ZFSonLinux faq
Collected questions from HELiOS users related to ZFS on Linux. Contact the Compute Systems Team for inquiries.
	Contents
 [hide]
· 1 ZFS FAQ
· 1.1 What is the difference between the usual suspect Linux block/filesystem and Linux with ZFS
· 1.1.1 Traditional Linux block device and filesystem
· 1.1.2 Linux block device and filesystem with ZFS
· 1.2 Is ZFS released with HELiOS 6.x as mature as the Solaris 10/11 version (features, stability, performance, memory footprint)
· 1.3 Can you define the amount of memory needed (adding ram) to offer best performance
· 1.4 Is it interesting to add a flash disk (ssd) to increase performance (cache hit)
· 1.5 Do you have you any plans to replace ext4 as the default filesystem in HELiOS instead of ext4 (root filesystem on ZFS like on Solaris 10/11 and Illumos/FreeBSD)
· 1.6 How safe is the filesystem recovery in case of system crash (for example a powercut)
· 1.7 How fast is filesystem recovery for large filesystem (for example 1TB disk with files 2-4 GB)
· 1.8 What does“fully integrated” in Helios mean
· 1.9 It would appear from the existence of your ZFS links, that you are promoting this as a direction for GEHC; is that an accurate inference
· 1.10 Can I use ZFS on just a partition
· 1.11 Can I have ZFS manage and protect ext4 and/or XFS filesystems within a zpool
· 1.12 Are there any performance implications to using ZFS
· 1.13 How do I install ZFS on HELiOS or Scientific Linux
· 1.14 How do I Create zpools
· 1.14.1 Single disk zpool
· 1.14.2 Two disk striped zpool
· 1.14.3 Two disk mirrored zpool
· 1.14.4 Three drive raidz zpool
· 1.14.5 Four drive striped and mirrored pool
· 1.14.6 Five drive raidz2 zpool
· 1.15 How do I create a zfs dataset within a zpool
· 1.16 How do I create and use a ZVOL
· 1.16.1 Format the ZVOL with ext4 as a filesystem
· 1.17 Get the status of your zpool
· 1.18 Get the verbose status of your zpool
· 1.19 Get all attributes of your zpool
· 1.20 List all your ZFS datasets
· 1.21 Get all attributes of a particular ZFS dataset
· 1.22 Create a snapshot of a ZFS dataset
· 2 Examples
· 2.1 Quick MR host example
· 2.1.1 Create root (AKA "/" for OS Data and /boot)
· 2.1.2 Create root (AKA "/" for OS Data and /boot) as a striped or mirrored raid set of partitions from both drives
· 2.1.3 Enable compression at the zpool level
· 2.1.4 Carve out a ZVOL (block device) to use as swap for the zpool "foo" and make swap on it, and enable it
· 2.1.5 Create our ZFS filesystems
· 2.1.5.1 Method 1
· 2.1.5.2 Method 2
· 2.1.5.3 Alternate Method 2
· 3 Links

[bookmark: ZFS_FAQ][edit]ZFS FAQ
[bookmark: What_is_the_difference_between_the_usual][edit]What is the difference between the usual suspect Linux block/filesystem and Linux with ZFS
[bookmark: Traditional_Linux_block_device_and_files][edit]Traditional Linux block device and filesystem
[image: Linux Traditional Block/Filesystem]
[bookmark: Linux_block_device_and_filesystem_with_Z][edit]Linux block device and filesystem with ZFS
[image: ZFS on Linux]
[bookmark: Is_ZFS_released_with_HELiOS_6.x_as_matur][edit]Is ZFS released with HELiOS 6.x as mature as the Solaris 10/11 version (features, stability, performance, memory footprint)
· In many ways the features and vision for the community ZFS are actually better then the implementation that was in Solaris 10/11 (also opensolaris <-derived from the latter). The community implementations of ZFS are actually based on last release of the opensolaris "ON" sources by Sun prior to the Oracle takeover. The unification body between the Illumos, BSD, Linux and Mac implementations of ZFS is OpenZFS. Chris Brown, member of the Compute Systems Team, is on the board of OpenZFS, as well being the community maintainer of ZFS for SL.
· Stability wise the SwPE team has been using ZOL (ZFS on Linux) for seveal years on engineering fileservers that are used for development infrastructure (200+ drives, 400+ TB, millions of files!) without stability issues.
· Performance wise with the proper tuning for disk subsystem and use case should outperform, or at bare minimum, meet the same performance as seen on Solaris 11.
· Features wise ZFS has many enhancements over the Solaris ZFS implementation. Some of these are more fundamental and common across the implementations, some of them are implemented as feature flags for the specific OS implementation of ZFS: OpenZFS Features
[bookmark: Can_you_define_the_amount_of_memory_need][edit]Can you define the amount of memory needed (adding ram) to offer best performance
· You absolutely can do this. We set a conservative default for HELiOS for ARC usage for example (EX: zfs_arc_max).
[bookmark: Is_it_interesting_to_add_a_flash_disk__.][edit]Is it interesting to add a flash disk (ssd) to increase performance (cache hit)
· If you have a ton of reads you would like to not have to seek to spinning rust for reads or wait for synchronous writes to page out to spinning rust then the l2arc or ZIL being on SSD is something you would possibly consider.
[bookmark: Do_you_have_you_any_plans_to_replace_ext][edit]Do you have you any plans to replace ext4 as the default filesystem in HELiOS instead of ext4 (root filesystem on ZFS like on Solaris 10/11 and Illumos/FreeBSD)
· ZFS is available to supplement the existing file systems, no plans exist to replace ext4 as the default. The team has a policy to adhere with upstream and modify as little as possible.
· There is a process for doing it and an according dracut module. Usually ZFS ends up being overkill for just a single drive but folks have expressed the interest in it's features and flexibility vs ext4 or xfs + lvm/md. Primarily the fact that they can avoid things like long fsck times on boot for example as ZFS does not need to do this type of thing. Or had block size allocation EG: lvm/md.
· If the Compute Systems Team has enough customer requests for ZFS as default, it something that the team can certainly consider.
[bookmark: How_safe_is_the_filesystem_recovery_in_c][edit]How safe is the filesystem recovery in case of system crash (for example a powercut)
· Due to the copy-on-write nature of ZFS it is more resilient to sudden power loss than other file systems. Disk writes are atomic. Thus as long as the ZFS defaults are in place and things like the "sync attribute" for example you will be good.
[bookmark: How_fast_is_filesystem_recovery_for_larg][edit]How fast is filesystem recovery for large filesystem (for example 1TB disk with files 2-4 GB)
· ZFS is always protecting against this type of thing. That is to say it is an always online operation that is part of the filesystems standard operation (EX: ZFS Scrubbing).
· Take for example "silent data corruption" into one device in a mirrored storage pool.
· ZFS does a couple of things that are not done by any filesystem or raid implementation hardware OR software:
· It detects the corruption by using checksums on all data and metadata.
· It automatically repairs the damage, using data from the other mirror, assuming checksum(s) on that mirror are OK.
· This all happens before the data is passed off to the process that asked for it.
· A Good write up on this topic by one of the original Sun ZFS filesystem maintainers (now at Delphix and part of the OpenZFS board): ZFS does not need fsck
[bookmark: What_does.E2.80.9Cfully_integrated.E2.80][edit]What does“fully integrated” in Helios mean
· Fully integrated means you can directly install and use ZFS via the core HELiOS release spun from upstream SL. It is not a third party package or artifact that the modality has to install and manage (EX: Nvidia drivers).
[bookmark: It_would_appear_from_the_existence_of_yo][edit]It would appear from the existence of your ZFS links, that you are promoting this as a direction for GEHC; is that an accurate inference
· We are indeed suggesting ZFS as an option for certain use cases or to fill gaps in functionality that ext4/xfs +MD/lvm cannot. BTRFS which for all intensive purposes is the in-kernel re-implementation of ZFS, but perhaps requires additional features and performance. ZFS has existed 10+ years and is very stable, mature, and feature rich.
· Chris Brown sits on the OpenZFS board and is also the ZOL package maintainer for Scientific Linux (from which HELiOS is derived).
[bookmark: Can_I_use_ZFS_on_just_a_partition][edit]Can I use ZFS on just a partition
· Due to the nature of how ZFS works you will want to give it an entire HDD. EG: /dev/sda
[bookmark: Can_I_have_ZFS_manage_and_protect_ext4_a][edit]Can I have ZFS manage and protect ext4 and/or XFS filesystems within a zpool
· Certainly, you can use ZFS ZVOL block implementation to actually have an ext4 or XFS filesystem managed/protected by ZFS.
[bookmark: Are_there_any_performance_implications_t][edit]Are there any performance implications to using ZFS
· ZFS will consume a few more CPU cycles then a traditional software raid and LVM+ext4/xfs setup. It is unlikely on modern Intel hardware that this would become a bottleneck. Memory wise ZFS is not core to the kernel and is a loadable module, thus it does manage/reserve/free it's own memory. Within HELiOS ZFS is tuned so the zfs_arc_max will use only 512MB of system ram. This can be increased or decreased accordingly and is use case dependent.
[bookmark: How_do_I_install_ZFS_on_HELiOS_or_Scient][edit]How do I install ZFS on HELiOS or Scientific Linux
yum install zfs
[bookmark: How_do_I_Create_zpools][edit]How do I Create zpools
[bookmark: Single_disk_zpool][edit]Single disk zpool
zpool create <zpoolname> /dev/sdX
[bookmark: Two_disk_striped_zpool][edit]Two disk striped zpool
zpool create <zpoolname> /dev/sdX /dev/sdX
[bookmark: Two_disk_mirrored_zpool][edit]Two disk mirrored zpool
zpool create <zpoolname> mirror /dev/sdX /dev/sdX
[bookmark: Three_drive_raidz_zpool][edit]Three drive raidz zpool
zpool create <zpoolname> raidz /dev/sdX /dev/sdX /dev/sdX
[bookmark: Four_drive_striped_and_mirrored_pool][edit]Four drive striped and mirrored pool
zpool create <zpoolname> raidz mirror /dev/sdX /dev/sdX mirror /dev/sdX /dev/sdX
[bookmark: Five_drive_raidz2_zpool][edit]Five drive raidz2 zpool
zpool create <zpoolname> raidz /dev/sdX /dev/sdX /dev/sdX /dev/sdX /dev/sdX
[bookmark: How_do_I_create_a_zfs_dataset_within_a_z][edit]How do I create a zfs dataset within a zpool
zfs create <zpoolname>/<datasetname>
· Your new dataset will be found mounted at /<zpoolname>/<datasetname>
· Change where the dataset is mounted
zfs set mountpoint=<somemountpoint> <zpoolname>/<datasetname>
[bookmark: How_do_I_create_and_use_a_ZVOL][edit]How do I create and use a ZVOL
zfs create -V 100G <zpoolname>/<zvolname>
[bookmark: Format_the_ZVOL_with_ext4_as_a_filesyste][edit]Format the ZVOL with ext4 as a filesystem
mkfs.ext4 -L <zvolname> /dev/zvol/<zpoolname>/<zvolname>
· mount the zvol somewhere
mount /dev/zvol/<zpoolname>/<zvolname> /<pathtomountpoint>
[bookmark: Get_the_status_of_your_zpool][edit]Get the status of your zpool
zpool status <zpoolname>
[bookmark: Get_the_verbose_status_of_your_zpool][edit]Get the verbose status of your zpool
zpool status -v
[bookmark: Get_all_attributes_of_your_zpool][edit]Get all attributes of your zpool
zfs get all <zpoolname>
[bookmark: List_all_your_ZFS_datasets][edit]List all your ZFS datasets
zfs list
[bookmark: Get_all_attributes_of_a_particular_ZFS_d][edit]Get all attributes of a particular ZFS dataset
zfs get all <zpoolname>/<datasetname>
[bookmark: Create_a_snapshot_of_a_ZFS_dataset][edit]Create a snapshot of a ZFS dataset
zfs snapshot <zpoolname>/<dataset>@<snapshotname>
[bookmark: Examples][edit]Examples
Quick ZFS guidelines
· "/boot" cannot yet be a on zpool (unless ZFS is compiled into the kernel and we do not rebuild the Red Hat kernel)
· boot from a zpool is setup and done during %pre in a kickstart with the appropriately rebuilt boot kernel/dracut/grub with zfs support is used to bootstrap the install)
· If you are not using a separate "/boot" and are just keeping "/boot" within "/" accordingly "/" would just need to be a minimal partition
· It is recommended and completely possible with two or more drives to stripe or mirror the OS data partitions with MD give the rest of the drive space to ZFS
· Remember it is most optimal to give ZFS the whole disk but a partition will suffice if need be (in the event a non-redundant zpool this is ok)

[bookmark: Quick_MR_host_example][edit]Quick MR host example
Disk partitioning scheme grabbed from a random MR box:
(ext4) /dev/sda2 20G 7.7G 11G 42% /
(swap) tmpfs 16G 68K 16G 1% /dev/shm
(ext4) /dev/sda10 147G 12G 129G 9% /export/home
(ext4) /dev/sda1 62G 54M 59G 1% /export/home/signa/research
(ext4) /dev/sda3 20G 44M 19G 1% /export/home/snap
(ext4) /dev/sda7 3.9G 55M 3.6G 2% /tmp
(ext4) /dev/sda5 7.8G 216M 7.2G 3% /var
(ext4) /dev/sda6 7.8G 32M 7.4G 1% /var/log
(ext4) /dev/sda8 3.9G 279M 3.4G 8% /var/log/audit
(ext4) /dev/md0 550G 211M 522G 1% /export/home1
(ext4) /dev/sdd1 7.3G 31M 7.3G 1% /mnt/STSLOS
Do the same with ZFS and Two Solid State drives (could also be spinning rust):
· /dev/sda
· /dev/sdb
[edit]Create root (AKA "/" for OS Data and /boot)
parted /dev/sda mklabel gpt
parted -a optimal /dev/sda mkpart primary ext4 2048s 20GB
mkfs.ext4 -L root /dev/sda1
Create a zpool called "foo" using the rest of sda and all of sdb
parted -a optimal /dev/sda mkpart primary 20GB 100%
zpool create foo /dev/sda2 /dev/sdb
[bookmark: Create_root_.28AKA_.22.2F.22_for_OS_Data][edit]Create root (AKA "/" for OS Data and /boot) as a striped or mirrored raid set of partitions from both drives
parted /dev/sda mklabel gpt
parted -a optimal /dev/sda mkpart primary ext4 2048s 20GB
parted /dev/sda set 1 raid on
parted /dev/sdb mklabel gpt
parted -a optimal /dev/sdb mkpart primary ext4 2048s 20GB
parted /dev/sdb set 1 raid on
Stripe the partitions:
mdadm --create /dev/md0 --name=root --level=raid0 --raid-devices=2 /dev/sda1 /dev/sdb1
OR Mirror the partitions:
mdadm --create /dev/md0 --name=root --level=raid1 --raid-devices=2 /dev/sda1 /dev/sdb1

Make the filesystem
mkfs.ext4 -L root /dev/md0
Bootloader Notes
· Remember to install grub to "/dev/md0" as this is the aggregate of both drives.
· This will place the bootloader into the GPT bootsectors of both drives
Create a zpool called "foo" using the rest of sda and sdb
parted -a optimal /dev/sda mkpart primary 20GB 100%
parted -a optimal /dev/sdb mkpart primary 20GB 100%
zpool create foo /dev/sda2 /dev/sdb2
[bookmark: Enable_compression_at_the_zpool_level][edit]Enable compression at the zpool level
· CPU overhead for this is negligible for performance/storage space gains attained with it on
zfs set compression=on foo
[bookmark: Carve_out_a_ZVOL_.28block_device.29_to_u][edit]Carve out a ZVOL (block device) to use as swap for the zpool "foo" and make swap on it, and enable it
zfs create -V 16G foo/swap
mkswap -L swap /dev/zvol/foo/swap
swapon /dev/zvol/foo/swap
[bookmark: Create_our_ZFS_filesystems][edit]Create our ZFS filesystems
There are two ways to do this:
· Use nested ZFS datasets
· Create individual datasets and mount them accordingly
[bookmark: Method_1][edit]Method 1
Carve out our nested ZFS datasets from the zpool "foo" and set the mountpoints other then at the zpool root
mkdir /export
mkdir /export/home
mkdir /export/home1
mkdir -p /export/home/signa/research
mkdir -p /export/home/snap
mkdir /mnt/STSLOS
zfs create -o mountpoint=/export foo/export
zfs create -o mountpoint=/export/home foo/export/home
zfs create -o mountpoint=/export/home/signa foo/export/home/signa
zfs create -o mountpoint=/export/home/signa/research foo/export/home/signa/research
zfs create -o mountpoint=/export/home/snap foo/export/home/snap
zfs create -o mountpoint=/tmp foo/tmp
zfs create -o mountpoint=/var foo/var
zfs create -o mountpoint=/var/log foo/var/log
zfs create -o mountpoint=/var/log/audit foo/var/log/audit
zfs create -o mountpoint=/mnt foo/mnt
zfs create -o mountpoint=/mnt/STSLOS foo/mnt/stslos
[bookmark: Method_2][edit]Method 2
Carve out our ZFS datasets from the zpool "foo" and set the mountpoints other then at the zpool root (EG: /foo/<datasetname>), and also create an folders needed to mount things
mkdir /export
mkdir /export/home1
mkdir -p /export/home/signa/research
mkdir /export/home/snap
mkdir /mnt/STSLOS
zfs create -o mountpoint=/export foo/export
zfs create -o mountpoint=/export/home1 foo/home1
zfs create -o mountpoint=/export/home/signa/research foo/research
zfs create -o mountpoint=/export/home/snap foo/snap
zfs create -o mountpoint=/tmp foo/tmp
zfs create -o mountpoint=/var foo/var
zfs create -o mountpoint=/var/log foo/varlog
zfs create -o mountpoint=/var/log/audit foo/varlogaudit
zfs create -o mountpoint=/mnt/STSLOS foo/stslos
[bookmark: Alternate_Method_2][edit]Alternate Method 2
Carve out our ZFS datasets from the zpool "foo" and set the mountpoints other then at the zpool root (EG: /foo/<datasetname>), and also create folders needed to mount partitions. Below is the ZFS dataset "export" hold directories for home,home1,snap, and research instead of making them individual ZFS datasets. The same thing applies to the ZFS "var" dataset for log and audit
mkdir /export
mkdir /export/home
mkdir /export/home1
mkdir -p /export/home/signa/research
mkdir /export/home/snap
mkdir /var/log
mkdir /var/log/audit
mkdir /mnt/STSLOS
zfs create -o mountpoint=/export foo/export
zfs create -o mountpoint=/export/home/snap foo/snap
zfs create -o mountpoint=/tmp foo/tmp
zfs create -o mountpoint=/var foo/var
zfs create -o mountpoint=/mnt/STSLOS foo/stslos
[bookmark: Links][edit]Links
· CST ZFS Brownbag presentation
· OpenZFS
· ZFS on Linux
· The original end all be all ZFS presentation
· Ubuntu ZFS wiki
· ZFS supported on Ubuntu
· Gentoo ZFS WiKi
· [bookmark: _GoBack]Debian ZFS WiKi
· Archlinux ZFS Wiki
· OpenZFS on Linux HEPiX 2014
· Scientific Linux ZFS Repositories
· ZFS on linux GIT
· Solaris internals ZFS Evil Tuning Guide
· Solaris internals ZFS best practices Guide
· Data Loss and ZFS
· No, ZFS really doesn't need a fsck

image1.png
lusr Ivar /home

‘ Volume Group "vg"

image2.png
ZFS ZFS ZFS ZFS
"tank/usr" "tank/var" "tank/root" "tank/home"

Storage Pool "tank"

SEEEREEE

