr/local/lib/python2.7/site-packages (from awscli)
Requirement already up-to-date: rsa==3.1.2 in /usr/local/lib/python2.7/site-packages (from awscli)
Requirement already up-to-date: jmespath==0.4.1 in /usr/local/lib/python2.7/site-packages (from
botocore>=0.59.0,<0.60.0->awscli)
Requirement already up-to-date: python-dateutil>=2.1 in /usr/local/lib/python2.7/site-packages (from
botocore>=0.59.0,<0.60.0->awscli)
Requirement already up-to-date: pyasn1>=0.1.3 in /usr/local/lib/python2.7/site-packages (from rsa==3.1.2->awscli)

Cleaning up...
delete: s3://fcloudimport20140802152232/0b585d2b-3609-4ac8-b3f4-42a754be0589/gcso_sl6.raw.part0
Completed 1 part(s) with ... file(s) remaining
delete: s3://fcloudimport20140802152232/0b585d2b-3609-4ac8-b3f4-42a754be0589/gcso_sl6.raw.part1006
Completed 2 part(s) with ... file(s) remaining
delete: s3://fcloudimport20140802152232/0b585d2b-3609-4ac8-b3f4-42a754be0589/gcso_sl6.raw.part1002
Completed 3 part(s) with ... file(s) remaining
delete: s3://fcloudimport20140802152232/0b585d2b-3609-4ac8-b3f4-42a754be0589/gcso_sl6.raw.part1008
Completed 4 part(s) with ... file(s) remaining

[SNIP]

delete: s3://fcloudimport20140802152232/0b585d2b-3609-4ac8-b3f4-42a754be0589/gcso_sl6.raw.part998
Completed 1230 of 1231 part(s) with 1 file(s) remaining
delete: s3://fcloudimport20140802152232/0b585d2b-3609-4ac8-b3f4-42a754be0589/gcso_sl6.rawmanifest.xml
remove_bucket: s3://fcloudimport20140802152232/
AWS HVM VM Import Completed.
Aug 02 16:06:34 INFO Stop: Completed Importing the worker Fermicloud VM image. Function import_image.
Aug 02 16:06:34 INFO End script run

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/aws_image_convert_pv.log
Aug 02 16:14:59 INFO Begin script run
Aug 02 16:14:59 INFO Start: Copying the selected Fermicloud VM image. Function copy_to_image_location.
Aug 02 16:15:54 INFO Stop: Completed Copying the selected Fermicloud VM image. Function
copy_to_image_location.
Aug 02 16:15:54 INFO Start: Resizing the worker Fermicloud VM image. Function resize_image.
stdin:2: libguestfs: error: e2fsck_f: /dev/sda1: 94023/786432 files (0.3% non-contiguous), 550839/3145728
blocks
Formatting 'gcso_sl6.raw', fmt=raw size=3224371200
Examining gcso_sl6.qcow2tmp ...

Summary of changes:

/dev/sda1: This partition will be resized from 12.0G to 3.0G. The
 filesystem ext3 on /dev/sda1 will be expanded using the 'resize2fs'
 method.

There is a surplus of 864.0K. The surplus space is not large enough
for an extra partition to be created and so it will just be ignored.

Setting up initial partition table on gcso_sl6.raw ...

Copying /dev/sda1 ...
Expanding /dev/sda1 using the 'resize2fs' method ...

Resize operation completed with no errors. Before deleting the old
disk, carefully check that the resized disk boots and works correctly.
image: gcso_sl6.raw
file format: raw
virtual size: 3.0G (3224371200 bytes)
disk size: 3.0G
Aug 02 16:35:19 INFO Stop: Completed Resizing the worker Fermicloud VM image. Function resize_image.
Aug 02 16:35:19 INFO Start: Converting the worker Fermicloud VM image. Function convert_image.
warning: /var/tmp/rpm-tmp.6lH0MT: Header V3 RSA/SHA256 Signature, key ID 0608b895: NOKEY
Retrieving http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
Preparing... ##
epel-release ##
Loaded plugins: security
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package cloud-init.noarch 0:0.7.4-2.el6 will be installed
--> Processing Dependency: python-boto >= 2.6.0 for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-requests for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-prettytable for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-jsonpatch for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-configobj for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-cheetah for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: python-argparse for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: policycoreutils-python for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: libselinux-python for package: cloud-init-0.7.4-2.el6.noarch
--> Processing Dependency: PyYAML for package: cloud-init-0.7.4-2.el6.noarch
--> Running transaction check
---> Package PyYAML.x86_64 0:3.10-3.el6 will be installed
--> Processing Dependency: libyaml-0.so.2()(64bit) for package: PyYAML-3.10-3.el6.x86_64
---> Package libselinux-python.x86_64 0:2.0.94-5.3.el6 will be installed
---> Package policycoreutils-python.x86_64 0:2.0.83-19.30.el6 will be installed
--> Processing Dependency: libsemanage-python >= 2.0.43-4 for package: policycoreutils-python-2.0.83-
19.30.el6.x86_64
--> Processing Dependency: audit-libs-python >= 1.4.2-1 for package: policycoreutils-python-2.0.83-
19.30.el6.x86_64
--> Processing Dependency: setools-libs-python for package: policycoreutils-python-2.0.83-19.30.el6.x86_64
--> Processing Dependency: libcgroup for package: policycoreutils-python-2.0.83-19.30.el6.x86_64
---> Package python-argparse.noarch 0:1.2.1-2.el6 will be installed
---> Package python-boto.noarch 0:2.27.0-1.el6 will be installed
---> Package python-cheetah.x86_64 0:2.4.1-1.el6 will be installed
--> Processing Dependency: python-pygments for package: python-cheetah-2.4.1-1.el6.x86_64
--> Processing Dependency: python-markdown for package: python-cheetah-2.4.1-1.el6.x86_64
---> Package python-configobj.noarch 0:4.6.0-3.el6 will be installed
---> Package python-jsonpatch.noarch 0:1.2-2.el6 will be installed

--> Processing Dependency: python-jsonpointer for package: python-jsonpatch-1.2-2.el6.noarch
---> Package python-prettytable.noarch 0:0.7.2-1.el6 will be installed
---> Package python-requests.noarch 0:1.1.0-4.el6 will be installed
--> Processing Dependency: python-urllib3 for package: python-requests-1.1.0-4.el6.noarch
--> Processing Dependency: python-ordereddict for package: python-requests-1.1.0-4.el6.noarch
--> Processing Dependency: python-chardet for package: python-requests-1.1.0-4.el6.noarch
--> Running transaction check
---> Package audit-libs-python.x86_64 0:2.2-2.el6 will be installed
---> Package libcgroup.x86_64 0:0.37-7.el6 will be installed
---> Package libsemanage-python.x86_64 0:2.0.43-4.2.el6 will be installed
---> Package libyaml.x86_64 0:0.1.6-1.el6 will be installed
---> Package python-chardet.noarch 0:2.0.1-1.el6 will be installed
---> Package python-jsonpointer.noarch 0:1.0-3.el6 will be installed
---> Package python-markdown.noarch 0:2.0.1-3.1.el6 will be installed
---> Package python-ordereddict.noarch 0:1.1-2.el6 will be installed
---> Package python-pygments.noarch 0:1.1.1-1.el6 will be installed
--> Processing Dependency: python-setuptools for package: python-pygments-1.1.1-1.el6.noarch
---> Package python-urllib3.noarch 0:1.5-7.el6 will be installed
--> Processing Dependency: python-six for package: python-urllib3-1.5-7.el6.noarch
--> Processing Dependency: python-backports-ssl_match_hostname for package: python-urllib3-1.5-7.el6.noarch
---> Package setools-libs-python.x86_64 0:3.3.7-4.el6 will be installed
--> Processing Dependency: setools-libs = 3.3.7-4.el6 for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1(VERS_1.3)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libpoldiff.so.1(VERS_1.3)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libapol.so.4(VERS_4.1)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1(VERS_1.2)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1(VERS_1.4)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libseaudit.so.4(VERS_4.2)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libpoldiff.so.1(VERS_1.2)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libsefs.so.4(VERS_4.0)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libapol.so.4(VERS_4.0)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libseaudit.so.4(VERS_4.1)(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libseaudit.so.4()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libqpol.so.1()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libapol.so.4()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libpoldiff.so.1()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Processing Dependency: libsefs.so.4()(64bit) for package: setools-libs-python-3.3.7-4.el6.x86_64
--> Running transaction check
---> Package python-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.el6 will be installed
--> Processing Dependency: python-backports for package: python-backports-ssl_match_hostname-3.4.0.2-1.el6.noarch
---> Package python-setuptools.noarch 0:0.6.10-3.el6 will be installed
---> Package python-six.noarch 0:1.6.1-1.el6 will be installed
---> Package setools-libs.x86_64 0:3.3.7-4.el6 will be installed
--> Running transaction check
---> Package python-backports.x86_64 0:1.0-3.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository
 Size
==
Installing:
 cloud-init noarch 0.7.4-2.el6 epel 487 k
Installing for dependencies:
 PyYAML x86_64 3.10-3.el6 epel 157 k
 audit-libs-python x86_64 2.2-2.el6 slf 58 k
 libcgroup x86_64 0.37-7.el6 slf 110 k
 libselinux-python x86_64 2.0.94-5.3.el6 slf 201 k
 libsemanage-python x86_64 2.0.43-4.2.el6 slf 80 k
 libyaml x86_64 0.1.6-1.el6 epel 52 k
 policycoreutils-python x86_64 2.0.83-19.30.el6 slf 341 k
 python-argparse noarch 1.2.1-2.el6 epel 48 k
 python-backports x86_64 1.0-3.el6 epel 5.3 k
 python-backports-ssl_match_hostname noarch 3.4.0.2-1.el6 epel 12 k
 python-boto noarch 2.27.0-1.el6 epel 1.6 M
 python-chardet noarch 2.0.1-1.el6 epel 225 k
 python-cheetah x86_64 2.4.1-1.el6 slf 364 k
 python-configobj noarch 4.6.0-3.el6 slf 181 k
 python-jsonpatch noarch 1.2-2.el6 epel 14 k
 python-jsonpointer noarch 1.0-3.el6 epel 9.2 k
 python-markdown noarch 2.0.1-3.1.el6 slf 117 k
 python-ordereddict noarch 1.1-2.el6 epel 7.6 k
 python-prettytable noarch 0.7.2-1.el6 epel 37 k
 python-pygments noarch 1.1.1-1.el6 slf 561 k
 python-requests noarch 1.1.0-4.el6 epel 71 k
 python-setuptools noarch 0.6.10-3.el6 slf 335 k
 python-six noarch 1.6.1-1.el6 epel 25 k
 python-urllib3 noarch 1.5-7.el6 epel 41 k
 setools-libs x86_64 3.3.7-4.el6 slf 399 k
 setools-libs-python x86_64 3.3.7-4.el6 slf 221 k

Transaction Summary
==
Install 27 Package(s)

Total download size: 5.6 M
Installed size: 25 M
Downloading Packages:
--
Total 532 kB/s | 5.6 MB 00:10
Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-6
warning: rpmts_HdrFromFdno: Header V3 RSA/SHA256 Signature, key ID 0608b895: NOKEY
Importing GPG key 0x0608B895:
 Userid : EPEL (6) <epel@fedoraproject.org>

 Package: slf-release-6.4-1.x86_64 (@anaconda-ScientificLinuxFermi-201304091346.x86_64/6)
 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-6
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Warning: RPMDB altered outside of yum.

 Installing : python-ordereddict-1.1-2.el6.noarch 1/27

 Installing : libselinux-python-2.0.94-5.3.el6.x86_64 2/27

 Installing : python-argparse-1.2.1-2.el6.noarch 3/27

 Installing : libsemanage-python-2.0.43-4.2.el6.x86_64 4/27

 Installing : python-boto-2.27.0-1.el6.noarch 5/27

 Installing : python-six-1.6.1-1.el6.noarch 6/27

 Installing : python-configobj-4.6.0-3.el6.noarch 7/27

 Installing : python-setuptools-0.6.10-3.el6.noarch 8/27

 Installing : python-pygments-1.1.1-1.el6.noarch 9/27

 Installing : python-markdown-2.0.1-3.1.el6.noarch 10/27

 Installing : python-cheetah-2.4.1-1.el6.x86_64 11/27

 Installing : python-chardet-2.0.1-1.el6.noarch 12/27

 Installing : python-prettytable-0.7.2-1.el6.noarch 13/27

 Installing : libcgroup-0.37-7.el6.x86_64 14/27

 Installing : setools-libs-3.3.7-4.el6.x86_64 15/27

 Installing : setools-libs-python-3.3.7-4.el6.x86_64 16/27

 Installing : libyaml-0.1.6-1.el6.x86_64 17/27

 Installing : PyYAML-3.10-3.el6.x86_64 18/27

 Installing : audit-libs-python-2.2-2.el6.x86_64 19/27

 Installing : policycoreutils-python-2.0.83-19.30.el6.x86_64 20/27

 Installing : python-backports-1.0-3.el6.x86_64 21/27

 Installing : python-backports-ssl_match_hostname-3.4.0.2-1.el6.noarch 22/27

 Installing : python-urllib3-1.5-7.el6.noarch 23/27

 Installing : python-requests-1.1.0-4.el6.noarch 24/27

 Installing : python-jsonpointer-1.0-3.el6.noarch 25/27

 Installing : python-jsonpatch-1.2-2.el6.noarch 26/27

 Installing : cloud-init-0.7.4-2.el6.noarch 27/27

 Verifying : python-jsonpointer-1.0-3.el6.noarch 1/27

 Verifying : python-backports-1.0-3.el6.x86_64 2/27

 Verifying : libselinux-python-2.0.94-5.3.el6.x86_64 3/27

 Verifying : audit-libs-python-2.2-2.el6.x86_64 4/27

 Verifying : setools-libs-python-3.3.7-4.el6.x86_64 5/27

 Verifying : libyaml-0.1.6-1.el6.x86_64 6/27

 Verifying : setools-libs-3.3.7-4.el6.x86_64 7/27

 Verifying : libcgroup-0.37-7.el6.x86_64 8/27

 Verifying : python-jsonpatch-1.2-2.el6.noarch 9/27

 Verifying : python-pygments-1.1.1-1.el6.noarch 10/27

 Verifying : python-prettytable-0.7.2-1.el6.noarch 11/27

 Verifying : python-backports-ssl_match_hostname-3.4.0.2-1.el6.noarch 12/27

 Verifying : python-urllib3-1.5-7.el6.noarch 13/27

 Verifying : python-chardet-2.0.1-1.el6.noarch 14/27

 Verifying : python-requests-1.1.0-4.el6.noarch 15/27

 Verifying : python-cheetah-2.4.1-1.el6.x86_64 16/27

 Verifying : policycoreutils-python-2.0.83-19.30.el6.x86_64 17/27

 Verifying : cloud-init-0.7.4-2.el6.noarch 18/27

 Verifying : python-markdown-2.0.1-3.1.el6.noarch 19/27

 Verifying : python-setuptools-0.6.10-3.el6.noarch 20/27

 Verifying : python-configobj-4.6.0-3.el6.noarch 21/27

 Verifying : python-six-1.6.1-1.el6.noarch 22/27

 Verifying : PyYAML-3.10-3.el6.x86_64 23/27

 Verifying : python-boto-2.27.0-1.el6.noarch 24/27

 Verifying : python-ordereddict-1.1-2.el6.noarch 25/27

 Verifying : libsemanage-python-2.0.43-4.2.el6.x86_64 26/27

 Verifying : python-argparse-1.2.1-2.el6.noarch 27/27

Installed:
 cloud-init.noarch 0:0.7.4-2.el6

Dependency Installed:
 PyYAML.x86_64 0:3.10-3.el6
 audit-libs-python.x86_64 0:2.2-2.el6
 libcgroup.x86_64 0:0.37-7.el6
 libselinux-python.x86_64 0:2.0.94-5.3.el6
 libsemanage-python.x86_64 0:2.0.43-4.2.el6
 libyaml.x86_64 0:0.1.6-1.el6
 policycoreutils-python.x86_64 0:2.0.83-19.30.el6
 python-argparse.noarch 0:1.2.1-2.el6
 python-backports.x86_64 0:1.0-3.el6
 python-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.el6
 python-boto.noarch 0:2.27.0-1.el6
 python-chardet.noarch 0:2.0.1-1.el6
 python-cheetah.x86_64 0:2.4.1-1.el6
 python-configobj.noarch 0:4.6.0-3.el6
 python-jsonpatch.noarch 0:1.2-2.el6
 python-jsonpointer.noarch 0:1.0-3.el6
 python-markdown.noarch 0:2.0.1-3.1.el6
 python-ordereddict.noarch 0:1.1-2.el6
 python-prettytable.noarch 0:0.7.2-1.el6
 python-pygments.noarch 0:1.1.1-1.el6
 python-requests.noarch 0:1.1.0-4.el6
 python-setuptools.noarch 0:0.6.10-3.el6
 python-six.noarch 0:1.6.1-1.el6
 python-urllib3.noarch 0:1.5-7.el6

 setools-libs.x86_64 0:3.3.7-4.el6
 setools-libs-python.x86_64 0:3.3.7-4.el6

Complete!
Loaded plugins: security
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package cloud-utils.x86_64 0:0.27-10.el6 will be installed
--> Processing Dependency: qemu-img for package: cloud-utils-0.27-10.el6.x86_64
--> Processing Dependency: python-paramiko for package: cloud-utils-0.27-10.el6.x86_64
--> Processing Dependency: euca2ools for package: cloud-utils-0.27-10.el6.x86_64
--> Processing Dependency: cloud-utils-growpart for package: cloud-utils-0.27-10.el6.x86_64
--> Running transaction check
---> Package cloud-utils-growpart.x86_64 0:0.27-10.el6 will be installed
---> Package euca2ools.noarch 0:2.1.4-1.el6 will be installed
--> Processing Dependency: m2crypto for package: euca2ools-2.1.4-1.el6.noarch
---> Package python-paramiko.noarch 0:1.7.5-2.1.el6 will be installed
--> Processing Dependency: python-crypto >= 1.9 for package: python-paramiko-1.7.5-2.1.el6.noarch
---> Package qemu-img.x86_64 2:0.12.1.2-2.415.el6_5.10 will be installed
--> Processing Dependency: libusbredirparser.so.1()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Processing Dependency: libgfxdr.so.0()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Processing Dependency: libgfrpc.so.0()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Processing Dependency: libgfapi.so.0()(64bit) for package: 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64
--> Running transaction check
---> Package glusterfs-api.x86_64 0:3.4.0.36rhs-1.el6 will be installed
---> Package glusterfs-libs.x86_64 0:3.4.0.36rhs-1.el6 will be installed
---> Package m2crypto.x86_64 0:0.20.2-9.el6 will be installed
---> Package python-crypto.x86_64 0:2.0.1-22.el6 will be installed
---> Package usbredir.x86_64 0:0.5.1-1.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 cloud-utils x86_64 0.27-10.el6 epel 43 k
Installing for dependencies:
 cloud-utils-growpart x86_64 0.27-10.el6 epel 25 k
 euca2ools noarch 2.1.4-1.el6 epel 326 k
 glusterfs-api x86_64 3.4.0.36rhs-1.el6 slf-security 44 k
 glusterfs-libs x86_64 3.4.0.36rhs-1.el6 slf-security 225 k
 m2crypto x86_64 0.20.2-9.el6 slf 470 k
 python-crypto x86_64 2.0.1-22.el6 slf 157 k
 python-paramiko noarch 1.7.5-2.1.el6 slf 727 k
 qemu-img x86_64 2:0.12.1.2-2.415.el6_5.10 slf-security 595 k

 usbredir x86_64 0.5.1-1.el6 slf 39 k

Transaction Summary
==
Install 10 Package(s)

Total download size: 2.6 M
Installed size: 13 M
Downloading Packages:
--
Total 570 kB/s | 2.6 MB 00:04
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction

 Installing : glusterfs-libs-3.4.0.36rhs-1.el6.x86_64 1/10

 Installing : glusterfs-api-3.4.0.36rhs-1.el6.x86_64 2/10

 Installing : usbredir-0.5.1-1.el6.x86_64 3/10

 Installing : 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64 4/10

 Installing : python-crypto-2.0.1-22.el6.x86_64 5/10

 Installing : python-paramiko-1.7.5-2.1.el6.noarch 6/10

 Installing : cloud-utils-growpart-0.27-10.el6.x86_64 7/10

 Installing : m2crypto-0.20.2-9.el6.x86_64 8/10

 Installing : euca2ools-2.1.4-1.el6.noarch 9/10

 Installing : cloud-utils-0.27-10.el6.x86_64 10/10

 Verifying : 2:qemu-img-0.12.1.2-2.415.el6_5.10.x86_64 1/10

 Verifying : euca2ools-2.1.4-1.el6.noarch 2/10

 Verifying : m2crypto-0.20.2-9.el6.x86_64 3/10

 Verifying : cloud-utils-growpart-0.27-10.el6.x86_64 4/10

 Verifying : glusterfs-libs-3.4.0.36rhs-1.el6.x86_64 5/10

 Verifying : python-crypto-2.0.1-22.el6.x86_64 6/10

 Verifying : python-paramiko-1.7.5-2.1.el6.noarch 7/10

 Verifying : cloud-utils-0.27-10.el6.x86_64 8/10

 Verifying : usbredir-0.5.1-1.el6.x86_64 9/10

 Verifying : glusterfs-api-3.4.0.36rhs-1.el6.x86_64 10/10

Installed:
 cloud-utils.x86_64 0:0.27-10.el6

Dependency Installed:
 cloud-utils-growpart.x86_64 0:0.27-10.el6
 euca2ools.noarch 0:2.1.4-1.el6
 glusterfs-api.x86_64 0:3.4.0.36rhs-1.el6
 glusterfs-libs.x86_64 0:3.4.0.36rhs-1.el6
 m2crypto.x86_64 0:0.20.2-9.el6
 python-crypto.x86_64 0:2.0.1-22.el6
 python-paramiko.noarch 0:1.7.5-2.1.el6
 qemu-img.x86_64 2:0.12.1.2-2.415.el6_5.10
 usbredir.x86_64 0:0.5.1-1.el6

Complete!
Loaded plugins: security
Setting up Install Process
Examining /var/tmp/yum-root-DElfP9/python-backports-1.0-4.el6.x86_64.rpm: python-backports-1.0-4.el6.x86_64
Marking /var/tmp/yum-root-DElfP9/python-backports-1.0-4.el6.x86_64.rpm as an update to python-backports-1.0-
3.el6.x86_64
Resolving Dependencies
--> Running transaction check
---> Package python-backports.x86_64 0:1.0-3.el6 will be updated
---> Package python-backports.x86_64 0:1.0-4.el6 will be an update
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Updating:
 python-backports x86_64 1.0-4.el6 /python-backports-1.0-4.el6.x86_64 318

Transaction Summary
==
Upgrade 1 Package(s)

Total size: 318
Downloading Packages:

Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction

 Updating : python-backports-1.0-4.el6.x86_64 1/2

 Cleanup : python-backports-1.0-3.el6.x86_64 2/2

 Verifying : python-backports-1.0-4.el6.x86_64 1/2

 Verifying : python-backports-1.0-3.el6.x86_64 2/2

Updated:
 python-backports.x86_64 0:1.0-4.el6

Complete!
Aug 02 16:55:29 INFO Stop: Completed Converting the worker Fermicloud VM image. Function convert_image.
Aug 02 16:55:29 INFO Start: Importing the worker Fermicloud VM image. Function import_image.
Loaded plugins: refresh-packagekit, security
Setting up Install Process
Package 1:java-1.6.0-openjdk-1.6.0.0-6.1.13.4.el6_5.x86_64 already installed and latest version
Nothing to do
/usr/lib/jvm/jre-1.6.0-openjdk.x86_64
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
 4 14.2M 4 708k 0 0 890k 0 0:00:16 --:--:-- 0:00:16 915k
100 14.2M 100 14.2M 0 0 8873k 0 0:00:01 0:00:01 --:--:-- 8997k
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 152k 100 152k 0 0 575k 0 --:--:-- --:--:-- --:--:--Loaded plugins: refresh-packagekit,
security
Setting up Install Process
 630k
Package 1:tcl-devel-8.5.7-6.el6.x86_64 already installed and latest version
Package 1:tk-devel-8.5.7-5.el6.x86_64 already installed and latest version
Package expect-devel-5.44.1.15-2.el6.x86_64 already installed and latest version
Package expectk-5.44.1.15-2.el6.x86_64 already installed and latest version
Nothing to do
AWS CLI Tools Setup Completed.
INSTANCE i-94fe889f stopped pending
ATTACHMENT vol-af1680ae i-94fe889f /dev/sdg attaching 2014-08-02T21:56:45+0000
spawn ssh -i khs-fermi.pem root@54.187.12.76
The authenticity of host '54.187.12.76 (54.187.12.76)' can't be established.

RSA key fingerprint is ab:90:b1:c4:ef:65:f4:5f:c9:8f:db:df:91:f6:6a:9c.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.187.12.76' (RSA) to the list of known hosts.

Last login: Thu Jul 17 16:43:33 2014 from 131.225.170.210

 NOTICE TO USERS

 This is a Federal computer (and/or it is directly connected to a
 Fermilab local network system) that is the property of the United
 States Government. It is for authorized use only. Users (autho-
 rized or unauthorized) have no explicit or implicit expectation
 of privacy.

 Any or all uses of this system and all files on this system may
 be intercepted, monitored, recorded, copied, audited, inspected,
 and disclosed to authorized site, Department of Energy and law
 enforcement personnel, as well as authorized officials of other
 agencies, both domestic and foreign. By using this system, the
 user consents to such interception, monitoring, recording, copy-
 ing, auditing, inspection, and disclosure at the discretion of
 authorized site or Department of Energy personnel.

 Unauthorized or improper use of this system may result in admin-
 istrative disciplinary action and civil and criminal penalties.
 By continuing to use this system you indicate your awareness of
 and consent to these terms and conditions of use. LOG OFF IMME-
 DIATELY if you do not agree to the conditions stated in this
 warning.

 Fermilab policy and rules for computing, including appropriate
 use, may be found at http://www.fnal.gov/cd/main/cpolicy.html
/usr/bin/xauth: creating new authority file /root/.Xauthority
[root@ip-172-31-38-72 ~]# mkfs -t ext4 /dev/xvdf
mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
1310720 inodes, 5242880 blocks
262144 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
160 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
 4096000

Writing inode tables:
0/1601/1602/1603/1604/1605/1606/1607/1608/1609/16010/16011/16012/16013/16014/16015/16016/16017/16018/16019/16020/
16021/16022/16023/16024/16025/16026/16027/16028/16029/16030/16031/16032/16033/16034/16035/16036/16037/16038/16039
/16040/16041/16042/16043/16044/16045/16046/16047/16048/16049/16050/16051/16052/16053/16054/16055/16056/16057/1605
8/16059/16060/16061/16062/16063/16064/16065/16066/16067/16068/16069/16070/16071/16072/16073/16074/16075/16076/160
77/16078/16079/16080/16081/16082/16083/16084/16085/16086/16087/16088/16089/16090/16091/16092/16093/16094/16095/16
096/16097/16098/16099/160100/160101/160102/160103/160104/160105/160106/160107/160108/160109/160110/160111/160112/
160113/160114/160115/160116/160117/160118/160119/160120/160121/160122/160123/160124/160125/160126/160127/160128/1
60129/160130/160131/160132/160133/160134/160135/160136/160137/160138/160139/160140/160141/160142/160143/160144/16
0145/160146/160147/160148/160149/160150/160151/160152/160153/160154/160155/160156/160157/160158/160159/160done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: mount -t ext4 /dev/xvdf /mnt
done

This filesystem will be automatically checked every 27 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@ip-172-31-38-72 ~]# mount -t ext4 /dev/xvdf /mnt
cd /mnt
[root@ip-172-31-38-72 ~]# cd /mnt
[root@ip-172-31-38-72 mnt]# mkdir -p images
[root@ip-172-31-38-72 mnt]# mkfs -t ext4 /dev/xvdg
mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
655360 inodes, 2621440 blocks
131072 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=2684354560
80 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Writing inode tables:
0/801/802/803/804/805/806/807/808/809/8010/8011/8012/8013/8014/8015/8016/8017/8018/8019/8020/8021/8022/8023/8024/
8025/8026/8027/8028/8029/8030/8031/8032/8033/8034/8035/8036/8037/8038/80mkdir -p /opt/ec2/mnt
39/8040/8041/8042/8043/8044/8045/8046/8047/8048/8049/8050/8051/8052/8053/8054/8055/8056/8057/8058/8059/8060/8061/
8062/8063/8064/8065/8066/8067/8068/8069/8070/8071/8072/8073/8074/8075/8076/8077/8078/8079/80done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: mount -t ext4 /dev/xvdg /opt/ec2/mnt
done

This filesystem will be automatically checked every 24 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@ip-172-31-38-72 mnt]# mkdir -p /opt/ec2/mnt
[root@ip-172-31-38-72 mnt]# mount -t ext4 /dev/xvdg /opt/ec2/mnt
[root@ip-172-31-38-72 mnt]# exit
logout
Connection to 54.187.12.76 closed.

spawned process completed...
Back to script. Please wait...
Copying (SCP) Raw image to AWS. Please wait...
spawn ssh -i khs-fermi.pem root@54.187.12.76
Last login: Sat Aug 2 16:56:57 2014 from 131.225.155.50

 NOTICE TO USERS

 This is a Federal computer (and/or it is directly connected to a
 Fermilab local network system) that is the property of the United
 States Government. It is for authorized use only. Users (autho-
 rized or unauthorized) have no explicit or implicit expectation
 of privacy.

 Any or all uses of this system and all files on this system may
 be intercepted, monitored, recorded, copied, audited, inspected,
 and disclosed to authorized site, Department of Energy and law
 enforcement personnel, as well as authorized officials of other
 agencies, both domestic and foreign. By using this system, the
 user consents to such interception, monitoring, recording, copy-
 ing, auditing, inspection, and disclosure at the discretion of
 authorized site or Department of Energy personnel.

 Unauthorized or improper use of this system may result in admin-
 istrative disciplinary action and civil and criminal penalties.
 By continuing to use this system you indicate your awareness of
 and consent to these terms and conditions of use. LOG OFF IMME-
 DIATELY if you do not agree to the conditions stated in this
 warning.

 Fermilab policy and rules for computing, including appropriate
 use, may be found at http://www.fnal.gov/cd/main/cpolicy.html
[root@ip-172-31-38-72 ~]# cd /mnt/images
[root@ip-172-31-38-72 images]# mkdir -p raw
[root@ip-172-31-38-72 images]# kpartx -a gcso_sl6.raw
[root@ip-172-31-38-72 images]# mount /dev/mapper/loop0p1 /mnt/images/raw
[root@ip-172-31-38-72 images]# cd /mnt/images/raw
[root@ip-172-31-38-72 raw]# rsync -aqHx /mnt/images/raw/ /opt/ec2/mnt
[root@ip-172-31-38-72 raw]# rsync -aqHx /mnt/images/raw/dev /opt/ec2/mnt

[root@ip-172-31-38-72 raw]# cd /opt/ec2/mnt
[root@ip-172-31-38-72 mnt]# tune2fs -L '/' /dev/xvdg
tune2fs 1.41.12 (17-May-2010)
[root@ip-172-31-38-72 mnt]# sync;sync;sync;sync
[root@ip-172-31-38-72 mnt]# cd /mnt/images
[root@ip-172-31-38-72 images]# umount /mnt/images/raw
[root@ip-172-31-38-72 images]# kpartx -d gcso_sl6.raw
loop deleted : /dev/loop0
[root@ip-172-31-38-72 images]# exit
logout
Connection to 54.187.12.76 closed.

spawned process completed...
Back to script. Please wait...
ATTACHMENT vol-af1680ae i-94fe889f /dev/sdg detaching 2014-08-02T21:56:45+0000
TAG volume vol-af1680ae Name GCSO_SL6_PV_20140802165545
TAG volume vol-af1680ae User kirkshal
TAG snapshot snap-117fdee6 Name GCSO_SL6_PV_20140802165545
TAG snapshot snap-117fdee6 User kirkshal
TAG image ami-9fd2a9af Name GCSO_SL6_PV_20140802165545
TAG image ami-9fd2a9af User kirkshal
TAG instance i-abe593a0 Name GCSO_SL6_PV_20140802165545
TAG instance i-abe593a0 User kirkshal
TAG volume vol-79178178 Name GCSO_SL6_PV_20140802165545
TAG volume vol-79178178 User kirkshal
INSTANCE i-94fe889f running stopping
INSTANCE i-abe593a0 running stopping
VOLUME vol-af1680ae
AWS VM Import Completed.
Aug 02 17:07:38 INFO Stop: Completed Importing the worker Fermicloud VM image. Function import_image.
Aug 02 17:07:38 INFO End script run

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/create_samplemime.txt

$ vi my-user-script.txt
#!/bin/bash
echo "=========Hello Fermi=========" > /root/fermihello1.txt
:wq

$ vi my-cloudconfig.txt
#cloud-config
cloud_final_modules:
 - rightscale_userdata

 - scripts-per-once
 - scripts-per-boot
 - scripts-per-instance
 - [scripts-user, always]
 - ssh-authkey-fingerprints
 - keys-to-console
 - phone-home
 - final-message

runcmd:

 - [sh, -c, echo "=========Hello Fermi=========" > /root/fermihello2.txt]
:wq

$ write-mime-multipart --output=samplemime.txt \
 my-user-script.txt:text/x-shellscript \
 my-cloudconfig.txt

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/fermi_VM_Convert.txt
This file contains working steps to manually create a AWS working instance. From this I was able to create the
automated
scripts. Note: Not every command was used in the automated scripts these are working notes only.

Copy golden image from fermicloud.fnal.gov to data area on fermicloud vm (~2 minutes)
scp kirkshal@fermicloud.fnal.gov:/var/lib/one/local/pub_scratch/gcso_sl6.img
root@fermicloud103.fnal.gov:/data/gcso_sl6.qcow2
scp kirkshal@fermicloud.fnal.gov:/var/lib/one/local/images/fa5219771174d0a16dd4ba0b0cf9e012
root@fermicloud103.fnal.gov:/data/gcso_sl6.qcow2
scp kirkshal@fermicloud.fnal.gov:/var/lib/one/local/images/21022925deb7edd64800ebb3bf97f102
root@fermicloud103.fnal.gov:/data/gcso_sl6.qcow2

Clean Up Image for conversion to aws
ssh root@fermicloud103.fnal.gov
virt-rescue /data/gcso_sl6.qcow2
fdisk -l
fdisk /dev/sda
p
d
2
w

#Exit virt-rescue
exit

cd /data
mkdir work
guestmount -a gcso_sl6.qcow2 -m /dev/sda1 work

cp /grid/data/parag/gwms-cloudvm-rpms/glideinwms-vm-core-0.4-0.2.rc2.el6.noarch.rpm work
cp /grid/data/parag/gwms-cloudvm-rpms/glideinwms-vm-ec2-0.4-0.2.rc2.el6.noarch.rpm work

chroot work

cd /etc/sysconfig/network-scripts
vi ifcfg-eth0
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
TYPE=Ethernet

:wq

cd /etc/sysconfig
vi /etc/sysconfig/network

from:

NETWORKING=yes
HOSTNAME=localhost.localdomain
GATEWAY=131.225.154.1

to:

NETWORKING=yes

:wq

cd /etc
rm /etc/resolv.conf
y
rm /etc/hosts
y
rm /etc/hosts.allow
y
rm /etc/hosts.deny
y

vi /boot/grub/grub.conf

from: (for Xen HVM Only)

grub.conf generated by anaconda

Note that you do not have to rerun grub after making changes to this file
NOTICE: You do not have a /boot partition. This means that
all kernel and initrd paths are relative to /, eg.
root (hd0,0)
kernel /boot/vmlinuz-version ro root=/dev/vda1
initrd /boot/initrd-[generic-]version.img
#boot=/dev/vda
default=0
timeout=5
splashimage=(hd0,0)/boot/grub/splash.xpm.gz
hiddenmenu
title Scientific Linux Fermi (2.6.32-431.11.2.el6.x86_64)
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.32-431.11.2.el6.x86_64 ro root=UUID=17898259-6979-4bb3-9d73-26ae917e8ed9
rd_NO_LUKS rd_NO_LVM LANG=en_US.UTF-8 rd_NO_MD SYSFONT=latarcyrheb-sun16 crashkernel=auto KEYBOARDTYPE=pc
KEYTABLE=us rd_NO_DM rhgb quiet
 initrd /boot/initramfs-2.6.32-431.11.2.el6.x86_64.img

to: (for Xen PV Only)

default=0
timeout=0
title Scientific Linux Fermi (2.6.32-431.11.2.el6.x86_64)
 root (hd0)
 kernel /boot/vmlinuz-2.6.32-431.11.2.el6.x86_64 ro root=/dev/xvde1 rd_NO_PLYMOUTH
 initrd /boot/initramfs-2.6.32-431.11.2.el6.x86_64.img

:wq

cd /boot; ln -s . boot

vi /etc/fstab

from: (for Xen HVM Only)

/etc/fstab
Created by anaconda on Fri May 2 13:00:03 2014

Accessible filesystems, by reference, are maintained under '/dev/disk'
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

UUID=17898259-6979-4bb3-9d73-26ae917e8ed9 / ext3 defaults 1 1
UUID=2c7666fb-e233-4793-899e-c783e3e4f328 swap swap defaults 0 0
UUID=b0dcfd19-a2b1-41a1-8ff6-168732f909dd swap swap defaults 0 0

tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0

to: (for Xen PV Only)

/dev/xvde1 / ext4 defaults 1 1
/dev/vdb swap swap defaults 0 0
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
/dev/xvdf /scratch xfs defaults 0 0

:wq

vi /etc/ssh/sshd_config

from:

Protocol 2
RSAAuthentication no
PubkeyAuthentication no
PasswordAuthentication no
ChallengeResponseAuthentication no
UsePAM yes
KerberosAuthentication yes
KerberosOrLocalPasswd no
KerberosTicketCleanup yes
GSSAPIAuthentication yes
GSSAPIKeyExchange yes
GSSAPICleanupCredentials yes
X11Forwarding yes
AllowTcpForwarding yes
UsePrivilegeSeparation yes
UseDNS no
PermitRootLogin yes

to:

SyslogFacility AUTHPRIV
RSAAuthentication no
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys
PasswordAuthentication yes
KerberosAuthentication no

KerberosOrLocalPasswd no
KerberosTicketCleanup no
GSSAPIAuthentication no
GSSAPICleanupCredentials no
UsePAM no
AllowTcpForwarding yes
X11Forwarding yes
UseLogin no
UseDNS no

:wq

Create a script that captures the public key credentials for your root login
vi /etc/init.d/ec2-get-ssh

#!/bin/bash
chkconfig: 2345 95 20
processname: ec2-get-ssh
description: Capture AWS public key credentials for EC2 user

Source function library
. /etc/rc.d/init.d/functions

Source networking configuration
[-r /etc/sysconfig/network] && . /etc/sysconfig/network

Replace the following environment variables for your system
export PATH=:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin

Check that networking is configured
if ["${NETWORKING}" = "no"]; then
 echo "Networking is not configured."
 exit 1
fi

start() {
 if [! -d /root/.ssh]; then
 mkdir -p /root/.ssh
 chmod 700 /root/.ssh
 fi
 # Retrieve public key from metadata server using HTTP
 curl -f http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key > /tmp/my-public-key
 if [$? -eq 0]; then
 echo "EC2: Retrieve public key from metadata server using HTTP."
 cat /tmp/my-public-key >> /root/.ssh/authorized_keys
 chmod 600 /root/.ssh/authorized_keys
 rm /tmp/my-public-key
 fi

}

stop() {
 echo "Nothing to do here"
}

restart() {
 stop
 start
}

See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 restart
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart}"
 exit 1
esac

exit $?
:wq

Update the runlevel information for the new system service on the image.

/bin/chmod +x /etc/init.d/ec2-get-ssh

chkconfig --level 34 ec2-get-ssh on

chkconfig postfix off
chkconfig autofs off
chkconfig vmcontext off

rpm -ivh /glideinwms-vm-core-0.4-0.2.rc2.el6.noarch.rpm
rpm -ivh /glideinwms-vm-ec2-0.4-0.2.rc2.el6.noarch.rpm

Prevent 10 minute vm shutdown for testing (turn back on after testing)
chkconfig glideinwms-pilot off

make sure /etc/puppet/modules directory is present if not create it
download Puppet Module for CVMFS
puppet module install desalvo-cvmfs

install cvmfs
vi /etc/puppet/modules/cvmfs/manifests/client.pp
add "include cvmfs::client" to the end
:wq
puppet apply /etc/puppet/modules/cvmfs/manifests/client.pp

history -c
exit
fusermount -u work
rmdir /data/work

Resize Image from 256G to 12.1G
qemu-img create [-f format] [-o options] filename [size]

rm gcso_sl6.raw
y
qemu-img create -f raw gcso_sl6.raw 3075M

guestfish
cd /data

guestfish -a gcso_sl6.qcow2tmp
e2fsck-f /dev/sda1
resize2fs-size /dev/sda1 3G
virt-rescue -a gcso_sl6.qcow2tmp
e2fsck -f /dev/sda1
resize2fs /dev/sda1 3G
fdisk -l
blkid -c /dev/null
exit

Resize takes about 7 minutes ?
virt-resize --delete /dev/sda2 --resize /dev/sda1=3G gcso_sl6.qcow2tmp gcso_sl6.raw

Convert Image from QCOW2 to RAW for AWS VM Import (Not used as Virt-Resize replaces this)
qemu-img convert -p -f qcow2 -O raw gcso_sl6.qcow2 ./gcso_sl6.raw

Status of converted 3G raw file
qemu-img info gcso_sl6.raw

Install AWS EC2 API Tools (ec2-api-tools.zip)
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up-ec2-cli-linux.html

Import VM for HVM Snapshot
ec2iin -f RAW -t m3.medium -a x86_64 -b fcloudimport -o AKIAIDJ22XYOSDF3BRPQ -w
SwLUaC5Bi06Bj7KqVKEDW/AOY1qLcLgJ82THqc3C -p Linux --region us-west-2 -z us-west-2a gcso_sl6.raw

Average speed was 22.738 MBps to upload import (~ 10 minutes)
Approx. 20 minutes to convert to AWS Instance after upload
Total time approx 30 minutes.

Status of import
ec2-describe-conversion-tasks

Create AMI from Imported Instance
Snapshot auto created

Launch new HVM AMI Instance
Manual
ssh -i khs-fermi.pem root@nn.nn.nn.nn
Auto
ec2-start-instances instance_id [instance_id...]
ec2-start-instances i-650b6b6e
ip=`ec2-describe-instances i-181e8913 | grep NICASSOCIATION | awk {'print($2)'}`
echo $ip
ssh -i khs-fermi.pem root@$ip

Below only used if pem auth not set up
Accept key
yes
Use root pw (get from admin if needed)
mkdir .ssh
cd .ssh
vi authorized_keys
insert your public key
:wq
chmod 700 ~/.ssh
chmod 600 ~/.ssh/authorized_keys
exit
ssh -i khs-fermi.pem root@nn.nn.nn.nn

Create staged VM Image on AWS HVM 30G Worker Instance
fdisk -l
mkfs -t ext4 /dev/xvdf
mount -t ext4 /dev/xvdf /mnt
cd /mnt
mkdir -p /mnt/images

Create new volume on AWS Worker from fermicloud103
vol=`ec2-create-volume --size 10 --region us-west-2 -z us-west-2a | grep VOLUME | awk {'print($2)'}`

Attach volume on AWS Worker from fermicloud103
ec2-attach-volume --instance i-181e8913 --device /dev/sdg vol-010a8600 --region us-west-2

on AWS Worker
mkfs -t ext4 /dev/xvdg

mkdir -p /opt/ec2/mnt
mount -t ext4 /dev/xvdg /opt/ec2/mnt

Import VM for PV Snapshot

Copy .pem and metadata script from Desktop terminal to FermiCloud103 worker VM
scp -Cq /Users/kshallcross/khs-fermi.pem root@fermicloud103.fnal.gov:/data
scp -Cq -i khs-fermi.pem /Users/kshallcross/Desktop/ec2-metadata root@54.191.225.130:/root
ON AWS Worker
chmod +x ec2-metadata
#List IP addresses
./ec2-metadata -o -v

From FermiCloud103
cd /data
#rsync -S -z -v --progress -e "ssh -i khs-fermi.pem" /data/gcso_sl6.raw root@nn.nn.nn.nn:/mnt/images
rsync -S -z -q -e "ssh -i khs-fermi.pem" /data/gcso_sl6.raw root@54.191.225.130:/mnt/images
yes to auth

Rename grub.conf.pv and fstab.pv to grub.conf and fstab on fermicloud103

cd /mnt/images
mkdir raw
kpartx -a gcso_sl6.raw
mount /dev/mapper/loop0p1 /mnt/images/raw
cd /mnt/images/raw
cd etc
mv fstab fstab.hvm
mv fstab.pv fstab
cd ..
cd boot/grub
mv grub.conf grub.conf.hvm
mv grub.conf.pv grub.conf
cd /mnt/images

Move image to new volume
rsync -aqHx /mnt/images/raw/ /opt/ec2/mnt

rsync -aqHx /mnt/images/raw/dev /opt/ec2/mnt

Label the disk.
cd /opt/ec2/mnt

tune2fs -L '/' /dev/xvdf

Flush all writes and unmount the volume.
sync;sync;sync;sync

cd /mnt/images
umount /mnt/images/raw
kpartx -d gcso_sl6.raw
dmsetup remove /dev/mapper/loop0p1
losetup -d /dev/loop0p1

Move image to new volume (Not used, kpartx rsync above does this)
sudo dd if=/opt/ec2/mnt/gcso_sl6.raw of=/dev/xvdg bs=10M (not needed)
scp root@fermicloud103.fnal.gov:/data/gcso_sl6.raw root@54.187.254.70:/dev/xvdh (not needed)

Detach Volume from fermicloud103
ec2-detach-volume vol-010a8600

Create Snapshot to be used to create PV AMI
ec2-create-snapshot --region us-west-2 -d "gcso_sl6 pv snap" vol-010a8600

Create PV AMI
ec2-register -n "AMI-HK-SLF582" -d "SLF58-Test2" --root-device-name /dev/sda2 -b /dev/sda=snap-fdc5fa09:12:true
--architecture x86_64 --region us-west-2
ec2-register -n "AMI-GCSO-SL6-PV test" -d "AMI-GCSO-SL6-PV test" -b "/dev/sda1=snap-fdc5fa09:10:true:gp2" -b
"/dev/sdb=ephemeral0" --architecture x86_64 --kernel aki-fc8f11cc --region us-west-2

Create and run Instance from PV AMI
ec2-run-instances --region us-west-2 -z us-west-2a ami-d3bec6e3 -g sg-a6a010c3 -n 1 --kernel aki-fc8f11cc -t
m3.medium -k khs-fermi

Create tags for all resources
ec2-create-tags vol-010a8600 snap-fdc5fa09 ami-d3bec6e3 i-6fe08164 vol-c525a9c4 --tag "Name=Fermi GCSO_SL6 PV" --
tag "User=kirkshal"

On new instance mount Scratch on ephemeral0 SSD storage
Modify (append) /etc/rc.d/rc.local
mkfs.xfs /dev/xvdf (already ext3)

mkdir -p /scratch
mount /dev/xvdf /scratch

--

Supportive Documentation below...
Prepare the EBS PV Volume

Below are details that support above statements
Log in to the EC2 instance HVM AMI and create an ext4 filesystem type on the partitionless EBS volume.

/bin/egrep '[xvsh]d[a-z].*$' /proc/partitions
202 65 10485760 xvda1
202 66 156352512 xvda2
202 67 917504 xvda3
202 144 10485760 xvdf

mkfs.ext4 /dev/xvdf

Note that while we specified to attach the EBS volume as device /dev/sdg in the previous step, Amazon Linux
uses the Xen virtual disk notation /dev/xvdn. The volume in my case was attached as /dev/xvdg.

Create a mount point directory and mount the EBS volume.

mkdir -p /opt/ec2/mnt

mount -t ext4 /dev/xvdf /opt/ec2/mnt

mount

/dev/xvda1 on / type ext4 (rw)
none on /proc type proc (rw)
none on /sys type sysfs (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/dev/xvda2 on /mnt/vol1 type ext4 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/dev/xvdf on /opt/ec2/mnt type ext4 (rw)

Remove any local instance storage entries from /etc/fstab if they exist. Booting from an EBS volume does not
use local instance storage by default. If you followed this guide to create the instance store-backed AMI, remove
the local instance storage entry in /etc/fstab.

cat /etc/fstab | grep -v mnt > /tmp/fstab

mv /etc/fstab /etc/fstab.bak

mv /tmp/fstab /etc/fstab

Sync the root and dev file systems to the EBS volume.

rsync -S -z -v --progress -e "ssh -i khs-fermi.pem" /data/gcso_sl6.raw root@54.187.254.70:/opt/ec2/mnt

rsync -aqHx / /opt/ec2/mnt

rsync -aqHx /dev /opt/ec2/mnt

Label the disk.

tune2fs -L '/' /dev/xvdg

Flush all writes and unmount the volume.

sync;sync;sync;sync

umount /opt/ec2/mnt

Detach Volume

Create Snapshot from Volume to be used to create PV AMI

Create PV AMI

Create Instance from PV AMI

Modify (append) /etc/rc.d/rc.local
Make a Scratch file system
mkdir -p /scratch

Mount and Unmount Paravirtual
mkfs.xfs -f /dev/xvdf
mount /dev/xvdf /scratch
umount /scratch

Mount and Unmount HVM
mkfs.xfs -f /dev/xvdb
mount /dev/xvdb /scratch
umount /scratch

display fs info
fdisk -l
df -h
blkid -c /dev/null

Linux Release info
cat /etc/*release
uname -a

Find files
find / -name xxx* 2> /dev/null

#Setup Expect
yum install tcl-devel tk-devel expect-devel expectk

File: puppetrepo-awsexport/files/opt/gcso/awsexport/docs/samplemime.txt
Content-Type: multipart/mixed; boundary="===============3302562582348490243=="
MIME-Version: 1.0

--===============3302562582348490243==
Content-Type: text/x-shellscript; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="my-user-script.txt"

#!/bin/bash
echo "=========Hello Fermi=========" > /root/fermihello1.txt

--===============3302562582348490243==
Content-Type: text/cloud-config; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="my-cloudconfig.txt"

#cloud-config
cloud_final_modules:
 - rightscale_userdata
 - scripts-per-once
 - scripts-per-boot
 - scripts-per-instance
 - [scripts-user, always]
 - ssh-authkey-fingerprints
 - keys-to-console
 - phone-home
 - final-message

runcmd:

 - [sh, -c, echo "=========Hello Fermi=========" > /root/fermihello2.txt]

--===============3302562582348490243==--

File: puppetrepo-awsexport/files/opt/gcso/awsexport/ec2-get-ssh
#!/bin/bash
chkconfig: 2345 95 20
processname: ec2-get-ssh
description: Capture AWS public key credentials for EC2 user

Source function library
. /etc/rc.d/init.d/functions

Source networking configuration
[-r /etc/sysconfig/network] && . /etc/sysconfig/network

Replace the following environment variables for your system
export PATH=:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin

Check that networking is configured
if ["${NETWORKING}" = "no"]; then
 echo "Networking is not configured."
 exit 1
fi

start() {
 if [! -d /root/.ssh]; then
 mkdir -p /root/.ssh
 chmod 700 /root/.ssh
 fi
 # Retrieve public key from metadata server using HTTP
 curl -f http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key > /tmp/my-public-key
 if [$? -eq 0]; then
 echo "EC2: Retrieve public key from metadata server using HTTP."
 cat /tmp/my-public-key >> /root/.ssh/authorized_keys
 chmod 600 /root/.ssh/authorized_keys
 rm /tmp/my-public-key
 fi
}

stop() {
 echo "Nothing to do here"
}

restart() {
 stop
 start

}

See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 restart
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart}"
 exit 1
esac

exit $?

File: puppetrepo-awsexport/files/opt/gcso/awsexport/gcso.pem
-----BEGIN RSA PRIVATE KEY-----

[SNIP]

-----END RSA PRIVATE KEY-----

File: puppetrepo-awsexport/manifests/awsexport.pp
include awsexport
class { 'awsexport': }

File: puppetrepo-awsexport/manifests/awsexport_params.pp
#contains parameters for the awsexport::awsexport class

define awsexport::awsexport_params (
 $cvm_file_location,

 $cvm_image_location,
 $ckernel_ver,
 $cvm_number,
 $cvm_name,
 $cvm_owner,
 $caws_image_name,
 $caws_image_owner,
 $caws_instance,
 $caws_key,
 $caws_secret_key,
 $caws_pem_name,
 $caws_worker_instance_id,
 $caws_owner_keypair_name,
 $caws_eph_mount
)
{
include awsexport

create a cron job

$command = "/opt/gcso/awsexport/Convert.py $cvm_file_location $cvm_image_location $ckernel_ver $cvm_number
$cvm_name $cvm_owner $caws_image_name $caws_image_owner $caws_instance $caws_key $caws_secret_key $caws_pem_name
$caws_worker_instance_id $caws_owner_keypair_name $caws_eph_mount"

$environmentv = ['MAILTO=kirkshal@fnal.gov', 'JAVA_HOME=/usr/lib/jvm/jre-1.6.0-openjdk.x86_64',
'EC2_BASE=/usr/local/ec2', 'EC2_HOME=/usr/local/ec2/ec2-api-tools-1.7.1.0', 'EC2_URL=https://ec2.us-west-
2.amazonaws.com', 'PATH=/usr/lib64/qt-
3.3/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/usr/local/ec2/ec2-api-tools-
1.7.1.0/bin', 'AWS_ACCOUNT_NUMBER=159067897602', "AWS_ACCESS_KEY_ID=${caws_key}",
"AWS_SECRET_ACCESS_KEY=${caws_secret_key}"]

 cron {'awsexport':

 minute => '15',

 hour => '00',

 monthday => '26',

 month => '8',

 weekday => '*',

 user => 'root',

 command => $command,

 environment => $environmentv;

 }

}

File: puppetrepo-awsexport/manifests/gcso_sl6_giwms_pv.pp
#contains parameters for the gcso_sl6 GIWMS PV image conversion
 awsexport::awsexport_params {'gcso_sl6_giwms_pv':
 cvm_file_location => '/opt/gcso/awsexport',
 cvm_image_location => 'oneadmin@fcl008:/var/lib/one/local/images/6a50ad27120ad62979d75ba2dbfc8e98',
 ckernel_ver => '2.6.32-431.23.3.el6.x86_64',
 cvm_number => '103',
 cvm_name => 'gcso_sl6_giwms',
 cvm_owner => 'kirkshal',
 caws_image_name => 'GCSO_SL6_GIWMS_PV',
 caws_image_owner => 'gcso',
 caws_instance => 'm3.medium',
 caws_key => 'AKIAJX75FCYK6SAOW4DQ',
 caws_secret_key => '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',
 caws_pem_name => 'gcso.pem',
 caws_worker_instance_id => 'i-3eb6e435',
 caws_owner_keypair_name => 'gcso',
 caws_eph_mount => 'none',
 }

File: puppetrepo-awsexport/manifests/gcso_sl6_hvm.pp
#contains parameters for the gcso_sl6 HVM image conversion
 awsexport::awsexport_params {'gcso_sl6_hvm':
 cvm_file_location => '/opt/gcso/awsexport',
 cvm_image_location => 'oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5',
 ckernel_ver => '2.6.32-431.23.3.el6.x86_64',
 cvm_number => '103',
 cvm_name => 'gcso_sl6',
 cvm_owner => 'kirkshal',
 caws_image_name => 'GCSO_SL6_HVM',
 caws_image_owner => 'gcso',
 caws_instance => 'm3.medium',
 caws_key => 'AKIAJX75FCYK6SAOW4DQ',
 caws_secret_key => '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',
 caws_pem_name => 'gcso.pem',

 caws_worker_instance_id => 'hvm',
 caws_owner_keypair_name => 'gcso',
 caws_eph_mount => '/scratch',
 }

File: puppetrepo-awsexport/manifests/gcso_sl6_pv.pp
#contains parameters for the gcso_sl6 PV image conversion
 awsexport::awsexport_params {'gcso_sl6_pv':
 cvm_file_location => '/opt/gcso/awsexport',
 cvm_image_location => 'oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5',
 ckernel_ver => '2.6.32-431.23.3.el6.x86_64',
 cvm_number => '103',
 cvm_name => 'gcso_sl6',
 cvm_owner => 'kirkshal',
 caws_image_name => 'GCSO_SL6_PV',
 caws_image_owner => 'gcso',
 caws_instance => 'm3.medium',
 caws_key => 'AKIAJX75FCYK6SAOW4DQ',
 caws_secret_key => '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',
 caws_pem_name => 'gcso.pem',
 caws_worker_instance_id => 'i-3eb6e435',
 caws_owner_keypair_name => 'gcso',
 caws_eph_mount => '/scratch',
 }

File: puppetrepo-awsexport/manifests/init.pp
This class deploys all the files for the awsexport scripts that Kirk has developed (Aug 2014).
include cron
class awsexport {

create awsexport source directory
 file {'/opt/gcso/awsexport':
 ensure => 'directory',
 owner => 'root',
 group => 'root',
 recurse => true,
 source => 'puppet:///files/opt/gcso/awsexport',
 }

create data directory

 file { "/data":
 ensure => "directory",
 owner => 'root',
 group => 'root',
 recurse => true,
 }

Setup by path properties for the different puppet resources

 Exec {
 path => ['/usr/lib64/qt-
3.3/bin','/usr/krb5/bin','/bin','/usr/local/bin','/usr/bin','/usr/local/sbin','/usr/sbin','/sbin','/root/bin','/u
sr/local/ec2/ec2-api-tools-1.7.1.0/bin'],
 }

}

Puppet&Procedure&to&run&Fermi2AWS&Export&
&

1.&&For&a&Paravirtual&image&on&AWS:&(Copy&these&for&other&images&and&rename&them)&
&
– vi&/etc/puppet/modules/awsexport/manifests/gcso_sl6_pv.pp&&
– change¶meters&to&your&credentials.&
– *Note:&Obtain&HVM&worker&instance&id&from&aws&console&(caws_worker_instance_id&=>&'iS7788c97c',)&
&
– #contains¶meters&for&the&gcso_sl6&PV&image&conversion&
– awsexport::awsexport_params&{'gcso_sl6_pv':&
– cvm_file_location&=>&'/opt/gcso/awsexport',&
– cvm_image_location&=>&'oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5',&
– ckernel_ver&=>&'2.6.32S431.23.3.el6.x86_64',&
– cvm_number&=>&'103',&
– cvm_name&=>&'gcso_sl6',&
– cvm_owner&=>&'your&Fermi&username',&
– caws_image_name&=>&'GCSO_SL6_PV',&
– caws_image_owner&=>&'gcso',&
– caws_instance&=>&'m3.medium',&
– caws_key&=>&'add&aws&owner&key&here',&
– caws_secret_key&=>&'add&aws&secret&owner&key&here',&
– caws_pem_name&=>&'gcso.pem',&
– caws_worker_instance_id&=>&'iS7788c97c',&
– caws_owner_keypair_name&=>&'gcso',&
– caws_eph_mount&=>&'/&ephemeral_mount_dir&or&none',&
– }&

&
2.&&For&a&HVM&image&on&AWS:&(Copy&these&for&other&images&and&rename&them)&
&
– vi&/etc/puppet/modules/awsexport/manifests/gcso_sl6_hvm.pp&&
– change¶meters&to&your&credentials.&
– *Note:&DO&NOT&CHANGE&&(caws_worker_instance_id&=>&'hvm',)&leave&as&‘hvm’&to&create&a&worker&vm&on&aws&
&
– #contains¶meters&for&the&gcso_sl6&HVM&image&conversion&
– awsexport::awsexport_params&{'gcso_sl6_hvm':&
– cvm_file_location&=>&'/opt/gcso/awsexport',&
– cvm_image_location&=>&'oneadmin@fcl008:/var/lib/one/local/images/55c42a4cc7f87ea3390bc2bef14212c5',&
– ckernel_ver&=>&'2.6.32S431.23.3.el6.x86_64',&
– cvm_number&=>&'103',&
– cvm_name&=>&'gcso_sl6',&
– cvm_owner&=>&'your&Fermi&username&',&
– caws_image_name&=>&'GCSO_SL6_HVM',&
– caws_image_owner&=>&'gcso',&
– caws_instance&=>&'m3.medium',&
– caws_key&=>&'add&aws&owner&key&here',&
– caws_secret_key&=>&'add&aws&secret&owner&key&here',&
– caws_pem_name&=>&'gcso.pem',&
– caws_worker_instance_id&=>&'hvm',&
– caws_owner_keypair_name&=>&'gcso',&
– caws_eph_mount&=>&'/ephemeral_mount_dir&or&none',&
– }&
&
3.&&To&setup&Crontab&jobs:&
&
– vi&/etc/puppet/modules/awsexport/manifests/awsexport_params.pp&&

&
– Change&MAILTO=username@fnal.gov&to&your&email&address&to&receive&cron&job&completion&emails.&

&
– Change&the&runtime&schedule&to&what&you&want:&

&
– cron&{'awsexport':&

&
&&&&minute&&&&&&=>&'55',&
&
&&&&hour&&&&&&&&=>&'10',&
&
&&&&monthday&&&&=>&'14',&
&
&&&&month&&&&&&&=>&'8',&
&
&&&&weekday&&&&&=>&'*',&

&
&
&
&
4.&&Run&Puppet&apply&to&set&crontab&job&for&AWS&HVM&worker:&
&
– run&‘puppet&apply&/etc/puppet/modules/awsexport/manifests/gcso_sl6_hvm.pp’&

&
– wait&for&cron&completion&email&(in&about&1.5&hours&for&a&HVM&Conversion)&

&
– detail&job&log&is&located&at:&/opt/gcso/awsexport/aws_image_convert.log&&

&
– obtain&aws&console&HVM&worker&node&‘instance&id’&for&subsequent&PV&conversion&runs.&

&
– *Note:&this&HVM&worker&node&is&needed&only&once.&It&can&be&run&again&for&other&images,&if&you&want&to&provide&HVM&AMI’s&and&

instances&on&AWS.&
&

&
5.&&Run&Puppet&apply&to&set&crontab&job&for&AWS&PV&Images:&
&
– run&‘puppet&apply&/etc/puppet/modules/awsexport/manifests/gcso_sl6_pv.pp’&

&
– wait&for&cron&completion&email&(in&about&55&minutes&for&a&PV&Conversion)&

&
– detail&job&log&is&located&at:&/opt/gcso/awsexport/aws_image_convert.log&

&
– check&aws&console&to&see&PV&AMI’s&and&instances.&

&
– *Note:&this&job&can&run,&as&needed,&to&obtain&a&latest&AWS&image.&The&AWS&AMI’s&and&instances&are&timeSstamped&to&identify&the&

latest&version.&
&

&
&
&
&
&
&
&































































































































































































































































































































































































































































































































































































































































































































































































































!
!
!
!

Microsoft!Windows!Azure!
Google!Compute!Engine!
Quick&reference&on&virtual&machines&management&

!

Alessio!Balsini!

10/01/2014&

& !

Contents'
Azure&and&Google&Cloud&VM&Instances&Creation&Through&Web&Interface&...&3&

Azure&..&3&

Instance&Creation&...&3&

Notes&...&6&

Google&Cloud&...&7&

Instance&Creation&...&7&

Instance&Image&Upload&and&Instance&Creation&by&Command&Line&..&10&

Microsoft&Windows&Azure&Custom&Data&...&12&

Google&Cloud:&Google&Compute&Engine&in&Detail&..&13&

Accessing&the&REST&API&..&13&

Prerequisites&..&13&

Authentication&...&14&

Rest&API&..&16&

Replica&Pools&and&Autoscaler&...&17&

Replica&Pools&management&...&17&

Autoscaler&management&...&18&

Metadata&Management&...&19&

Setting&Metadata&...&19&

Getting&Metadata&..&20&

&

& '

Azure'and'Google'Cloud'VM'Instances'Creation'Through'Web'Interface'
The&Web&interfaces&are&the&easiest&way&of&managing&projects&and&a&welcoming&tool&for&the&newcomers&
approaching&the&new&environment.&

Azure'

Instance'Creation'
Log&into&the&Azure&console&at&https://manage.windowsazure.com/.&

Click&the&"NEW"&button&in&the&bottomXleft&of&the&main&window.&

&

Now,&select&
COMPUTE&X>&VIRTUAL&MACHINE&X>&FROM&GALLERY&

&

Choose&your&favorite&disk&image.&In&the&example,&an&Ubuntu&Server&12.04&is&chosen,&but&it&is&also&possible&
to&choose&custom&images&previously&uploaded.&

&

Choose&the&virtual&machine&name&and&authentication&method.&

&

Check&any&other&preferences.&

&

&

Notes'
• There's&no&way&to&submit&User&Metadata&(which&Microsoft&calls&Custom&Data)&through&the&web&

interface.&The&VM&must&be&initialized&by&command&line&at&initialization&phase.&
• To&manually&upload&custom&disk&images,&follow&the&steps&described&here:&

http://azure.microsoft.com/enXus/documentation/articles/virtualXmachinesXlinuxXcreateX
uploadXvhd&

& &

Google'Cloud'

Instance'Creation'
Log&into&the&Google&Cloud&console&at&https://console.developers.google.com/.&

Choose&your&project.&

&

Make&sure&you&have&enabled&the&"Google&Compute&Engine"&API&in&

APIs&&&auth&X>&APIs&

&

Create&a&new&Virtual&Machine&instance&in&

Compute&X>&Compute&Engine&X>&VM&instances&

&

Set&the&VM's:&

• name,&

• meta&keys&(optional),&
• zone,&
• machine&type,&
• image.&

Then&create&the&image.&

In&the&bottom&of&the&page,&it&is&possible&to&convert&the¶meter&chosen&with&the&webpage&to&
commands&that&can&be&used&to&perform&the&same&action&with&gcloud&or&REST&APIs.&

&

&

After&a&few&seconds,&the&new&instance&will&be&shown&and&will&be&accessible&soon.&

&

Instance'Image'Upload'and'Instance'Creation'by'Command'Line'
Google&Cloud&allows&the&user&to&upload&Virtual&Machine&images&(compressed&raw&images)&that&can&be&
run.&

It&is&possible&to&set&up&a&Virtual&Machine&image&compatible&with&Google&Cloud&by&following&the&
instructions&described&here&https://developers.google.com/compute/docs/images&or,&simply,&by&using&
the&tool&https://github.com/GoogleCloudPlatform/computeXimageX
packages/tree/master/gcimagebundle,&that&automatically&creates&an&image&of&the&Google&Cloud&disk,&so&
that&it&can&be&customized&and&uploaded&back.&

Once&the&image&is&ready,&the&following&steps&will&be&required&to&upload&it&and&put&it&in&execution.&

0) Setup&the&gcloud&tools:&
`curl&https://sdk.cloud.google.com&|&bash`&
and&restart&the&shell.&

1) Authenticate:&
With&gcloud,&the&first&step&is&to&add&a&Google&Cloud&account.&
`gcloud&auth&login&<account&name>`&
This&authentication&method&requires&a&web&browser,&so&is&simple&and&straightforward&for&a&
desktop&user.&

2) Create&a&bucket:&
The&first&step&for&uploading&a&VM&disk&image&is&to&create&the&space&in&Google&Cloud&Storage.&
The&bucket&ownership&has&to&be&verifiable,&so&the&bucket&name&must&be&equal&to&the&DNS&name&
of&an&owned&domain.&
In&my&case,&the&domain&name&of&my&website&was&"www.welovebinary.it",&so&I&used&
"gs://www.welovebinary.it/":&
`gsutil&mb&gs://DOMAIN`&

3) Upload&the&tar.gz:&
Once&you&have&a&working&image,&it&is&possible&to&upload&it:&
`gsutil&cp&raw.image.tar.gz&gs://DOMAIN`&

4) Create&the&image&from&tar.gz:&
`gcloud&compute&images&create&myXimageXtest&XXsourceXuri&gs://DOMAIN`&
If&all&worked,&then&the&image&should&appear&in&the&list&
`gcloud&compute&images&list`&

5) Run&a&new&VM&instance:&
`gcloud&compute&instances&create&myXinstanceXtest&XXimage&myXimageXtest&XXzone&usXcentral1Xa`&

6) Log&into&the&image:&
`gcloud&compute&ssh&myXinstanceXtest`&

& '

Microsoft'Windows'Azure'Custom'Data'
As&I&discovered,&there's&no&user&metadata&feature&in&Azure,&equivalent&to&AWS&or&GCE,&yet,&but&Azure&has&

a&similar&feature&for&passing¶meters&to&VMs,&referred&to&as&"custom&data".&

This&mechanism&basically&passes&the¶meters&to&the&VM&by&constructing&a&file&(in&initialization&phase)&

in&the&VM's&filesystem.&

This&file&contains&a&baseX64&encoded&string&and&can&be&retrieved&(in&linux)&in&

"/var/lib/waagent/ovfXenv.xml"&

and&one©&of&this&file&is&also&created&(documentations&says,&but&in&reality&it&is¬)&in&

"/var/lib/waagent/CustomData"&

One&way&to&set&the&content&of&the&file&is&through&the&commandXline&tool&(`azure&vm&create`)&by&adding&

the&"Xd/XXcustomXdata&<customXdataXfile>"¶meter.&

The&ovfXenv.xml&file&has&the&following&format:&

-

<?xml ver s i on="1. 0" encodi ng="ut f - 8"?>

<Envi r onment xml ns="ht t p: / / s chemas . dmt f . or g/ ovf / envi r onment / 1"
xml ns : oe="ht t p: / / s chemas . dmt f . or g/ ovf / envi r onment / 1"
xml ns : wa="ht t p: / / s chemas . mi cr osof t . com/ wi ndowsazur e"
xml ns : xs i ="ht t p: / / www. w3. or g/ 2001/ XMLSchema- i ns t ance">

<wa: Pr ovi s i oni ngSect i on><wa: Ver s i on>1. 0</ wa: Ver s i on><Li nuxPr ovi s i oni ngConf i gur at i onSe
t xml ns="ht t p: / / s chemas . mi cr osof t . com/ wi ndowsazur e"
xml ns : i ="ht t p: / / www. w3. or g/ 2001/ XMLSchema-
i ns t ance"><Conf i gur at i onSet Type>Li nuxPr ovi s i oni ngConf i gur at i on</ Conf i gur at i onSet Type>
<Hos t Name>myI mage1</ Hos t Name><User Name>azur euser </ User Name><User Passwor d>al sCSF##1293
87</ User Passwor d><Di sabl eSshPasswor dAut hent i cat i on>f al se</ Di sabl eSshPasswor dAut hent i c
at i on><Cus t omDat a>cHJvdmEgY3VzdG9t I GRhdGEgZml sZQo=</ Cus t omDat a></ Li nuxPr ovi s i oni ngCon
f i gur at i onSet ></ wa: Pr ovi s i oni ngSect i on>

 <wa: Pl at f or mSet t i ngsSect i on><wa: Ver s i on>1. 0</ wa: Ver s i on><Pl at f or mSet t i ngs
xml ns="ht t p: / / s chemas . mi cr osof t . com/ wi ndowsazur e"
xml ns : i ="ht t p: / / www. w3. or g/ 2001/ XMLSchema-
i ns t ance"><KmsSer ver Hos t name>kms . cor e. wi ndows . net </ KmsSer ver Hos t name><Pr ovi s i onGues t A

gent >t r ue</ Pr ovi s i onGues t Agent ><Gues t Agent PackageName>Wi n7_Wi n8_I aaS_r d_ar t _s t abl e_14
0703-
0050_Gues t Agent Package. zi p</ Gues t Agent PackageName></ Pl at f or mSet t i ngs></ wa: Pl at f or mSet
t i ngsSect i on>

</ Envi r onment >

-

From&that&file,&it&is&possible&to&get&back&the&"custom&data"&encapsulated&in&the&<CustomData>&tag&and&
obtain&the&original&text&by&baseX64&decoding&it.&

&The&ONLY&limitation&on&the&"custom&data"&is&the&size&(the&maximum&length&of&the&binary&array&is&65535&
bytes).&

Google'Cloud:'Google'Compute'Engine'in'Detail'

Accessing'the'REST'API'
I&discovered&an&issue&with&the&GCE's&OAuth2&authentication&method&through&the&REST&API.&The&issue&has&
been&accepted,&but¬&yet&solved,&so,&the&only&way&of&using&the&REST&API&with&GCE&is&by&authenticating&
with&other&approaches.&

In&the&next&steps&I&will&use&the&Python&API&to&authenticate,&obtaining&the&access&token&needed&by&the&
REST&API.&

Prerequisites'
Python&2.5,&2.6,&or&2.7&is&required.&

&

Install&the&pip&tool:&

Download&https://bootstrap.pypa.io/getXpip.py&

And&execute&it,&as&superuser.&

&

Install&Google&API&Python&client&

#&pip&install&XXupgrade&googleXapiXpythonXclient&

(http://github.com/google/googleXapiXpythonXclient)&

&

Install&OAuth2&Python&client&

pip&install&XXupgrade&oauth2client&

(https://github.com/google/oauth2client)&

Authentication'
As&described&in&"https://developers.google.com/compute/docs/api/pythonXguide",&it&is&possible&to&get&

authenticated&with&the&Python&API.&

First&of&all,&from&the&Google&Cloud&Console&(https://console.developers.google.com),¬e&your&project&id&

(next,&will&be&called&"MY_PROJECT_ID")&access&the&project&and,&on&the&left&column,&reach&

"APIs&&&auth&X>&Credentials"&

create&a&new&OAuth&Client&ID&(Installed&application&X>&Other).&

Download&the&JSON&file&associated&to&the&just&created&"Client&ID&for&native&application".&

Save&the&JSON&file&as&"client_secrets.json"&in&the&folder&you'll&place&the&next&script.&

The&following&Python&script&returns&the&access&token&needed&by&the&GCE&REST&API.&

-

#! / us r / bi n/ env pyt hon

i mpor t j son

f r om ppr i nt i mpor t ppr i nt

i mpor t l oggi ng

i mpor t sys

i mpor t ar gpar se

i mpor t ht t pl i b2

f r om oaut h2cl i ent . cl i ent i mpor t f l ow_f r om_cl i ent secr et s

f r om oaut h2cl i ent . f i l e i mpor t St or age

f r om oaut h2cl i ent i mpor t t ool s

f r om oaut h2cl i ent . t ool s i mpor t r un_f l ow

f r om api cl i ent . di scover y i mpor t bui l d

DEFAULT_ZONE = ' us - cent r al 1- a'

API _VERSI ON = ' v1'

GCE_URL = ' ht t ps : / / www. googl eapi s . com/ comput e/ %s / pr oj ect s / ' % (API _VERSI ON)

PROJECT_I D = ' MY_PROJECT_I D'

CLI ENT_SECRETS = ' cl i ent _secr et s . j son'

OAUTH2_STORAGE = ' oaut h2aut h. dat '

GCE_SCOPE = ' ht t ps : / / www. googl eapi s . com/ aut h/ comput e'

def mai n(ar gv) :

 l oggi ng. bas i cConf i g(l evel =l oggi ng. I NFO)

 par ser = ar gpar se. Ar gument Par ser (

 descr i pt i on=__doc__,

 f or mat t er _cl as s=ar gpar se. RawDescr i pt i onHel pFor mat t er ,

 par ent s=[t ool s . ar gpar ser])

 # Par se t he command- l i ne f l ags .

 f l ags = par ser . par se_ar gs (ar gv[1:])

 # Per f or m OAut h 2. 0 aut hor i zat i on.

 f l ow = f l ow_f r om_cl i ent secr et s (CLI ENT_SECRETS, scope=GCE_SCOPE)

 s t or age = St or age(OAUTH2_STORAGE)

 cr edent i al s = s t or age. get ()

 i f cr edent i al s i s None or cr edent i al s . i nval i d:

 cr edent i al s = r un_f l ow(f l ow, s t or age, f l ags)

 ht t p = ht t pl i b2. Ht t p()

 aut h_ht t p = cr edent i al s . aut hor i ze(ht t p)

 s t or age_dat a = open(OAUTH2_STORAGE)

 s t or ageDat a = j son. l oad(s t or age_dat a)

 s t or age_dat a. cl ose()

 pr i nt s t or ageDat a["access_t oken"]

i f __name__ == ' __mai n__' :

 mai n(sys . ar gv)

-

Rest'API'
A&simple&REST&call&that&returns&the&project's&instances&info&contains&is&a&GET&request&to:&

"https://www.googleapis.com/compute/v1/projects/MY_PROJECT_ID/zones/usXcentral1Xa/instances"&

That&contains&in&the&header&the&following&access&token:&

"Authorization:&Bearer&ACCESS_TOKEN_RETURNED_BY_PYTHON_SCRIPT"&

In&Curl,&it's&the&following:&

$&curl&XH&"Authorization:&Bearer&ACCESS_TOKEN_RETURNED_BY_PYTHON_SCRIPT"&XX&GET&
"https://www.googleapis.com/compute/v1/projects/MY_PROJECT_ID/zones/usXcentral1Xa/instances"&

Replica'Pools'and'Autoscaler'
The&Google&Compute&Engine&Replica&Pool&provides&the&tools&for&managing&a&set&of&equivalent&

(homogeneous)&virtual&machine&instances,&all&generated&starting&from&a&single&configuration.&

By&combining&the&Replica&Pool&with&Autoscaler,&it&is&possible&to&dynamically&adjust&the&pool&size,&based&

on&specific&pool&metrics,&like&average&CPU&load,&network&transfers,&I/O&requests,&etc..&

Replica&Pool&is¤tly&under&development,&so,&the&only&way&to&use&that&is&by&being&authorized&to&join&

the&Limited&Preview.&

After&joining,&enable&the&Google&Compute&Engine&and&Autoscaler&APIs&from&the&Google&Developer&

Console&(APIs&&&auth&X>&APIs).&

Replica'Pools'management'
Because&of&the&limited&preview,&also&the&gcloud&tool&instructions&for&managing&the&Replica&Pools&are&

hidden.&Activate&them&with&the&following&command:&

$&gcloud&components&update&preview&

Now&the&tool&is&ready&and&keep&in&mind&that&for&any&command&invocation,&the&following&syntax&has&to&be&

used:

$&gcloud&preview&replicaXpools&XXzone&ZONE&COMMAND&

Let's&start&creating&a&Replica&Pool.&The&first&step&is&to&create&a&JSON&template&from&which&each&replica&will&

be&generated.&Let's&call&it&exampleXtemplate.json&and&fill&it&with&

"t empl at e": {

 "vmPar ams": {

 "machi neType": "n1- s t andar d- 1",

 "baseI ns t anceName": "my- r epl i ca" ,

 "di sksToCr eat e": [{

 "boot " : " t r ue" ,

 " i ni t i al i zePar ams": {

 "sour ceI mage": "ht t ps : / / www. googl eapi s . com/ comput e/ v1/ pr oj ect s / debi an-
cl oud/ gl obal / i mages / debi an- 7- wheezy- v20140828",

 "di skSi zeGb": "100"

 }

 }] ,

 "net wor kI nt er f aces": [{

 "net wor k": "def aul t " ,

 "acces sConf i gs": [{

 " t ype": "ONE_TO_ONE_NAT",

 "name": "Ext er nal NAT"

 }]

 }]

 }

}

Other&important&settings&that&can&be&inserted&in&the&JSON&file&are&user&metadata&and&explicit&instructions&
that&will&be&launched&at&instances'&boot.&

To&create&the&Replica&Pool,&it&is&possible&to&use&the&following&command&

$&gcloud&preview&replicaXpools&XXzone&usXcentral1Xa&create&exampleXpool&\&

& XXsize&3&XXtemplate&exampleXtemplate.json&

To&verify&the&correct&creation&of&the&Replica&Pool&the&following&command&can&be&launched:&

$&gcloud&preview&replicaXpools&XXzone&usXcentral1Xa&list&

And,&to&see&the&list&of&replicas&inside&the&pool,&launch:&

$&gcloud&preview&replicaXpools&XXzone&usXcentral1Xa&replicas&XXpool&exampleXpool&list&

To&delete&the&pool,&simply&launch:&

$&gcloud&preview&replicaXpools&XXzone&usXcentral1Xa&delete&exampleXpool&

This&command&deletes&all&the&instances&of&the&pool.&It&is&possible&to&choose&the&instances&that&should¬&
be&automatically&deleted&by&writing&their&names&at&the&bottom&of&the&command:&

$&gcloud&preview&replicaXpools&XXzone&ZONE&delete&exampleXpool&myXreplicaX387m&myXreplicaX1120e&

Autoscaler'management'
Let's&add&a&more&interesting&feature&to&the&replica&pool:&the&Autoscaler.&

The&Autoscaler&basically&handles&a&set&of&requirements&and&manages&the&number&of&replicas&in&the&

Replica&Pool.&The&number&of&replicas&is&chosen&as&the&minimum&that&respects&the&requirements.&

Let's&suppose&we&want&to&add&an&Autoscaler&that:&

• keeps&the&overall&CPU&load&of&the&instances&of&the&pool&below&the&80%;&

• keeps&the&number&of&instances&in&the&interval&[1,&20];&

• checks&the&metrics&every&15&seconds.&

Take&the&address&of&the&replica&pool&you&want&to&associate&the&Autoscaler:&

$&gcloud&preview&replicaXpools&XXzone&usXcentral1Xa&list&

Use&that&address&as&"XXtarget"&argument&of&the&call:&

$&gcloud&preview&autoscaler&XXzone&usXcentral1Xa&create&exampleXautoscaler&XXcoolXdownXperiod&15&\&

& XXmaxXnumXreplicas&20&XXminXnumXreplicas&1&XXtargetXcpuXutilization&0.8&

& XXtarget&https://www.googleapis.com/replicapool/v1beta1/projects/feistyXrangerX663/zones/usX

central1Xa/pools/exampleXpool&

To&delete&the&Autoscaler,&just&launch:&

$&gcloud&preview&autoscaler&XXzone&usXcentral1Xa&delete&exampleXautoscaler&

Metadata'Management'
Google&Compute&Engine&allows&to&set&user&metadata&non&only&at&instances&creation,&but&also&when&

instances&are&running.&

This&is&an&easy&way&of&sending¶meters&to&virtual&machines.&

Setting'Metadata'
There&are&two&possibilities&for&setting&metadata:&

• adding&a&metadata&header&to&a&file&being&uploaded&to&Google&Cloud&bucket&(in&the&following&

examples,&the&bucket&will&be&addressable&as&"gs://MYDOMAIN/");&

• setting&metadata&to&an&already&existing&object.&

Let's&follow&the&step&for&accomplishing&the&first&step.&Let's&suppose&that&we&want&to&upload&my_file,&with&

some&metadata.&To&add&the&simple&metadata&header,&it's&possible&to&launch&the&command&

$&gsutil&Xh&"ContentXType:text/html"&Xh&"CacheXControl:public,&maxXage=3600"&cp&Xr&my_file&

gs://DOMAIN&

In&the&second&case,&for&example,&to&set&"my_file"'s&metadata,&it&is&possible&to&use&the&"setmeta"&

command:&

$&gsutil&setmeta&Xh&"ContentXType:text/html"&Xh&"CacheXControl:public,&maxXage=3600"&\&

& Xh&"ContentXDisposition"&gs://MYDOMAIN/my_file&

To&read&the&uploaded&file,&an&easy&way&is&to&launch&

`$&gsutil&cat&gs://MYDOMAIN/my_file`&

Getting'Metadata'
To&get&the&header&metadata&associated&to&"my_file",&can&be&launched&the&following&command:&

$&gsutil&ls&XL&gs://MYDOMAIN/my_file&

Only&from&the&virtual&machine&instance,&is&possible&to&get&the&metadata&associated&to&the&instance&itself.&

It&is&done&by&querying&the&link&"http://metadata.google.internal/computeMetadata/v1/XXX",&and&adding&

"MetadataXFlavor:&Google"&to&the&request&header.&

The&address&that&ends&with&'/'&is&a&directory,&otherwise&is&an&entry&point.&

The&command&for&getting&metadata&will&be&similar&to&the&following:&

$&curl&"http://metadata.google.internal/computeMetadata/v1/instance/disks/"&\&

& XH&"MetadataXFlavor:&Google"&

The&CUSTOM&metadata,&in&particular,&is&stored&in&"attributes"&folder:&

"http://metadata.google.internal/computeMetadata/v1/<instance|project>/attributes/"&

FERMI NATIONAL ACCELERATOR LABORATORY

Ceph Project at FNAL

Firstname Lastname

October 16, 2014

1 INTRODUCTION TO CEPH

Ceph is a open source storage platform designed to present object, block, and file storage from a
single distributed computer cluster. Ceph’s main goals are to be completely distributed without a
single point of failure, scalable to the exabyte level, and freely-available. The data is replicated,
making it fault tolerant. Ceph software runs on commodity hardware. The system is designed
to be both self-healing and self-managing and strives to reduce both administrator and budget
overhead.

Ceph’s software libraries provide client applications with direct access to the reliable autonomic
distributed object store (RADOS) object-based storage system, and also provide a foundation for
some of Ceph’s features, including RADOS Block Device (RBD), RADOS Gateway, and the Ceph
File System.

1.1 CEPH STORAGE CLUSTER

A Ceph Storage Cluster requires at least one Ceph Monitor and at least two Ceph OSD Daemons.
The Ceph Metadata Server is essential when running Ceph Filesystem clients.

• Ceph OSDs: A Ceph OSD Deamon stores data, handles data replication, recovery, backfilling,
rebalancing, and provides some monitoring information to Ceph Monitors by checking
other Ceph OSD Daemons for a heartbeat. A Ceph Storage Cluster requires at least two
Ceph OSD Daemons to achieve an active + clean state when the cluster makes two copies
of your data.

• Monitors: A Ceph Monitor maintains maps of the cluster state, including the monitor map,
the OSD map, the Placement Group (PG) map, and the CRUSH map. Ceph maintains a
history (called an âĂIJepochâĂİ) of each state change in the Ceph Monitors, Ceph OSD
Daemons, and PGs.

• MDSs: A Ceph Metadata Server (MDS) stores metadata on behalf of the Ceph Filesystem
(i.e., Ceph Block Devices and Ceph Object Storage do not use MDS). Ceph Metadata Servers

1

make it feasible for POSIX file system users to execute basic commands like ls, find, etc.
without placing an enormous burden on the Ceph Storage Cluster.

2 CEPH STORAGE CLUSTER AT FNAL

The Ceph Storage Cluster at FNAL consists of 3 Monitors, 8 OSDs and 1 MDS. There are four hosts
in the cluster, each of them has 8 cores, 16GB RAM, 15TB HDD, and they are connected by 10GB
Ethernet. As shown in figure 1, in each host machine, there reside 1 MON(MDS) and two OSDs.
Since MON(MDS) require little cpu or storage resources, they won’t affect the performance of
OSD that reside in the same host.

Figure 1: Ceph Storage Cluster at FNAL–Stage 1. Each OSD contributes about 7TB storage capac-
ity to the ceph storage cluster.

3 CEPH INSTALLATION AND OPERATION AT FNAL

The Ceph storage cluster at FNAL is implemented and operated by using an automatic tool
ceph-deploy, which can also automatically add OSD, monitor node, metadata server node and

2

Table 1: iozone test results of 10 VMs

I/O rate (kB/sec) Max Min Avg Total

Writer 1208.32 1404.13 1321.477 66073.85

Re-writer 1288.06 1470.5 1363.449 68172.45

Reader 2886.46 4126.75 3672.29 183614.5

Re-reader 3868.67 5290.6 4386.161 219308.05

ceph-client node. ceph-deploy is installed on host stkendca01a. It only need to be installed on
one machine. To use ceph-deploy, user need to log in stkendca01a as root and work under the
directory /home/ceph/ceph°cluster.

4 EVALUATION RESULTS

We have conducted three sets of experiments to evaluate the performance of Ceph storage cluster.
In our first experiment, we use 10 VMs as ceph-client to create file system using rbd block device
image. Then we conduct iozone tests with these 10 VMs to analysis the I/O performance of Ceph
Storage Cluster. In our second experiment, we replace the 10 VMs with 10 physical machines to
see the best I/O performance we can get from Ceph Storage Cluster without the virtualization
layer. In the third experiment, we try to export 3 copies of rbd block device images on each
physical machine simultaneously.

4.1 IOZONE TEST WITH VMS

In this experiment, we use 10 VMs that been added in the Ceph storage cluster as clients. Each of
them creates a 60GB rbd block device image and map the image to its block device. Then, the
VM will use the block device by creating a file system and mount the file system on itself.

The iozone test start with 10 VMs and each VM initiates 5 process perform 10GB I/O operations
write/re-write, read/re-read to the Ceph storage cluster simultaneously. The results are presented
in table 1.

4.2 IOZONE TEST WITH PHYSICAL MACHINES

The prepare work is the same as in 4.1. The iozone test start with 10 physical machines and each
initiates 5 process perform 10GB I/O operations write/re-write, read/re-read to the Ceph storage
cluster simultaneously. The results are presented in table 2.

3

Table 2: iozone test results of 10 physical machines

I/O rate (kB/sec) Max Min Avg Total

Writer 1244.13 1489.29 1387.963 62582.35

Re-writer 1246.1 1636.93 1378.424 60938.1

Reader 1980.19 2407.94 2196.304 99310.25

Re-reader 2234.9 3172.75 2553.519 116336.95

4.3 RBD IMAGE EXPORT TEST WITH PHYSICAL MACHINES

The rbd image export tests are conducted by making 10 physical machines export 3 copies of their
own rbd image simultaneously. The average bandwidth performance of in this test is 139.78MB/s.

4

IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID 1

Understanding the Performance and
Potential of Cloud Computing for Scientific

Applications
Iman Sadooghi, Jesús Hernández Martin, Tonglin Li, Kevin Brandstatter,

Ketan Maheshwari, Tiago Pais Pitta de Lacerda Ruivo, Gabriele Garzoglio, Steven Timm,Yong
Zhao, Ioan Raicu

Abstract— Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require
significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be
found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC
applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running
scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and
places this performance in context to price. We evaluate the raw performance of different services of AWS cloud in terms of the
basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications
running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the
cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance
evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We
evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network
performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated
a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks
to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for
scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or
hybrid clouds.

Index Terms— Cloud computing, Amazon AWS, performance, cloud costs, scientific computing

——————————  ——————————

1 INTRODUCTION
HE idea of using clouds for scientific applications has

been around for several years, but it has not gained

traction primarily due to many issues such as lower net-

work bandwidth or poor and unstable performance. Sci-

entific applications often rely on access to large legacy

data sets and pre-tuned application software libraries.
These applications today run in HPC environments with

low latency interconnect and rely on parallel file systems.

They often require high performance systems that have

high I/O and network bandwidth. Using commercial

clouds gives scientists opportunity to use the larger re-

sources on-demand. However, there is an uncertainty
about the capability and performance of clouds to run

scientific applications because of their different nature.

Clouds have a heterogeneous infrastructure compared

with homogenous high-end computing systems (e.g. su-

percomputers). The design goal of the clouds was to pro-

vide shared resources to multi-tenants and optimize the

cost and efficiency. On the other hand, supercomputers

are designed to optimize the performance and minimize

latency.

However, clouds have some benefits over supercom-

puters. They offer more flexibility in their environment.

Scientific applications often have dependencies on unique

libraries and platforms. It is difficult to run these applica-

tions on supercomputers that have shared resources with

pre-determined software stack and platform, while cloud

environments also have the ability to set up a customized

virtual machine image with specific platform and user

libraries. This makes it very easy for legacy applications

that require certain specifications to be able to run. Setting

up cloud environments is significantly easier compared to

supercomputers, as users often only need to set up a vir-

tual machine once and deploy it on multiple instances.

Furthermore, with virtual machines, users have no issues

with custom kernels and root permissions (within the

virtual machine), both significant issues in non-

virtualized high-end computing systems.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

T

————————————————
 I. Sadooghi, J H. Martin, T. P.P. de Lacerda Ruivo, T. Li, K. Brandstatter
and I.Raicu are with the Department of Computer Science, Illinois Institue
of Technology, Chicago, IL 60616. E-mail: isadoogh@iit.edu. Jher-
na22@hawk.iit.edu, tonglin@iit.edu, kbrandst@iit.edu, iraicu@cs.iit.edu

 Y. Zhao is with 2School of Computer Science and Engineering, Univ. of
Electronic Science and Technology of China, Chengdu, China E-mail:
yongzh04@gmail.com

 K. Maheshwari is with the Argonne National Laboratory Lemont, IL
60439. E-mail: ketan@mcs.anl.gov

 G. Garzoglio and S. Timm are with the Fermi National Accelerator Labora-­‐‑
tory, PO Box 500, Batavia, IL 60510. E-mail: timm@fnal.gov,
garzogli@fnal.gov

mailto:isadoogh@iit.edu
mailto:Jherna22@hawk.iit.edu
mailto:Jherna22@hawk.iit.edu
mailto:tonglin@iit.edu
mailto:kbrandst@iit.edu
mailto:iraicu@cs.iit.edu
mailto:yongzh04@gmail.com
mailto:ketan@mcs.anl.gov
mailto:timm@fnal.gov
mailto:garzogli@fnal.gov

2 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

There are some other issues with clouds that make
them challenging to be used for scientific computing. The
network bandwidth in commercial clouds is significantly
lower (and less predictable) than what is available in su-
percomputers. Network bandwidth and latency are two
of the major issues that cloud environments have for
high-performance computing. Most of the cloud re-
sources use commodity network with significantly lower
bandwidth than supercomputers [13].

The virtualization overhead is also another issue that
leads to variable compute and memory performance. I/O
is yet another factor that has been one of the main issues
on application performance. Over the last decade the
compute performance of cutting edge systems has im-
proved in much faster speed than their storage and I/O
performance. I/O on parallel computers has always been
slow compared with computation and communication.
This remains to be an issue for the cloud environment as
well.

Finally, the performance of parallel systems including
networked storage systems such as Amazon S3 needs to
be evaluated in order to verify if they are capable of run-
ning scientific applications [3]. All of the above men-
tioned issues raise uncertainty for the ability of clouds to
effectively support HPC applications. Thus it is important
to study the capability and performance of clouds in sup-
port of scientific applications. Although there have been
early endeavors in this aspect [10] [14] [16] [20] [23], we de-
velop a more comprehensive set of evaluation and met-
rics. In some of these works, the experiments were mostly
run on limited types and number of instances [14] [16] [17].
Only a few of the researches have used the new Amazon
EC2 cluster instances that we have tested [10] [20] 0. How-
ever the performance metrics in those papers are very
limited. This paper covers a thorough evaluation covering
major performance metrics and compares a much larger
set of EC2 instance types and the commonly used Ama-
zon Cloud Services. Most of the aforementioned above
mentioned works lack the cost evaluation and analysis of
the cloud. Our work analyses the cost of the cloud on dif-
ferent instance types.

The main goal of this research is to evaluate the per-
formance of the Amazon public cloud as the most popular
commercial cloud available, as well as to offer some con-
text for comparison against a private cloud solution. We
run micro benchmarks and real applications on Amazon
EC2 and S3 to evaluate its performance on critical metrics
including throughput, bandwidth and latency of proces-
sor, network, memory and storage [2]. Then, we evaluate
the performance of HPC applications on EC2 and com-
pare it with a private cloud solution (FermiCloud 0). We
also identify the weaknesses and advantages of the cloud
environment in the scientific computing area.

Finally, this work performs a detailed price/cost analy-
sis of cloud instances to better understand the upper and
lower bounds of cloud costs. Armed with both detailed
benchmarks to gauge expected performance and a de-
tailed monetary cost analysis, we expect this paper will
be a recipe cookbook for scientists to help them decide

where to deploy and run their scientific applications be-
tween public clouds, private clouds, or hybrid clouds.

This paper is organized as follows: Section 2 provides
the evaluation of the EC2, S3 and DynamoDB perfor-
mance on different service alternatives of Amazon AWS.
We provide an evaluation methodology. Then we present
the benchmarking tools and the environment settings of
the testbed in this project. Section 2.4 presents the bench-
marking results and analyzes the performance. On 2.5 we
compare the performance of EC2 with FermiCloud on
HPL application. Section 3 analyzes the cost of the EC2
cloud based on its performance on different aspects. In
section 4, we review the related work in this area. Section
5 draws conclusion and discusses future work.

2 PERFORMANCE EVALUATION
In this section we provide a comprehensive evaluation of
the Amazon AWS technologies. We evaluate the perfor-
mance of Amazon EC2 and storage services such as S3
and EBS. We also compare the Amazon AWS public
cloud to the FermiCloud private cloud.

2.1 Methodology
We design a performance evaluation method to measure
the capability of different instance types of Amazon EC2
cloud and to evaluate the cost of cloud computing for
scientific computing. As mentioned, the goal is to evalu-
ate the performance of the EC2 on scientific applications.
To achieve this goal, we first measure the raw perfor-
mance of EC2. We run micro benchmarks to measure the
raw performance of different instance types, compared
with the theoretical performance peak claimed by the
resource provider. We also compare the actual perfor-
mance with a typical non-virtualized system to better
understand the effect of virtualization. Having the raw
performance we will be able to predict the performance of
different applications based on their requirements on dif-
ferent metrics. Then we compare the performance of a
virtual cluster of multiple instances running HPL applica-
tion on both Amazon EC2 and the FermiCloud. Compar-
ing the performance of EC2, which we don’t have much
information about its underlying resources with the Fer-
miCloud, which we know the details about, we will be
able to come up with a better conclusion about the weak-
nesses of the EC2. On the following sections we try to
evaluate the performance of the other popoular services
of Amazon AWS by comparing them to the similar open
source services.

Finally, we analyze the cost of the cloud computing
based on different performance metrics from the previous
part. Using the actual performance results provides more
accurate analysis of the cost of cloud computing while
being used in different scenarios and for different pur-
poses.

The performance metrics for the experiments are based
on the critical requirements of scientific applications. Dif-
ferent scientific applications have different priorities. We
need to know about the compute performance of the in-
stances in case of running compute intensive applications.

IMAN SADOOGHI ET AL.: UNDERSTANDING THE PERFORMANCE OF CLOUD COMPUTING ON RUNNING SCIENTIFIC APPLICATIONS 3

We also need to measure the memory performance, as
memory is usually being heavily used by scientific appli-
cations. We also measure the network performance which
is an important factor on the performance of scientific
applications.

2.2 Benchmarking tools and applications
It is important for us to use wide-spread benchmarking
tools that are used by the scientific community. Specifical-
ly in Cloud Computing area, the benchmarks should have
the ability to run over multiple machines and provide
accurate aggregate results.

For memory we use CacheBench. We perform read
and write benchmarks on single instances. For network
bandwidth, we use Iperf [4]. For network latency and hop
distance between the instances, we use ping and trac-
eroute. For CPU benchmarking we have chosen HPL
benchmark [5]. It provides the results in floating-point
operations per second (FLOPS).

In order to benchmark S3, we had to develop our own
benchmark suite, since none of the widespread bench-
marking tools can be used to test storage like this. We
have also developed a tool for configuring a fully work-
ing virtual cluster with support for some specific file sys-
tems.

2.3 Parameter space and testbed
In order the better show the capability of Amazon EC2 on
running scientific applications we have used two differ-
ent cloud infrastructures: (1) Amazon AWS Cloud, and
(2) FermiCloud. Amazon AWS is a public cloud with
many datacenters all around the world. FermiCloud is a
private Cloud which is used for internal use in Fermi Na-
tional Laboratory.

In order to compare the virtualization effect on the per-
formance we have also included two local systems on our
tests: (1) A 6-core CPU and 16 Gigabytes of memory sys-
tem (DataSys), and (2) a 48-cores and 256 Gigabytes
memory system (Fusion).

2.3.1 Amazon EC2
The experiments were executed on three Amazon cloud
data centers: US East (Northern Virginia), US West (Ore-
gon) and US West (Northern California). We cover all of
the different instance types in our evaluations.

The operating system on all of the US West instances
and the local systems is a 64bits distribution of Ubuntu.
The US East instances use 64 bits CentOS operating sys-
tem. The US West instances use Para-virtualization tech-
nique on their hypervisor. But the HPC instances on the
US East cloud center use Hardware-Assisted Virtualiza-
tion (HVM) [7]. HVM techniques use the features of the
new hardware to avoid handling all of the virtualization
tasks like context switching or providing direct access to
different devices at the software level. Using HVM, Vir-
tual Machines can have direct access to hardware with the
minimal overhead.

There is no information about the underlying architec-
ture and technologies of Amazon AWS publicly available.

2.3.2 FermiCloud
FermiCloud is a private cloud providing Infrastructure-
as-a-Service services internal use. It manages dynamically
allocated services for both interactive and batch pro-
cessing. As part of a national laboratory, one of the main
goals FermiCloud is being able to run scientific applica-
tions and models. FermiCloud uses OpenNebula Cloud
Manager for the purpose of managing and launching the
Virtual Machines 0. It uses KVM hypervisor that uses
both paravirtualization and full virtualization tech-
niques 0. The FermiCloud Infrastructure is enabled with
4X DDR Infiniband network adapters. The main chal-
lenge to overcome in the deployment of the network is
introduced when virtualizing the hardware of a machine
to be used (and shared) by the VMs. This overhead slows
drastically the data rate reducing the efficiency of using a
faster technology like Infiniband. To overcome the virtu-
alization overhead they use a technique called Single Root
Input/Output Virtualization (SRIOV) that achieves de-
vice virtualization without using device emulation by
enabling a device to be shared by multiple virtual ma-
chines. The technique involves with modifications to the
Linux’s Hypervisor as well as the OpenNebula manag-
er 0 0.

Each server is anabled with a 4x (4 links) Infiniband
card with a DDR data rate for a total theoretical speed of
up to 20 Gb/s and after the 8b/10b codification 16 Gb/s.
Network latency is 1 μs when used with MPI [6]. Each
card has 8 virtual lanes that can create 1 physical function
and 7 virtual functions via SR-IOV. The servers are ena-
bled with 2 quad core 2.66 GHz Intel processors, 48Gb of
RAM and 600Gb of SAS Disk, 12TB of SATA, and 8 port
RAID Controller 0.

2.4 Performance Evaluation of AWS

2.4.1 Memory hierarchy performance
This section presents the memory benchmark results. We
sufficed to run read and write benchmarks. The experi-
ments for each instance were repeated three times.

Memory bandwidth is a critical factor in scientific ap-
plications performance. Many Scientific applications like
GAMESS, IMPACT-T and MILC are very sensitive to
memory bandwidth [8]. Amazon has not included the
memory bandwidth of the instances. It has only listed
their memory size. We also measure the memory band-
width of each instance.

Fig. 1 shows the system memory read bandwidth in
different memory hierarchy levels. The vertical axis
shows the cache size. The bandwidth is very stable up to
a certain cache size. The bandwidth starts to drop after a
certain size. The reason for the drop off is surpassing the
memory cache size at a certain hierarchy level.

As shown in the figure, the memory performance of
the m1.small instance is significantly lower than other
instances. The low memory bandwidth cannot be only
attributed to the virtualization overhead. We believe that
the main reason for that is memory throttling imposed by
EC2 based on the SLA of those instances.

4 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

Fig. 1. CacheBench Read benchmark results, one benchmark pro-
cess per instance

Another noticeable point is the low bandwidth of the

cc1.4xlarge, cc2.8xlarge and hi1.4xlarge. These instances
have similar performance that is much lower than normal
instances. A reason for that can be the result of the differ-
ent virtual memory allocation on the VMs by HVM virtu-
alization on these instances. We have however observed
an effect in large hardware-assisted virtual machines such
as those on FermiCloud that it will take a while for the
system to balloon the memory out to its full size at the
first launch of the VM.

After all, the results show that the memory bandwidth
for read operation in the larger instances is close to the
local non-virtualized system. We can conclude that the vir-
tualization effect on the memory is low, which is a good sign for
scientific applications that are mostly sensitive to the memory
performance.

Fig. 2 shows the write performance of different cloud
instances and the local system. The write performance
shows different results from the read benchmark. As in
write, the cc2.8xlarge instance has the best performance
next to the non-virtualized local system.

For each instance we can notice two or three major
drop-offs in bandwidth. These drop-offs show different
memory hierarchies. For example on the cc2.8xlarge in-
stance we can notice that the memory bandwidth drops at
24 Kbytes. We can also observe that the write through-
puts for different memory hierarchies are different. These
data points likely represent the different caches on the
processor (e.g. L1, L2, L3 caches).

Comparing the cluster instance with the local system,
we observe that on smaller buffer sizes, the local system
performs better. But cloud instance outperforms the local
system on larger cache sizes. The reason for that could be
the cloud instances residing on more powerful physical
nodes with higher bandwidths. We can observe that the
write bandwidth on the cloud instances drops off at cer-
tain buffer sizes. That shows the memory hierarchy ef-
fects on the write operation.

Users can choose the best transfer size for write opera-
tion based on the performance peaks of each instance
type to get the best performance. This would optimize a
scientific application write bandwidth.

Fig. 2. CacheBench write benchmark results, one benchmark pro-
cess per instance

2.4.2 Network performance
We have run many experiments on network performance
of Amazon cloud. The experiments test the network per-
formance including bandwidth and latency. We also test
wide area network bandwidth of the instances.

We first test the local network bandwidth between the
same types of instances. Fig. 3 shows the network per-
formance of different types of nodes. In each case both of
the instances were inside the same datacenter. The net-
work bandwidth for most of the instances were as ex-
pected except for two instances.

Fig. 3. iPerf benchmark results. Network bandwidth in a single
client and server connection, internal network.

The lowest performance belongs to the t1.micro and
m1.small instances. These two instances use the same 1
Gb/s network cards used by other instances. But they
have much lower bandwidth. We believe that the reason
is sharing the CPU cores and not having a dedicated core.
This can affect network performance significantly as the
CPU is shared and many network requests cannot be
handled while the instance is on its idle time. During the
idle time of the instance, the virtual system calls to the
VMM will not be processed and will be saved in the
queue until the idle time is over. The network perfor-
mance is highly affected by processor sharing techniques.
Other works had the same observations and conclusions
about the network performance in these two instance
types [9]. Another reason for the low performance of the
m1.small and t1.micro instances could be throttling the

IMAN SADOOGHI ET AL.: UNDERSTANDING THE PERFORMANCE OF CLOUD COMPUTING ON RUNNING SCIENTIFIC APPLICATIONS 5

network bandwidth by EC2. The Xen hypervisor has the
ability of network throttling if needed.

Among the instances that use the slower network
cards the m1.medium instance has the best performance.
We did not find a technical reason for that. The
m1.medium instances use the same network card as other
instances do and don’t have any advantage on system
configuration over other instance types. We assume the
reason for that is the administrative decision on hypervi-
sor level due to their popularity among different instance
types.

Another odd result is for m1.medium instance. The
bandwidth in medium instance exceeds 1 Gb/Sec, which
is the specified network bandwidth of these. m1.medium
instance bandwidth achieves up to 1.09 Gb/sec. That is
theoretically not possible for a connection between two
physical nodes with 1 Gb/s network cards. We believe the
reason is that both of the VMs reside in the same physical
node or the same cluster. In case of residing on the same
node, the packets stay in the memory. Therefore the con-
nection bandwidth is not limited to the network band-
width. We can also assume that not necessarily the in-
stances have 1 Gb/s network cards. In fact the nodes that
run medium instances may have more powerful network
cards in order to provide better network performance for
these popular instances.

The HPC instances have the best network bandwidth among
the instances. They use 10 Gb/sec network switches. The results
show that the network virtualization overhead in these instanc-
es is very low. The performance gets as high as 95% of ideal
performance.

We also measure the network connection latency and
the hop distance between instances inside the Oregon
datacenter of Amazon EC2. We run this experiment to
find out about the correlation of connection latency and
the hop distance. We also want to find the connection
latency range inside a datacenter. We measure the latency
and the hop distance on 1225 combinations of m1.small
instances. Fig. 4 shows the network latency distribution of
EC2 m1.small instances. It also plots the hop distance of
two instances. The network latency in this experiment
varies between 0.006 ms and 394 ms, an arguably very
large variation.

We can observe from the results that: (1) 99% of the in-­‐‑
stances which have the transmission latency of 0.24 to
0.99 ms are 4 or 6 hops far from each other. So we can
claim that if the latency is between 0.24 to 0.99 ms the
distance between the instances is 4 to 6 hops with the
probability of 99%. (2) More than 94% of the allocated
instances to a user are 4-6 percent far from each other. In
other words the hop distance is 4-6 instances with the
probability of more than 94%.

We can predict the connection latency based on the
hop distance of instances. We have run the latency test for
other instance types. The results do not seem to be de-
pendent on instance type for the instances with the same
network interconnect. The latency variance of Amazon in-
stances is much higher than the variance in a HPC system. The
high latency variance is not desirable for scientific applications.
In case of HPC instances which have the 10 Gigabit Ethernet

cards, the latency ranges from 0.19ms to 0.255ms which shows
a smaller variance and more stable network performance.

Fig. 4. Cumulative Distribution Function and Hop distance of
connection latency between instances inside a datacenter.

Other researches have compared the latency of EC2

HPC instances with HPC systems. The latency of the EC2
HPC instance is reported to be 3 to 40 times higher than a
HPC system with 23 Gb/s network cards [10]. The latency
variance is also much higher.

2.4.3 Compute Performance
In this section we evaluate the compute performance of
EC2 instances. Fig. 5 shows the compute performance of
each instance using HPL as well as the ideal performance
claimed by Amazon. It also shows the performance vari-
ance of instances.

Fig. 5. HPL benchmark results: compute performance of single
instances comparing with their ideal performance.

Among the Amazon instances, the cc2.8xlarge has the
best compute performance. The t1.micro instance shows
the lowest performance. The figure also shows the per-
formance variance for each instance. The performance
variance of the instances is low in most of the instance
types. Providing a consistent performance is an ad-
vantage for cloud instances.

Among all of the instances and local nodes, the best ef-
ficiency belongs to the non-virtualized system. Overall we
can observe that the efficiency of the instances is relative-
ly low. Other papers have suggested the low performance
of HPL application while running on virtualized envi-
ronments [11] [14]. Although the cc2.8xlarge instance has
the largest compute capacity among the instances, it is the
most inefficient instance. The reason for that lies behind
the number of the cores in this instance. cc2.8xlarge has 16
cores. The expected performance is the aggregate perfor-

6 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

mance of all of the cores of the instance. But the real per-

formance is lower because of the communication over-

head of 16 cores which is caused by the MPI application.
Other papers have also reported the poor MPI perfor-

mance on EC2 cloud [15] [16]. Other papers have also re-

ported the poor MPI performance on EC2 cloud [15] [16].

2.4.4 I/O Performance
In this section we evaluate the I/O performance of the EBS

volume and local storage of each instance. The following

charts show the results obtained after running IOR on the
local storage and EBS volume storage of each of the in-

stances with different transfer sizes and storage devices.

Fig. 6 shows the performance of POSIX read operation on

different instances. Except for the hi1.4xlarge, which is

equipped with SSDs, the throughput among other in-

stances does not vary greatly from one another. For most
of the instances the throughput is close to a non-

virtualized system with a normal spinning HDD.

Fig. 7 shows the maximum write and read throughput

on each instance on both EBS volumes and local storage

devices. Comparing with local storage, EBS volumes

show a very poor performance, which is the result of the
remote access delay over the network.

Finally, to complete these micro-benchmarks, we set

up a software RAID-0 with EBS volumes, varying the

number of volumes from 1 to 8. We ran the same

benchmark on a c1.medium instance. Fig. 8 shows the

write performance on RAID0 on different number of EBS
volumes.

Fig. 6. Local POSIX read benchmark results on all instances

Fig. 7. Maximum write/read throughput on different instances

Looking at the write throughput, we can observe that

the throughput does not vary a lot and is almost constant

as the transfer size increases. That shows a stable write
throughput on EBS drives. The write throughput on the

RAID 0 increases with the number of drives. The reason

for that is that the data will be spread among the drives

and is written in parallel to all of the drives. That

increases the write throughput because of having parallel
write instead of serial write. Oddly, the performance does

not improve as the number of drives increases from 1 to 2

drives. The reason for that is moving from the local writes

to network. Therefore the throughput stays the same. For

4 EBS volumes, we can observe a 4x increase on the

throughput. In case of 8 EBS volumes we expect a 2x
speed up comparing with the 4 EBS experiment. However

the write throughput can not scale better because of the

limitation of the network bandwith. The maximum

achievable throughput is around 120MB/s, which is

bound to the network bandwidth of the instances that is 1

Gb/s. so we can conclude that the RAID throughput will
not exceed 120 MB/s if we add more EBS volumes.

Fig. 8. RAID0 Setup benchmark for different transfer sizes – write

2.4.5 S3 and PVFS Performance
In this section we evaluate and compare the performance

of S3 and PVFS. S3 is a highly scalable storage service
from Amazon that could be used on multinode

applications. Also, a very important requirement for most

of the scientific applications is a parallel file system

shared among all of the computing nodes. We have also

included the NFS as a centralized file system to show

how it performs on smaller scales.

Fig. 9. S3 performance, maximum read and write throughput

First we evaluate the s3 performance on read and write

operations. Fig. 9 shows the maximum read and write
throughput on S3 accessed by different instance types.

Leaving aside the small instances, there is not much

difference between the maximum read/write throughput

across instances. The reason is that these values are

implictily limited by either the network capabilities or S3

itself.
Next, We compare the performance of the S3 and PVFS

as two possible options to use for scientific applications.

IMAN SADOOGHI ET AL.: UNDERSTANDING THE PERFORMANCE OF CLOUD COMPUTING ON RUNNING SCIENTIFIC APPLICATIONS 7

PVFS is commonly used in scientific applications on HPC

environments. On the other hand, S3 is commonly used

on the multinode applications that run on cloud

environment. We have only included the read

performance in this paper. The experiment runs on

m1.medium instances. Fig. 10 shows that the read

throughput of the S3 is much lower compared to PVFS on

small scales. This results from the fact that the S3 is a

remote network storage while PVFS is installed and is

spread over each instance. As The number of the

instances increase, PVFS cannot scale as well as the S3

and the performance of the two systems get closer to each

other up to a scale that S3 slightly performs better than

the PVFS. Therefore it is better to choose S3 if we are

using more than 96 instances for the application.

Next, we evaluate the performance of PVFS2 for the

scales of 1 to 64 as we found out that it performs better

than S3 in smaller scales. To benchmark PVFS2 for the

following experiments we use the MPIIO interface in-

stead of POSIX. In the configuration that we used, every

node in the cluster serves both as an I/O and metadata

server.

Fig. 11 shows the read operation tihroughput of PVFS2

on local storage with different number of instances and

variable transfer size. The effect of having a small transfer

size is significant, where we see that the throughput

inceases as we make the transfer size bigger. Again, this

fact is due to the overhead added by the I/O transaction.

Fig. 10. Comparing the read throughput of S3 and PVFS on different
scales

Fig. 11. PVFS read with different transfer sizes over on instance
storage

Finally, Fig. 12, shows the performance of PVFS2 and

NFS on memory through the POSIX interface. The results

show that the NFS cluster does not scale very well and

the throughput does not increase as we increase the

number of nodes. It basically bottlenecks at the 1Gb/s

which is the network bandwidth of a single instance.

PVFS2 performs better as it can scale very well on 64

nodes on memory. But as we have shown above, it will

not scale on larger scales.

Fig. 12. Scalability of PVFS2 and NFS in read/write throughput
using memory as storage

2.4.6 DynamoDB performance
In this section we are evaluating the performance of Am-
azon DynamoDB. DynamoDB is a commonly used NoSql
database used by commercial and scientific applica-
tions 0 0. We conduct micro benchmarks to measure the
throughput and latency of insert and look up calls scaling
from 1 to 96 instances with total number of calls scaling
from 10000 to 960000 calls. We conduct the benchmarks
on both m1.medium and cc2.8xlarge instances. The provi-­‐‑
sion capacity for the benchmarks is 10K operations/s
which is the maximum deault capacity available. There is
no information released about how many nodes are used
to offer a specific throughput. We have observed that the
latency of DynamoDB doesn’t change much with scales,
and the value is around 10ms. This shows that Dyna-­‐‑
moDB is highly scalable. Fig. 13 shows the latency of look
up and insert calls made from 96 cc2.8xxlarge instances.
The average latency for insert and look up are respective-
ly 10 ms and 8.7 ms. %90 of the calls had a latency of less
than 12 ms for insert and 10.5 ms for look up.

Fig. 13. CDF plot for insert and look up latency on 96 8xxl instances

We compare the throughput of DynamoDB with

ZHT 0 on EC2. ZHT is an open source consistent NoSql

8 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

database providing a service which is comparable to Dy-
namoDB in functionality. We conduct this experiment to
better understand the available options for having a scal-
able key-value store. We use both m1.medium and
cc2.8xlarge instances to run ZHT. On 96 nodes scale with
2cc.8xlarge instance type, ZHT offers 1215.0 K ops/s while
DynamoDB failed the test since it saturated the capacity.
The maximum measured throughput of DynamoDB was
11.5K ops/s which is found at 64 cc2.8xlarge instance
scale. For a fair comparison, both DynamoDB and ZHT
have 8 clients per node.

Fig. 14 shows that the throughput of ZHT on
m1.medium and cc2.8xlarge instances are respectively
59x and 559x higher than DynamoDB on 1 instance scale.
On the 96 instance scale they are 20x and 134x higher than
the DynamoDB. We can conclude that the ZHT has a sig-
nificantly higher throughput than DynamoDB up to 96
instance scale and is a better option than DynamoDB for
normal AWS users. In the Cost Analysis section we will
compare the costs of running workloads over DynamoDB
and ZHT.

Fig. 14. Throughput comparison of DynamoDB with ZHT running on
m1.medium and cc2.8xlarge instances on different scales.

2.4.7 Workflow Application Performance
In this section we analyze the performance of a complex
scientific computing application on the Amazon EC2
cloud. The application investigated is Power Locational
Marginal Price Simulation (LMPS), and it is coordinated
and run through the Swift parallel programming sys-
tem 	
 [12]. Optimal power flow studies are crucial in un-
derstanding the flow and price patterns in electricity un-
der different demand and network conditions. A big
computational challenge arising in power grid analysis is
that simulations need to be run at high time resolutions in
order to capture effect occurring at multiple time scales.
For instance, power flows tend to be more constrained at
certain times of the day and of the year, and these need to
be identified.

The power flow simulation application under study
analyzes historical conditions in the Illinois grid to simu-
late instant power prices on an hourly basis. The applica-
tion runs linear programming solvers invoked via an
AMPL (A Mathematical Programming Language) 	
 0 mod-
el representation andcollects flow, generation, and price
data with attached geographical coordinates. A typical
application consists of running the model in 8760 inde

pendent executions corresponding to each hour of the
year. Each application task execution spans in the range
between 25 and 80 seconds as shown in the application
tasks time distribution graph in Fig. 15.

A snapshot of one such result prices plotted over the
map of Illinois is shown in Fig. 16. The prices are in US
dollars per megaWatt-hour shown as interpolated con-
tour plots across the areas connected by transmission
lines and generation stations shown as lines and circles
respectively. A series of such plots could be post pro-
cessed to give an animated visualization for further anal-
ysis in trends etc.

Fig. 15. The LMPS application tasks time distributions.

Fig. 16. A contour plot snapshot of the power prices in $/MWh
across the state of Illinois for an instance in July 2000

The execution of the application was performed on an
increasing number of m1.large instances (see Fig. 17). For
data storage, we use S3. Given that the application scales
well to 80 instances, but not beyond that. The perfor-
mance saturation is a salient point that comes out of Fig.
17. With S3 object store being remote, at 100 VMs it takes
long enough to fetch the data that its dominating execu-
tion time. More scalable distributed storage subsystem
should be investigated that is geared towards scientific
computing, such as PVFS, Lustre, or GPFS.

IMAN SADOOGHI ET AL.: UNDERSTANDING THE PERFORMANCE OF CLOUD COMPUTING ON RUNNING SCIENTIFIC APPLICATIONS 9

Fig. 17. The runtime of LMPS on m1.large instances in different scales.

2.5 Performance Comparison of EC2 vs.
FermiCloud

In this section we want to compare the performance of the
EC2 as a public cloud with FermiCloud as a private cloud
on HPL benchmark which is a real HPC application. Be-
fore comparing the performance of Amazon on real Ap-
plications, we need to compare the raw performance of
the two resources.

2.5.1 Raw performance comparison
Before comparing the performance of the two infrastruc-
tures on real applications like HPL, we need to compare
their raw performance on the essential metrics in order to
find the root causes of their performance difference. The
most effective factors on HPL performance are compute
power and Network. We need to compare these factors
on the instances with similar functionalities.

On both of the Clouds, we chose the instances that can
achieve the highest performance on HPL applications. On
EC2, we use cc1.4xlarge instances that are enabled with
an 8 core 2.6 GHz Intel processors and a 10 Gigabit net-
work adapter. On FermiCloud, each server machine is
enabled with with 2 quad core 2.66 GHz Intel processors,
and 8 port RAID Controller.

The CPU efficiency is defined as the performance of
the VM running HPL on a single VM with no network
connectivity, divided by the the theoritical peak perfor-
mance of the CPU.

Fig. 18 compares the raw performance of the Amazon
EC2 with FermiCloud on CPU and network performance.

The results show that the virtualization overhead on
FermiCloud instances are significantly lower than the
EC2 instances. This would be an effective factor while
running applications on simultaneously on multiple
nodes.

The FermiCloud instances are enabled with infiniband
network adapters and are able to provide hogher perfor-
mance compared to the EC2 instances that have 10 Giga-
bit network cards. The efficiency of both of the systems on
network throughput is high. The network throughput
efficiency is defined as the VM network performance
divded by the theoritical peak of the device. FermiCloud
and EC2 network adapters respectively achieve %97.9
and %97.4 efficiency.

Fig. 18. Raw performance comparison overview of EC2 vs. Fer-
miCloud

There is a huge gap between the network latency of the
two clouds. The latency of the FermiCloud instance is 2.2
us as compared to the latency of EC2 instance which is
222 us. Another important factor is the latency variance.
The latency variance on both systems is within %20 which
is stable. HPL application uses MPI for communication
among the nodes. The network latency can decrease the
performance of the application by affecting the MPI per-
formance.

2.5.2 HPL performance comparison
In this section we evaluate the performance of HPL appli-
cation on both on a virtual cluster on both FermiCloud
and EC2. The main difference on the two infrastructures
is on their virtualization layer and the network perfor-
mance. FermiCloud uses KVM and is enabled with infini-
band network adapters. EC2 uses its own type of virtual-
ization which is based on Xen hypervisor and has 10 Gi-
gabit network adapters.

The best way to measure the efficiency of a virtual
cluster on a cloud environment is defining it as the per-
formance of the VM which include the virtualization
overhead divided by the host performance that doesn’t
include virtualization overhead. We can measure the eff-
ciency as defined for FermiCloud since we have access to
the host machines. But that is not possible for EC2 since
we don’t have access to the host machines. Therefore we
compare the scalability efficiency of the two clouds which
is defined as the overhead of the application performance
as we scale up the number of cloud instances.

Fig. 19 compares the efficiency of EC2 and FermiCloud
running HPL application on a virtual cluster. Due to
budget limitations we run the experiment up to 32 in-
stances scale.

The results show that the efficiency is majorly depend-
ent on the network performance. On the 2 instances scale,
both cloud show good efficiency and only lose %10 eff-
ciency that is due to the MPI communications latency
added between the instances. Since both of the clouds
have powerful network adapters, the communication
overhead is still not a bottleneck on 2 instances scale. As
the number of instances increase, the applications pro-

10 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

cesses make more MPI calls to each other and start satu-
rating the network bandwidth. Having infiniband net-
work, the FermiCloud loses less efficiency than the EC2.
The efficiency of EC2 drops to %78 as the FermiCloud
effiency drops to %87. We can notice that the efficiency of
the EC2 decreases significantly on 8 instances scles. The
reason for that is that the network gets saturated due to
too many MPI communications.

Fig. 19. Efficiency comparison of EC2 and FermiCloud running
HPL application on a virtual cluster.

3 COST ANALYSIS
In this section we analyze the cost of the Amazon EC2
cloud from different aspects. We analyze the cost of in-
stances for compute intensive applications as well as for
data intensive applications. Our analysis provides sug-
gestions to different cloud users to find the instance type
that fits best for certain application with specific require-
ments. Next section compares the instances based on their
memory capacity and performance.

3.1 Memory Cost
This section compares the cost of the memory on Amazon
EC2 instances. Fig. 20 compares the cost of instances
based on their memory capacity and bandwidth.

The GB/Dollar metric on the left hand side shows the
capacity cost effectiveness of the instances. The most cost
effective instances for memory capacity are the high
memory (m2.2xlarge & m2.4xlarge) instances. But looking
at the cost of the memory bandwidth, we can observe that
these instances don’t have the best memory bandwidth
efficiency. The most cost effective instances based on the
memory bandwidth efficiency are the m1.small and
m1.medium instances.

Fig. 20. Memory capacity and memory bandwidth cost.

3.2 CPU Cost
In this section we analyze the cost-effectiveness of in-
stances based on the performance of the instances while
running compute intensive applications. The metric for
our analysis is GFLOPS/Dollar.

Fig. 21 compares the ideal performance cost of the in-
stances based on Amazon claims with their actual per-
formance while running HPL benchmark. The results
show that although the cc2.8xlarge is expected to be the
most cost-effective instance, the best compute type is
c1.medium. This instance is listed as a High CPU in-
stance.

Fig. 21. CPU performance cost of instances

3.3 Cluster Cost
We analyze the cost of the virtual clusters set up by
m1.medium and cc1.4xlarge instances in different sizes.
Fig. 22 compares the cost of the virtual clusters based on
their compute performance.

IMAN SADOOGHI ET AL.: UNDERSTANDING THE PERFORMANCE OF CLOUD COMPUTING ON RUNNING SCIENTIFIC APPLICATIONS 11

Fig. 22. Cost of virtual cluster of m1.medium and cc1.4xlarge.

3.4 DynamoDB Cost
Finally in this section we evaluate the cost of DynamoDB.
In order to better understand the value of offered service,
we compare the cost with the cost of running ZHT on EC2
on different instance types.

Fig. 23 shows the hourly cost of 1000 ops/s capacity of-­‐‑
fered by DynamoDB compared to the equal capacity pro-­‐‑
vided by ZHT from the user point of view.

Fig. 23 Cost Comparison of DynamoDB with ZHT

We are comparing the two different scenarios of cost of
using a free application on rented EC2 instances versus
getting the service from DynamoDB. In case of Dyna-­‐‑
moDB, since the users pays for the capacity that they get,
the number of instances doesn’t affect the cost. That’s
why the cost of DynamoDB is always constant. For ZHT,
the system efficiency and performance varies on different
scales hence the variation in costs for ZHT at different
scales. Since the cc2.8xlarge instances provide much bet-­‐‑
ter performance per money spent, the cost per operation
is as good as 65X lower than DynamoDB. However, the
better costs come at the complexity of managing a virtual
cluster of machines to operate ZHT. It is likely that for
low loads including sporadic requirements for Dyna-­‐‑
moDB, it makes financial sense to run on Amazon AWS
services, but for higher performance requirements it is
much more beneficial to simply operate a dedicated ZHT
system over EC2 resources.

3.5 Performance and Cost Summary
This section summarizes the performance and the cost

efficiency of Amazon EC2 and other services of AWS.

Table 1 shows the performance overview of the different

instance types on EC2. The performance results of the

instances mostly match with the prediction based on the

claims of Amazon. There have been anomalies in some of

the specific instance types. Instances like m1.xlarge have

average performance while m1.medium instance has

shown a performance that was higher than expected.

TABLE 1: Performance summary of EC2 instances

CPU

bw

Mem.

bw

Net.

bw

Disk

I/O

m1.small Low Low Low Low

m1.med Low Avg Avg Low

m1.lrg Avg Avg Avg Avg

m1.xlrg Avg Avg Avg Avg

c1.med Avg Avg Avg Low

c1.xlrg Avg High Avg Avg

m2.2xlrg High High Avg Avg

cc1.4xlrg High High High Avg

cc2.8xlrg High High High Avg

hi1.lrg High Avg High High

Table 2 summarizes the cost-efficiency of instance

types of EC2. As it is noticeable from the table, the cost

efficiency of the high end instances that are better fits for

HPC and scientific applications is lower than the small

instances. Finally table 3 summarizes the performance of

S3 and DynamoDB.

TABLE 2: Cost-efficiency summary of EC2 instances

CPU

bw

Mem.

Cap.

Mem.

bw

Net.

bw

m1.small Avg Avg High High

m1.med Avg Avg High High

m1.lrg Avg Avg Avg Avg

m1.xlrg Avg Avg Low Low

c1.med High Low High Low

c1.xlrg High Low Low Low

m2.2xlrg Low High Low Low

cc1.4xlrg Avg Low Low Low

cc2.8xlrg Low Low Low Low

hi1.lrg Low Low Low Low

TABLE 3: Performance and Cost-efficiency summary of

AWS services

 Scalability
Cost-

efficiency
Data Granularity

S3 High High Large data

DynamoDB High Low Small data

4 RELATED WORK
There have been many efforts to investigate the useful-

ness of cloud computing and virtualization for scientific

applications. Researchers have tried to evaluate the per-

formance of clouds in order to understand the weakness-

es and benefits of them when used for scientific applica-

tions.

There have been many researches that have tried to

evaluate the performance of Amazon EC2

cloud [14] [16] [17]. However the experiments were mostly

run on limited types and number of instances. Therefore

they lack the generality in their results and conclusions,

as they have not covered all instance types. Unlike these

12 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

previous works, we cover all instance types in order to
give a general view of the instances and enable users to
choose the best instances for different use case scenarios.

Ostermann et al. have evaluated Amazon EC2 using
micro-benchmarks in different performance metrics.
However their experiments do not include the more high-
end instances that are more competitive to HPC systems.
Moreover, the Amazon performance has improved since
then and more features have been added to make it useful
for HPC applications [14]. In addition to the experiments
scope of that paper, our work provides the evaluations of
the raw performance of a variety of the instances includ-
ing the high-end instances, as well as the performance of
the real applications.

He et al. have deployed a NASA climate prediction
application into major public clouds, and compared the
results with dedicated HPC systems results. They have
run micro-benchmarks and real applications [15]. How-
ever they only run their experiments on small number of
VMs. We have evaluated the performance of EC2 on larg-
er scales.

Jackson has deployed a full application that performs
massive file operations and data transfer on Amazon
EC2 [18]. The research mostly focuses on different storage
options on Amazon. Our work covers the storage services
performance both on micro-benchmarks as well as the
performance while being used by data-intensive applica-
tions.

Only a few of the researches that measure the applica-
bility of clouds for scientific applications have used the
new Amazon EC2 cluster instances that we have test-
ed [10] [20] 0. Mehrotra compares the performances of
Amazon EC2 HPC instances to that of NASA’s Pleiades
supercomputer [10]. However the performance metrics in
that paper is very limited. They have not evaluated dif-
ferent performance metrics of the HPC instances. Rama-
krishnan have measured the performance of the HPCC
benchmarks [20]. They have also applied two real appli-
cations of PARATEC and MILC. They have compared the
performance of Amazon EC2 with Magellan cloud while
running the same applications.

Juve investigates different options of data manage-
ment of the workflows on EC2 0. The paper evaluates the
runtime of different workflows with different underlying
storage options. It uses a limited number of instance
types. It also evaluates the cost of running workflow ap-
plications. The aforementioned works have not provided
a comprehensive evaluation of the HPC instances. Their
experiments are limited to a few metrics. Among the
works that have looked at the new HPC instances, our
work is the only one that has evaluated all of the critical
performance metrics such as memory, compute, and net-
work performance. Our paper has evaluated the perfor-
mance of the new HPC instances and also has shown the
compute performance of a virtual cluster that is using
MPI and is made of such instances. This experiment is
very useful in that it shows the performance of EC2 while
running scientific applications using MPI.

Many works have covered the performance of public
clouds without having an idea about the host perfor-

mance of the nodes without virtualization
head [14] [15] [16]. Younge has evaluated the performance
of different virtualization techniques on FutureGrid pri-
vate cloud [11]. The focus of that work is on the virtual-
ization layer rather than the cloud infrastructure. Our
work compares the performance of the public cloud and a
private cloud on different aspects running both micro-
benchmarks and real scientific applications. Being able to
measure the virtualization overhead on the FermiCloud
private cloud, we could provide a better comparison of
the two cloud environments.

Many papers have analyzed the cost of the cloud as an
alternative resource to dedicated HPC resources [18] [19] 0.
However this paper is the only work that compares the
cost of different instances based on major performance
factors in order to find the best use case for different in-
stances of Amazon EC2.

5 CONCLUSION
In this paper, we present a quantitative study to evaluate
the performance of the Amazon EC2 for the goal of run-
ning scientific applications. We evaluate the performance
of various instance types by running micro benchmarks
on memory, compute, network and storage. In most of
the cases, the actual performance of the instances is lower
than the expected performance or what Amazon claims.
Most of the instances have stable memory bandwidth,
which is comparable with non-virtualized systems. The
compute performance of the instances is affected by vir-
tualization overhead on the larger instances. We also run
different types of network benchmarking. The results
show stable internal network performance of single cli-
ent-server connections. However we notice the poor per-
formance and scalability in wide area connections be-
tween datacenters. The network latency is higher and less
stable than what is available on the supercomputers.

We also compare the performance of EC2 as a com-
monly used public cloud with FermiCloud, which is a
higher end private cloud that is tailored for scientific for
scientific computing. We compare the raw performance
as well as the performance of the real applications on vir-
tual clusters with multiple HPC instances. The results
show that the performance of the MPI applications is
highly dependent on network performance of the infra-
structure. In this case, FermiCloud is able to achieve
higher performance and efficiency due to having infini-
band network cards. We can conclude that the cloud in-
frastructures with more powerful network capacity are
more suitable to run scientific applications.

We evaluated the I/O performance of Amazon instanc-
es and storage services like EBS and S3. The I/O perfor-
mance of the instances is lower than performance of dedi-
cated resources. The only instance type that shows prom-
ising results is the high-IO instances that have SSD drives
on them. The performance of different parallel file sys-
tems is lower than performance of them on dedicated
clusters. The read and write throughput of S3 is lower
than a local storage. Therefore it could not be a suitable
option for scientific applications. However it shows

IMAN SADOOGHI ET AL.: UNDERSTANDING THE PERFORMANCE OF CLOUD COMPUTING ON RUNNING SCIENTIFIC APPLICATIONS 13

promising scalability that makes it a better option on
larger scale computations. The performance of PVFS2
over EC2 is convincible for using in scientific applications
that require a parallel file system.

Amazon EC2 provides powerful instances that are ca-
pable of running HPC applications. However, the per-
formance a major portion of the HPC applications are
heavily dependent on network bandwidth, and the net-
work performance of Amazon EC2 instances cannot keep
up with their compute performance while running HPC
applications and become a major bottleneck. Moreover,
having the TCP network protocol as the main network
protocol, all of the MPI calls on HPC applications are
made on top of TCP protocol. That would add a signifi-
cant overhead to the network performance. Although the
new HPC instances have higher network bandwidth, they
are still not on par with the non-virtualized HPC systems
with high-end network topologies. The cloud instances
have shown to be performing very well, while running
embarrassingly parallel programs that have minimal in-
teraction between the nodes [10]. The performance of em-
barrassingly parallel application with minimal communi-
cation on Amazon EC2 instances is reported to be compa-
rable with non-virtualized environments [21] [22].

Armed with both detailed benchmarks to gauge ex-
pected performance and a detailed price/cost analysis, we
expect that this paper will be a recipe cookbook for scien-
tists to help them decide between dedicated resources,
cloud resources, or some combination, for their particular
scientific computing workload.

ACKNOWLEDGEMENT
This work was supported in part by the National Science
Foundation grant NSF-1054974. It is also supported by the
US Department of Energy under contract number DE-
AC02-07CH11359 and by KISTI under a joint Cooperative
Research and Development Agreement. CRADA-FRA
2013-0001/KISTI-C13013. This work was also possible in
part due to the Amazon AWS Research Grants. We thank
V. Zavala of ANL for power grid application.

REFERENCES
[1] Amazon EC2 Instance Types, Amazon Web Services, [online]

2013, http://aws.amazon.com/ec2/instance-types/ (Accessed: 2

November 2013)

[2] Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web

Services, [online] 2013, http://aws.amazon.com/ec2/ (Accessed:

2 November 2013)

[3] Amazon Simple Storage Service (Amazon S3), Amazon Web

Services, [online] 2013, http://aws.amazon.com/s3/ (Accessed: 2

November 2013)

[4] Iperf, Souceforge, [online] June 2011,

http://sourceforge.net/projects/iperf/ (Accessed: 2 November

2013)

[5] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary. “HPL”,
(netlib.org), [online] September 2008,

http://www.netlib.org/benchmark/hpl/ (Acessed: 2 November

2013)

[6] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, \An intro-

duction to the MPI standard," Tech. Rep. CS-95-274, University

of Tennessee, Jan. 1995

[7] Release: Amazon EC2 on 2007-07-12, Amazon Web Services,

[online] 2013, http://aws.amazon.com/releasenotes/Amazon-

EC2/3964 (Accessed: 1 November 2013)

[8] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon, “The Magel-

lan report on cloud computing for science,” U.S. Department of
Energy, Tech. Rep., 2011

[9] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and N. J.

Wright. “Evaluating Interconnect and virtualization perfor-

mance for high performance computing”, ACM Performance

Evaluation Review, 2012

[10] P. Mehrotra, et al. 2012. “Performance evaluation of Amazon

EC2 for NASA HPC applications” In Proceedings of the 3rd work-
shop on Scientific Cloud Computing (ScienceCloud '12). ACM,

New York, NY, USA, pp. 41-50

[11] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J.

Qiu, and G. C. Fox, “Analysis of virtualization technologies for
high performance computing environments,” International
Conference on Cloud Computing, 2011

[12] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I.

Raicu, T. Stef-Praun, and M. Wilde. “Swift: Fast, reliable, loose-

ly coupled parallel computation”, IEEE Int. Workshop on Scien-

tific Workflows, pages 199–206, 2007

[13] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B.

Clifford. “Towards Loosely-Coupled Programming on Pet-

ascale Systems”, IEEE/ACM Supercomputing 2008

[14] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,

and D. Epema. “A Performance Analysis of EC2 Cloud Compu-

ting Services for Scientific Computing”. In Cloudcomp, 2009

[15] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. “Case
study for running HPC applications in public clouds,” In Proc.
of ACM Symposium on High Performance Distributed Computing,

2010

[16] G. Wang and T. S. Eugene Ng. “The Impact of Virtualization on

Network Performance of Amazon EC2 Data Center”. In IEEE

INFOCOM, 2010

[17] S. L. Garfinkel, “An evaluation of amazon'ʹs grid computing
services: Ec2, s3 and sqs,” Computer Science Group, Harvard
University, Technical Report, 2007, tR-08-07

[18] K. R. Jackson et al. “Performance and cost analysis of the su-

pernova factory on the amazon aws cloud”. Scientific Pro-

gramming, 19(2-3):107-119, 2011

[19] J.-S. Vockler, G. Juve, E. Deelman, M. Rynge, and G.B. Berri-

man, “Experiences Using Cloud Computing for A Scientific

Workflow Application,” 2nd Workshop on Scientific Cloud
Computing (ScienceCloud), 2011

[20] L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R. Bradshaw, R. S.

Canon, S. Coghlan, I. Sakrejda, N. Desai, T. Declerck, and A.

Liu. “Magellan: experiences from a science cloud”. In Proceed-
ings of the 2nd international workshop on Scientific cloud computing,

pages 49–58, San Jose, USA, 2011

[21] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J.

Shalf, H. Wasserman, and N. Wright, “Performance Analysis of
High Performance Computing Applications on the Amazon

Web Services Cloud,” in 2nd IEEE International Conference on
Cloud Computing Technology and Science. IEEE, 2010, pp. 159–168

[22] J.-S. Vockler, G. Juve, E. Deelman, M. Rynge, and G.B. Berri-

man, “Experiences Using Cloud Computing for A Scientific

Workflow Application,” 2nd Workshop on Scientific Cloud Com-
puting (ScienceCloud), 2011

[23] J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae, P. Soltero, A.

Merritt, “Minimal Overhead Virtualization of a Large Scale Su-

http://aws.amazon.com/s3/
http://sourceforge.net/projects/iperf/
http://www.netlib.org/benchmark/hpl/
http://aws.amazon.com/releasenotes/Amazon-EC2/3964
http://aws.amazon.com/releasenotes/Amazon-EC2/3964

14 IEEE TRANSACTIONS ON CLOUD COMPUTING MANUSCRIPT ID

percomputer,” In Proceedings of the 2011 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE 2011), 2011

[24] G. Juve, E. Deelman, G.B. Berriman, B.P. Berman, and P.

Maechling, 2012, “An Evaluation of the Cost and Performance

of Scientific Workflows on Amazon EC2”, Journal of Grid Com-
puting, v. 10, n. 1 (mar.), p. 5–21

[25] R. Fourer, D. M. Gay, and B. Kernighan, “Algorithms and mod-

el formulations in mathematical programming,” Ed. New York,
NY, USA: Springer-Verlag New York, Inc., 1989, ch. AMPL: a

mathematical programming language, pp. 150–151

[26] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,

Z. Zhang, I. Raicu. “ZHT: A Light-weight Reliable Persistent

Dynamic Scalable Zero-hop Distributed Hash Table”, IEEE In-
ternational Parallel & Distributed Processing Symposium (IPDPS)

2013

[27] FermiCloud, Fermilab Computing Sector, [online],

http://fclweb.fnal.gov/ (Accessed: 25 April 2014)

[28] R.Moreno-vozmendiano, S. Montero, I. Llorente.” IaaS Cloud

Architecture: From Virtualized Datacenters to Federated Cloud

Infrastructures: Digital Forensics”, Computer (Long Beach, CA)

[29] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud

Computing: From Parallel Processing to the Internet of Things.

Morgan Kaufmann, 2011

[30] W. Voegels. “Amazon DynamoDB—a fast andscalable NoSQL

database service designed for Internet-scale applications.”

http://www.allthingsdistributed.com/2012/01/amazon-

dynamodb.html, January 18, 2012

[31] I. Sadooghi et al. “Achieving Efficient Distributed Scheduling

with Message Queues in the Cloud for Many-Task Computing

and High-Performance Computing.” In Proc. 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’14). 2014

[32] T. Lacerda Ruivo, G. Bernabeu Altayo et al. “Exploring Infini-

band Hardware Virtualization in OpenNebula towards Effi-

cient High-Performance Computing.” CCGrid’14. 2014

[33] Macleod, D. (2013). OpenNebula KVM SR-IOV driver.

[34] K. Maheshwari et al. “Evaluating Cloud Computing Tech-

niques for Smart Power Grid Design using Parallel Scripting”In
Proc. 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid’13). 2013

Iman Sadooghi is a 3rd year PhD student in the
department of the Computer Science of Illinois
Institute of Technology and a member of DataSys
laboratory. He received his MS degree in Software
Engineering from San Jose State University. Iman’s
research interest is Distributed Systems and Cloud
Computing. He has two publications in the area of
Cloud Computing. Iman is also is a member of the
IEEE and the IEEE Computer Society.
Jesus Hernandez is a data engineer at Lyst. He
obtained his MS degree in Computer Science from
Illinois Institute of Technology in 2012. He also
received a BS + MS degree in Computer Engineer-
ing from Technical University of Madrid during the
same year. His interests range from distributed
systems, data processing, and analytics to high
performance client-server architectures.

Tonglin Li is a 5th year PhD student working in
Datasys Lab, computer science department at
Illinois Institute of Technology, Chicago. His re-­
search interests are in Distributed systems, Cloud
computing, Data-intensive computing, Supercom-­
puting, and Data management. He received his B.E
and M.E in 2003 and 2009 from Xi'an Shiyou Uni-­
versity, China. Tonglin Li is an IEEE and ACM

member.

Kevin Brandstatter Kevin Brandstatter is a 4th
year undergraduate student in the department of
Computer Science at Illinois Institute of Technol-­
ogy. He has worked as a Research Assistant in
the Datasys lab under Dr. Raicu for the past 3
years. His research focus is primarily related to
distributed storage systems such as distributed

file systems and distributed key value storage.
Ketan Maheshwari is a postdoctoral researcher
in the Mathematics and Computer Science Divi-­
sion at Argonne National Laboratory. His re-­
search is focused on applications for parallel
scripting on distributed and High Performance
resources. His main activities in recent years
involve design, implementation and execution of

parallel applications on clouds, XSEDE, Cray XE6 and IBM super-­
computers at University of Chicago. The applications include mas-­
sive protein docking, weather and soil modeling, earthquake simula-­
tions, andpower grid modeling funded by DOE and NIH.

Yong Zhao is professor at the University of Elec-­
tronic Science and Technology of China. His re-­
search interests are in big data, cloud computing,
grid computing, data intensive computing, ex-­
treme large scale computing, and cloud workflow.
He has published more than 40 papers in interna-­
tional computer books, journals and conferences,
which are referenced more than 4000 times;; He
has chaired/co-chaired ACM/IEEE Workshop on

Many Task Computing on Grids Clouds and Supercomputers, Work-­
shop on Data Intensive Computing in the Clouds, and IEEE Interna-­
tional Workshop on CloudFlow 2012, 2013.

Tiago Pais is a MS graduate in Computer Sci-­
ence by the Illinois Institute of Technology and
former Graduate Research Intern in the Fermi
National Accelerator Laboratory. His research
interests are in network virtualization and mobile
technologies.

Gabriele Garzoglio is the head of the Grid and
Cloud Services Department of the Scientific
Computing Division at Fermilab and he is deeply
involved in the project management of the Open
Science Grid. He oversees the operations of the
Grid services at Fermilab. Gabriele has a Laura
degree in Physics from University of Genova,

Italy, and a PhD in Computer Science from DePaul University.
Steven Timm is an Associate Department Head
for Cloud Computing in the Grid and Cloud
Services Department of the Scientific Compu-­
ting Division at Fermi National Accelerator La-­
boratory. He received his Ph.D in Physics from
Carnegie Mellon. Since 2000 he has held vari-­
ous positions on the staff of Fermilab relating to
Grid and Cloud Computing. He has been the

lead of the FermiCloud project since its inception in 2009.

Ioan Raicu is an assistant professor in the De-­
partment of Computer Science at Illinois Institute
of Technology, as well as a guest research facul-­
ty in the Math and Computer Science Division at
Argonne National Laboratory. He is also the
founder and director of the Data-Intensive Dis-­
tributed Systems Laboratory at IIT. His research
work and interests are in the general area of
distributed systems. His work focuses on a rela-­

tively new paradigm of Many-Task Computing (MTC), which aims to
bridge the gap between two predominant paradigms from distributed
systems, HTC and HPC. His work has focused on defining and ex-­
ploring both the theory and practical aspects of realizing MTC across
a wide range of large-scale distributed systems. He is particularly
interested in resource management in large scale distributed sys-­
tems with a focus on many-task computing, data intensive compu-­
ting, cloud computing, grid computing, and many-core computing.

