
Automatic Installation and Deployment of Network File System and On-

Demand

Caching Service on Dynamically Instantiated Large Scale Batch of Virtual

Machines

On Private and Public Clouds
Sandeep Palur* Steven Timm† Dr. Ioan Raicu*

psandeep@hawk.iit.edu timm@fnal.gov iraicu@cs.iit.edu
*Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

†Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia IL, USA

Abstract – Big scientific experiments usually need

a lot of virtual machines for running scientific

workflows on private and public clouds. Virtual

machine images can be large and the software they

need inside them can be constantly changing. The

best solution is to use CERN Virtual Machine File

System - read only, runtime download, and caching

http file system. It is a read-only network file system

that provides access to files from a CVMFS Server

over HTTP. When CVMFS client runs on a groups

of worker nodes that share the same cloud, a HTTP

web proxy, inside the same cloud, can be used to

cache the file system contents, so that all subsequent

requests for that file will be delivered from the local

HTTP web proxy) and doesn’t have to hit the

Internet. Typically, a High Energy Physics (HEP)

computing site has a local or regional Squid HTTP

web proxy, with the central CVMFS servers located

at the main laboratory, such as CERN for the LHC

experiments. Each VM has a list of the available

Squid servers and, in most cases, the Squids are

remote. The optimal Squid may be different

depending on the location of the cloud. Further,

one can imagine dynamically instantiating Squid

servers in an opportunistic cloud environment to

meet application demand. As a result, we use Shoal

as a service that can dynamically publish and

advertise the available Squid servers. In this work,

we automate installation and deployment of

CVMFS(network file system), Squid(on-demand

caching service) and Shoal(squid cache publishing

and advertising tool designed to work in fast

changing environments) on dynamically

instantiated large scale batch of virtual machines on

Fermi Cloud (private cloud) and Amazon Web

Services (Public cloud).

I. Introduction

The CERN Virtual Machine File System (CVMFS)

[1] is widely adopted by the High Energy Physics

(HEP) community for the distribution of project

software. CVMFS is a read-only network file system

that provides access to files from a CVMFS Server

over HTTP. When CVMFS is used on a cluster of

worker nodes, a HTTP web proxy can be used to

cache the file system contents, so that all subsequent

requests for that file will be delivered from the local

HTTP proxy server. Typically, a HEP computing site

has a local or regional Squid HTTP web proxy [2],

with the central CVMFS servers located at the main

laboratory, such as CERN for the LHC experiments.

The use of IaaS cloud resources is becoming a

realistic solution for HEP workloads [3, 4], and

CVMFS is an effective means of providing the

software to the virtual machines (VMs). Each VM

has a list of the available Squid servers and, in most

cases, the Squids are remote. The optimal Squid may

be different depending on the location of the cloud.

Further, one can imagine dynamically instantiating

Squid servers in an opportunistic cloud environment

to meet application demand. However, there is

currently no mechanism other than Shoal for locating

the optimal Squid server. As a result, we use Shoal as

a service that can dynamically publish and advertise

the available Squid servers. Shoal is ideal for an

environment using both static and dynamic Squid

servers.

A. CERN Virtual Machine File System

The CernVM File System (CernVM-FS) provides a

scalable, reliable and low maintenance software

distribution service. It was developed to assist High

Energy Physics (HEP) collaborations to deploy

software on the worldwide-distributed computing

infrastructure used to run data processing

applications. CernVM-FS is implemented as a

POSIX read-only file system in user space (a FUSE

module). Files and directories are hosted on standard

web servers and mounted in the universal namespace

/cvmfs. Internally, it uses content-addressable storage

and Merkle trees in order to maintain file data and

meta-data. CernVM-FS uses outgoing HTTP

connections only, thereby it avoids most of the

firewall issues of other network file systems. It is

actively used by small and large HEP collaborations.

In many cases, it replaces package managers and

shared software areas on cluster file systems as

means to distribute the software used to process

experiment data.

B. Squid

Squid is a caching proxy for the Web supporting

HTTP, HTTPS, FTP, and more. It reduces bandwidth

and improves response times by caching and reusing

frequently-requested web pages. Squid has extensive

access controls and makes a great server accelerator.

It runs on most available operating systems,

including Windows and is licensed under the GNU

GPL.

C. Shoal

Shoal is divided into three logical modules, a server,

an agent, and a client. Each package is uploaded to

the Python Package Index [5] (the standard method

of distributing new components in the Python

language).

Each component is designed to provide the

functionality of different parts of the system as

follows:

Shoal Server - is responsible for the following key

tasks:

1. Maintaining a list of active Squid servers in

volatile memory and handling AMQP messages

sent from active Squid servers.

2. Providing a RESTful interface for Shoal Clients

to retrieve a list of geographically closest Squid

servers.

3. Providing basic support for Web Proxy Auto-

Discovery Protocol (WPAD).

4. Providing a web user interface to easily view

Squid servers being tracked.

Shoal Agent - is a daemon process run on Squid

servers to send an Advanced Message Query Protocol

(AMQP) [6] message to Shoal Server on a set

interval. Every Squid server wishing to publish its

existence runs Shoal Agent on boot. Shoal Agent

sends periodic heartbeat messages to the Shoal Server

(typically every 30 seconds).

Shoal Client - is used by worker nodes to query

Shoal Server to retrieve a list of geographically

nearest Squid servers via the REST interface. Shoal

Client is designed to be simple (less than 100 lines of

Python) with no dependencies beyond a standard

Python installation.

Shoal Server runs at a centralized location with a

public IP address. For agents (i.e. Squid servers),

Shoal Server will consume the heartbeat messages

sent and maintain an up-to-date list of active Squids.

For clients, Shoal Server will return a list of Squids

organized by geographical distance and load. For

regular users of Shoal Server, a web server is

provided. The web server generates dynamic web

pages that display an overview of Shoal. All of the

tracked Squid servers are displayed and updated

periodically on Shoal Server's web user interface, and

all client requests are available in the access logs.

AMQP forms the communications backbone of Shoal

Server. All information exchanges between Shoal

Agent (Squid Servers) and Shoal Server are done

using this protocol, and all messages are routed

through a RabbitMQ [7] Server.

II. Design and Implementation

This project aims to automate installation and

deployment of CVMFS(network file system),

Squid(on-demand caching service) and Shoal(squid

cache publishing and advertising tool designed to

work in fast changing environments) on dynamically

instantiated large scale batch of virtual machines on

Fermi Cloud (private cloud) using Puppet

Master/Agent and Amazon Web Services (Public

cloud) using Serverless Puppet.

As a part of this work, we developed puppet modules

and scripts for installing and deploying shoal client,

agent and server, script to dynamically update the

proxy address. We also fixed potential bugs in Shoal

Server and made it suitable to publish Squid Servers

running on EC2 instances that does not have a static

public IP.

A. Architecture

The architecture of large scale batch of dynamically

instantiated FermiCloud and EC2 worker nodes

provided with network file system, on-demand

caching service and a cache publishing and

advertising tool is shown in Figure1. It consists of the

following components:

a) Worker Node Installed with Shoal Client –

When a worker node is instantiated dynamically,

CVMFS client and Shoal Client are installed on start

up of the machine. Shoal Client is a cron job that

queries the Shoal Server using the REST interface to

get the closest Squid Server and is configured to run

every 2 hours. Shoal Client updates the proxy address

in the CVMFS configuration file. So that when

CVMFS client tries to download any software from

CVMFS server, the request passes through the Squid

Server, whose IP address is configured in CVMFS

configuration file.

Figure1: Architecture of Dynamically Instantiated

Fermi Cloud and EC2 Instances with On-Demand

Caching Service and a Cache Publishing Service

b) Squid Server Installed with Shoal Agent –

When a server node is instantiated dynamically,

Squid Server and Shoal Agent are installed on the

start up of the machine. Shoal Agent running

alongside with Squid Server, sends periodic heartbeat

messages (IP Address, Load, etc) to the Shoal Server

typically every 30 seconds.

c) Shoal Server Installed with RabbitMQ Server

and Apache Server- When a server node is

instantiated dynamically, Shoal Server is installed on

start up of the machine. Shoal Server provides two

major functions: provides a RESTful interface

(hosted on Apache server) for Shoal Clients to

retrieve a list of geographically closest Squid servers

and maintains a list of active Squid servers (active

squid servers send AMQP messages to RabbitMQ

server) in volatile memory.

Since we have our Worker Nodes split over in two

different clouds (AWS and FermiCloud), the idea is

to install sufficient Squid Servers on both the clouds

and restrict the Worker Nodes to use the Squid

Servers in their local cloud for the following reasons:

1) We don't want to open Fermilab cache servers to

outside internet

2) Reduce data transfer from Internet.

3) Faster data transfers.

4) Reduce Latency

When a Shoal Client on any Worker Node queries for

nearest Squid Servers, it is responded back with the

IP addresses of Squid Servers running inside the local

cloud because the Shoal Server finds the closest

Squid server to the Worker Node. Thus only the first

Worker Node in each cloud downloads the software

from Internet (CVMFS server) and rest of the Worker

Nodes that needs the same software, takes it from the

local Squid Server.

III. Conclusion and Future Work

We automate installation and deployment of

CVMFS(network file system), Squid(on-demand

caching service) and Shoal(squid cache publishing

and advertising tool designed to work in fast

changing environments) on dynamically instantiated

large scale batch of virtual machines on Fermi Cloud

(private cloud) and AWS(public cloud) by installing

and deploying all the required software on start up of

the instances and also restrict the Worker Nodes to

use the Squid Servers running on the local cloud

thereby reducing the number of hits to the Internet.

Our future work includes:

a) Installation and deployment on a sum of 1000

virtual machines on both AWS and Fermi Cloud

b) Benchmarking this work at high scales.

IV. References

[1] J. Blomer et al, Status and future perspectives of

CernVM-FS J. Phys.: Conf. Ser. 396052013,

doi:10.1088/1742-6596/396/5/052013

[2] Squid - HTTP proxy server http://www.squid-

cache.org

[3] F. H. B. Megino et al. Exploiting Virtualization

and Cloud Computing in ATLAS J. Phys.: Conf. Ser.

396032011, doi:10.1088/1742-6596/396/3/032011

[4] I. Gable et al, A batch system for HEP

applications on a distributed IaaS cloud J. Phys.:

Conf. Ser. 331062010, doi:10.1088/1742-

6596/331/6/062010

[5] Python Package Index https://pypi.python.org/

[6] S.Vinoski, Advanced Message Queuing Protocol,

IEEE Internet Computing 10 87,

doi:10.1109/MIC.2006.116

[7] RabbitMQ - AMQP Messaging software,

http://www.rabbitmq.com

http://www.squid-cache.org/
http://www.squid-cache.org/
https://pypi.python.org/
http://www.rabbitmq.com/

